• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exponential Continuous Non-Parametric Neural Identifier With Predefined Convergence Velocity

    2022-06-25 01:17:36MarianaBallesterosRitaFuentesAguilarandIsaacChairez
    IEEE/CAA Journal of Automatica Sinica 2022年6期

    Mariana Ballesteros, Rita Q. Fuentes-Aguilar, and Isaac Chairez

    Abstract—This paper addresses the design of an exponential function-based learning law for artificial neural networks (ANNs)with continuous dynamics. The ANN structure is used to obtain a non-parametric model of systems with uncertainties, which are described by a set of nonlinear ordinary differential equations.Two novel adaptive algorithms with predefined exponential convergence rate adjust the weights of the ANN. The first algorithm includes an adaptive gain depending on the identification error which accelerated the convergence of the weights and promotes a faster convergence between the states of the uncertain system and the trajectories of the neural identifier.The second approach uses a time-dependent sigmoidal gain that forces the convergence of the identification error to an invariant set characterized by an ellipsoid. The generalized volume of this ellipsoid depends on the upper bounds of uncertainties,perturbations and modeling errors. The application of the invariant ellipsoid method yields to obtain an algorithm to reduce the volume of the convergence region for the identification error.Both adaptive algorithms are derived from the application of a non-standard exponential dependent function and an associated controlled Lyapunov function. Numerical examples demonstrate the improvements enforced by the algorithms introduced in this study by comparing the convergence settings concerning classical schemes with non-exponential continuous learning methods. The proposed identifiers overcome the results of the classical identifier achieving a faster convergence to an invariant set of smaller dimensions.

    I. INTRODUCTION

    NON-PARAMETRIC identification represents a key tool to develop adaptive control for uncertain systems. Some of these identifiers apply approximation theory to obtain a useful model of a system with uncertainties [1]. If the model could represent the input-output relationship with enough(according to the designer) accuracy, then, this model can be used to design disturbance canceling feedback controllers [2].

    Usually, the approximate model considers a linear combination of either states or functions, which formed a basis in a specific Hilbert space. The non-parametric approximation strategy individualizes the model by adjusting theweights(linear parameters) of each component (state or functions) in the basis [3]. In consequence, most of these identifiers use different variations of the least mean square method (LMS) to obtain the specific model that fits better (in terms of the norm used to define the performance index to be minimized by the LMS) with the input-output relationship [4], [5].

    Few results consider a nonlinear dependence of the weights characterizing the uncertain model. The selection of functions to form the basis establishes a particular form of the approximate model. In the context of this study, the basis is composed of sigmoid functions yielding to the concept of a non-parametric neural identifier [6], [7]. Neural identifiers use the approximation properties of artificial neural networks(ANNs) [8]-[11]. The specific form of sigmoid functions satisfies the definition introduced by Cybenko [12]. Then,Logistic, S-shaped, or inverse tangent can be feasible selections of the elements forming the basis.

    Over the past decades, the notion of neural identifier has solved the problem of designing approximate models for diverse systems using a simplified one-layer (output-layer)structure [13]. Many other identifiers used adaptive theory to obtain the estimation of the weights, even in more complex topological forms with multiple layers. Notice that, most of these identifiers were not able to predefine the convergence velocity of identification error and they only can ensure the upper bound of the convergence region for the trajectories of the identification error.

    The potential application of a neural identifier within the design of the adaptive controller demands thefastest possibleconvergence of the identification error. This vague concept can be reinterpreted in terms of the prescribed performance idea proposed in [14]-[16]. The prescribed performance idea considers that the tracking error should converge to an arbitrarily small residual set with convergence rate greater or equal than a pre-specified value. In literature, prescribed performance usually introduced a nonlinear transformation that converts the original design into a stabilization problem that can be solved by proposing a suitable Lyapunov function candidate. The nonlinear transformation considers the application of an exponential function that appears hidden in the design of the approximate model based on ANNs.

    The idea of storing past information of states in the uncertain system serves to design the concurrent learning solution, which leads to prescribed exponential bounds for the identification error [17], [18]. Nevertheless, the continuously growing storage of past states limits the application of such class of solutions. The velocity gradient method is another remarkable variant of the methods developed to fix the convergence velocity [19]. Different variants of LMS solutions to estimate the weights have been studied recently with interesting results, but still providing an ex-post characterization of the exponentially convergence bounds. An example of the design of adaptive controllers where the estimated weights used on the identifier structure yielding a compensating structure and a linear correction element on the tracking error using Barrier Lyapunov functions is presented in [20]. A different option to enforce a prescribed performance for the modeling process using ANNs is based on the socalled control Lyapunov function (CLF). These functions have been considered a keystone element in the design of feedback controllers. In the context of non-parametric modeling, CLFs are central elements to design different weights estimation rules that provide diverse characteristics to the stability of the origin in the space of the identification error. In contrast to the classical CLF where the control design is the main objective,the application of such class of CLF in non-parametric modeling yields to define learning laws that can force prescribed transient behavior.

    This study proposes two particular forms of CLF that have exponential associated functions modifying the transient performance for the identification error. The main novelties and contributions of this work are:

    1) We use a CLF to design the learning laws in the neural identifiers with the peculiarity of adding exponential elements to enhance the convergence of the identification error. This exponential control Lyapunov function (ECLF) is conformed by the classical quadratic elements and an additional exponential structure depending on either the identification error or a pure time depending variable.

    2) The motivation for using ECLF arises from other identification and control fields as time delay control theory or optimal control [21]-[23], where such a class of functions is used in performance indexes with a discount. Indeed, the application of ECLF provides faster convergence of the states to the equilibrium point when the optimal solution is applied as a stabilizing controller [24]. This study presents a contribution to adaptation by including the ECLF in the design of adaptive weights.

    3) We present two ECLFs for the design of adaptive laws for the developed exponential identifier, the first exponential element depends on the identification error, and the second uses a time-dependent sigmoidal function that grows with predefined velocity.

    4) The two variants of exponential learning laws justify a predefined transient performance for both algorithms developed in this study.

    The paper is organized as follows: In Section II, notation and useful mathematical preliminaries are described. Section III defines the class of uncertain systems and the approximation properties of the ANN with continuous dynamic used in this study. Section IV describes the first identifier as well as the exponential convergent learning laws, and in the last subsection, the design of the second identifier based on a time-dependent gain for the adjustment of the weights is described. In Section V, the use of the invariant ellipsoid method to minimize the convergence region of the identification error is described. Section VI describes the numerical results used to demonstrate the benefits achieved by the methods introduced in this paper. Finally, Section VII concludes the paper with some remarks.

    II. PRELIMINARIES

    In this section, the notation used through the paper is defined and some important concepts for the design of the identifiers are explained.

    A. Notation

    B. Mathematical Background

    Comparison functions are useful tools for the analysis of the stability and boundedness of control systems. In this work, the design of the neural identifier and the analysis of the identification error use this class of functions. The definitions for these functions are

    Definition 1:Comparison functions:

    Prescribed performance has been considered within the robust and adaptive control theories. Usually, prescribed performance used an auxiliary performance function that formalizes it in terms of generalized states such as the tracking error. In this study, the same auxiliary is also considered, but it uses the trajectories of identification error as the characterizing states.

    III. UNCERTAIN NONLINEAR SYSTEMS

    The class of nonlinear systems with uncertain structure satisfies the following mathematical description:

    A. Neural Network Representation of the Uncertain System

    IV. EXPONENTIAL NEURAL IDENTIFIER

    The structure of the neural identifier can be presented in a general form as sigmoid multipliers. The second part defines the vector field associated with the control action using the second set of adaptive parametersW2(t). Indeed, the structure of the neural identifier is

    A. Problem Statement

    C. Identifier With Predefined Velocity of Convergence

    The structure of the neural identifier with predefined velocity considers the same general form of (19)

    V. ANALYSIS OF THE CONVERGENCE REGION AND VELOCITY

    This section analyzes the effect of introducing the exponential dependent functions on the DNN identifier design.

    A. Identifier 1

    Considering the inclusion (33) and the result of Theorem 4,the following differential inclusion is valid:

    Notice that the right hand-side of (47) is a nonlinear function of the matrixPaand the positive parameter αawhich are intemately related by the solution of the bilinear matrix inequality (25). This nonlinear relation can be optimized (if such optimal solution exists with the aim of minimizing the guaranteed convergence time). Guaranteed parameter estimation is considered as an efficient tool for designing controllers, observers and parameter identifiers, including their convergence time. This approach offers remarkable advantages such as the need to know only the lower and upper bounds for the uncertain section of the system. However, the computational cost and the conservatism of the resulting estimates are two major inconveniences of this method.Guaranteed estimation method has been improved using the invariant (attractive) ellipsoid method if the uncertainties and perturbations fulfil a quadratic ellipsoidal constraint. In this paper, this condition is considered in the set of assumptions including at the beginning of this study. It is usual that parameters estimation based on the ellipsoid technique is obtained by a recurrent algorithm that estimates the intersection of ellipses. However, recent research works have brought another possible solution that is going to be used in this study. This problem can be formally stated as the following minimization problem:

    Fig. 1. Diagram of the implementation for both identifiers.

    Fig. 2. Diagram of the implementation for Identifier 1.

    B. Identifier 2

    Considering the inclusion (42) and the result of Theorem 5,the following differential inclusion is valid:

    Fig. 1 depicts a diagram with the stages to implement the proposed DNN identifiers.

    Algorithm 1 describes the learning procedure, as well as how the identifier is proposed. The numbers in parentheses in Fig. 1, represent the steps from Algorithm 1.

    Fig. 3. Diagram of the implementation for Identifier 2.

    Figs. 2 and 3 are a graphical representation of each algorithm, respectively. In both figures, the computation of the exponential element for each identifier is represented.Notice that the main difference in the design relay on the exponential. In Fig. 2, the function consists of the exponential term dependent on the identification error, while Fig. 3 depicts how the time-dependent exponential element is included in a sigmoidal. The steps and parameters needed for the implementation are shown in these figures.

    Algorithm 1: Identifier Implementation 1: Start 2. Estimate the upper values for the fixed weights and ,that is and ,3: Define the values for matrices R and Q that are part of the Riccati equation 4: Implement the computational method to get the positive definite solution P of the Ricatti equation 5: If the solution of the Riccati equation exists, then:W0,1 W0,2 W+0,1 W+0,2

    6: Implement the ordinary differential equation corresponding to the RDNN identifier to get the dynamic evolution of with the exponential modification 7: Implement the matrix differential equations for the three weights forming the dynamic structure of the proposed RDNN W1, and W2 8: Fix the initial values for the states of the identifier as well as for the weights W1, and W2 9: Evaluate the numerical performance of the identifier comparing the evolution of its states in comparison to the actual trajectories of the system with uncertain dynamics with uncertain model, with the estimation of the root mean square of the identification error.10: If the root mean square of the identification error is smaller than the predefined quality indicator β0, then the algorithm is finished.11: Else Modify the initial weights of the RDNN taking the final value of matrices W1, and W2 from the numerical evaluation. Then,restart the numerical evaluation with the initial weights and evaluate the root mean square value.12: Repeat this procedure until the convergence quality estimation is gotten.?x?

    VI. NUMERICAL RESULTS

    The proposed identifiers were tested on a virtual model of a robot manipulator with two degrees of freedom. The model was obtained using the Simescape MultibodyTMtoolbox of Matlab?. The dynamics is assumed uncertain but, due to the well-known characteristics of the robot modeling [35], the model satisfies all the assumptions presented in Section III, as well as the structure of the class of systems considered in this paper. Notice that for this testing, the model served as a data generator and no information from the model was considered in the identifiers design. Some parameters used in simulations are shown in Table I while the rest are in matrix form presented in this section.

    All the initial conditions, the number of neurons and the free-parameters were selected equally for the three identifiers.For the second proposed identifier γ1=1, γ2=2 andL=5.

    As it can be noticed, most of the parameters were selected considering the calculus of the matrix inequality proposed in(26), estimating the upper values for the weights using the trial and evaluating procedure. This procedure leads to obtaining the value of the matrixP. The only free parameters in the learning laws were matricesK1andK2. The initial conditions for the weights and the identifier were selected randomly with a uniform distribution. The parameters considered in the activation functions for the identifier were taken from the reference [5]. The foundation principles of artificial neural network design claim that these parameters in the sigmoidal functions can be selected randomly if the number of activation functions is high enough.

    and the solution for (37) corresponds to

    Figs. 4-7 depict the identification result for each state of the planar manipulator of two degrees of freedom. Each figure shows the comparison between the evolution of the state for both identifiers, the state of the simulated system and a Classical DNN identifier.

    Fig. 7. Comparison of the identification results for the fourth state (angular velocity of the second link) using both of the proposed identifiers and a classical DNN identifier.

    Fig. 4. Comparison of the identification results for the first state (angular position of the first link) using both of the proposed identifiers and a classical DNN identifier.

    Fig. 5. Comparison of the identification results for the second state (angular velocity of the first link) using both of the proposed identifiers and a classical DNN identifier.

    Fig. 6. Comparison of the identification results for the third state (angular position of the second link) using both of the proposed identifiers and a classical DNN identifier.

    In Fig. 4, it can be appreciated how the second identifier converges faster to the system trajectory of the first state. This identifier converges in less than 0.1 seconds. In the zoomed view, the detail depicts the convergence of the classical identifier and the first proposed identifier. Notice here that the first identifier converges faster and presents oscillations of larger amplitude before 0.1 seconds. For this state, the classical identifier presents oscillations of smaller amplitude.However, the convergence to the actual state of the uncertain system was better for both proposed identifiers in this study.

    The convergence of the second state of the manipulator system for the classical and the proposed identifiers is showed in Fig. 5. In this figure, one may notice the difference between the convergence of both identifiers and the classical DNN identifier (depicted with the continued blue line). In the detailed view for the first seconds, it is appreciated the fastest convergence of the second identifier (compared to the classical one) before 0.1 seconds, then the first identifier convergences and the classical identifier is the last to converge.

    Fig. 6 shows the result for the convergence of the considered identifiers for the third state. In this case, the classical identifier presents oscillations of larger amplitude(comparatively). In the detailed view, the second identifier has smaller amplitude and high-frequency oscillations and converges faster (before 0.16 seconds). The first proposed identifier converges faster than the classical identifier to the position of the second link.

    Similar to the previous figures, in Fig. 7, the results for the identification in the fourth state are shown. These results confirm that the classical DNN identifier presents oscillations with larger amplitudes than the proposed identifiers. In the detailed view, it is shown the fastest convergence (before 0.15 seconds) of the first proposed identifier (black line).

    In Fig. 8, the comparison of the three mean square errors for the Classical identifier, First and Second proposed identifiers are depicted. In this figure, the norm for the identification error using the classical identifier has bigger oscillations and a slower convergence. This analysis justifies the design of the proposed identifiers and provides a substantial basis for the inclusion of the time varying exponential functions in the learning design.

    Fig. 8. Norm of the identification error using a Classical DNN identifier and the proposed DNN identifiers.

    For the second identifier, Fig. 9 shows a comparison of the norm for the identification error using different values forL,the red line depicts the result for anL=5 and the blue dotted line for anL=20. This comparison using different values shows the relation of the parameterLin the velocity of convergence. Moreover, this comparative result emphasizes the possibility of fixing the convergence characteristics for the designed identifier with the learning laws presented in (36).

    Fig. 9. Norm of the identification error. Comparison between the results of the second proposed identifier selecting different values for the L parameter.

    As it has been revised, the proposed ECLF provides a transient constraint for the trajectories of the identification error. This fact appears as a significant improvement over the traditional CLF which is not able to regulate the converged velocity for the identification error.

    VII. CONCLUSION

    This paper discussed the design of the learning laws for an ANN structure devoted to system identification. The design included the addition of exponential functions in the Control Lyapunov function. The exponential functions were selected considering the concept of performance functions or prescribed performance. The Lyapunov analysis for the convergence of the identification error and the weights error was developed and the ultimate bound of the proposed designs was obtained. The analysis gave an estimation of the time of convergence to the invariant set around the origin using the exponential functions. For the second design one of the free parameters,Lcan be used to obtain a prescribed-like performance or improve the velocity of convergence. In the first identifier, the parameters of the identifier affect both, the size of the zone of convergence around the origin and the velocity of convergence. This study introduced a methodology to regulate the convergence velocity of the identification error enforced by the class of DNN proposed here. This accelerated convergence could be used to design hyper-exponential convergence for the identification error, uniform convergent identifier as well as the design of identifiers for delay systems with exponential convergence. Notice that all the improved characteristics of the exponential convergent identifier can be exploited in the design of adaptive controllers using the approximated model based on DNN.

    免费人成在线观看视频色| 国产av一区二区精品久久 | 99热这里只有是精品50| 老师上课跳d突然被开到最大视频| av专区在线播放| 亚洲中文av在线| 午夜福利高清视频| 亚洲av福利一区| 国产高清有码在线观看视频| 一本一本综合久久| 亚洲精品一区蜜桃| 欧美激情极品国产一区二区三区 | 麻豆乱淫一区二区| 大又大粗又爽又黄少妇毛片口| 最近中文字幕2019免费版| 中文天堂在线官网| 高清日韩中文字幕在线| 免费黄网站久久成人精品| 最近最新中文字幕大全电影3| 人妻 亚洲 视频| 国产av精品麻豆| 一区二区av电影网| 亚洲高清免费不卡视频| 亚洲精品乱码久久久v下载方式| 亚洲欧美成人精品一区二区| 久久女婷五月综合色啪小说| 看非洲黑人一级黄片| 91久久精品国产一区二区三区| 国语对白做爰xxxⅹ性视频网站| 亚洲人成网站在线播| 久久久精品免费免费高清| 99精国产麻豆久久婷婷| 亚洲国产av新网站| 亚洲高清免费不卡视频| av线在线观看网站| 亚洲成色77777| 在线观看一区二区三区| 一二三四中文在线观看免费高清| 国产一级毛片在线| 亚洲国产日韩一区二区| av国产免费在线观看| 色哟哟·www| 春色校园在线视频观看| 中文字幕亚洲精品专区| 国产精品99久久久久久久久| 久久久午夜欧美精品| 欧美国产精品一级二级三级 | 中文字幕免费在线视频6| 久久久欧美国产精品| 1000部很黄的大片| 国产一区亚洲一区在线观看| 老司机影院成人| 国产亚洲av片在线观看秒播厂| 亚洲中文av在线| 观看av在线不卡| 日本爱情动作片www.在线观看| 少妇 在线观看| 久久这里有精品视频免费| 全区人妻精品视频| 婷婷色综合大香蕉| 在线观看免费高清a一片| 久久久久久久国产电影| 久久久久久久久久人人人人人人| 久久久久久伊人网av| 好男人视频免费观看在线| 欧美高清性xxxxhd video| 成人高潮视频无遮挡免费网站| 欧美精品一区二区免费开放| 国产成人a∨麻豆精品| 国产久久久一区二区三区| 国产在线视频一区二区| 精品国产三级普通话版| 99久久综合免费| 一级av片app| 尾随美女入室| 日韩不卡一区二区三区视频在线| 欧美zozozo另类| 国产乱来视频区| 成人一区二区视频在线观看| 亚洲丝袜综合中文字幕| 久久韩国三级中文字幕| 国产女主播在线喷水免费视频网站| 欧美区成人在线视频| 精品熟女少妇av免费看| 天天躁夜夜躁狠狠久久av| 街头女战士在线观看网站| 成人国产av品久久久| 亚洲天堂av无毛| 大码成人一级视频| 黑人猛操日本美女一级片| 日韩三级伦理在线观看| 亚洲av在线观看美女高潮| 精品人妻熟女av久视频| 麻豆精品久久久久久蜜桃| 久久久久久久久久久丰满| 亚洲精品一二三| 波野结衣二区三区在线| 亚洲精品乱码久久久久久按摩| 最黄视频免费看| 自拍欧美九色日韩亚洲蝌蚪91 | 一边亲一边摸免费视频| 嫩草影院入口| 国产美女午夜福利| 高清在线视频一区二区三区| 久久久久久九九精品二区国产| 男女边吃奶边做爰视频| 久久久久国产精品人妻一区二区| 亚洲无线观看免费| av国产免费在线观看| 91精品国产国语对白视频| 纯流量卡能插随身wifi吗| 国产黄片美女视频| 亚洲精品色激情综合| 夜夜骑夜夜射夜夜干| 日日啪夜夜爽| 日韩av在线免费看完整版不卡| 精品一区在线观看国产| 18禁动态无遮挡网站| 性高湖久久久久久久久免费观看| 久久久久久久久大av| 国模一区二区三区四区视频| 秋霞伦理黄片| 男女下面进入的视频免费午夜| 久久午夜福利片| 久久久a久久爽久久v久久| 欧美精品一区二区大全| 久久99热这里只频精品6学生| 欧美日韩亚洲高清精品| 夜夜看夜夜爽夜夜摸| 高清日韩中文字幕在线| 久久人人爽av亚洲精品天堂 | 午夜福利高清视频| 美女xxoo啪啪120秒动态图| 嘟嘟电影网在线观看| 亚洲色图av天堂| 亚洲国产精品专区欧美| 老司机影院成人| 亚洲欧美成人精品一区二区| 一级毛片 在线播放| 国产老妇伦熟女老妇高清| 国产欧美日韩精品一区二区| 少妇被粗大猛烈的视频| av女优亚洲男人天堂| 国产精品伦人一区二区| 欧美最新免费一区二区三区| 亚州av有码| a 毛片基地| 国产探花极品一区二区| av又黄又爽大尺度在线免费看| 成年人午夜在线观看视频| 日韩欧美一区视频在线观看 | 国产成人91sexporn| 久久韩国三级中文字幕| 美女中出高潮动态图| 一区二区三区精品91| 国产真实伦视频高清在线观看| 男女无遮挡免费网站观看| 人人妻人人看人人澡| 肉色欧美久久久久久久蜜桃| 国产伦精品一区二区三区视频9| 亚洲av电影在线观看一区二区三区| 五月天丁香电影| 少妇精品久久久久久久| 久久久久久久久久久免费av| 免费高清在线观看视频在线观看| 久久久国产一区二区| 高清欧美精品videossex| 丝瓜视频免费看黄片| 伦精品一区二区三区| 国产黄色免费在线视频| 最后的刺客免费高清国语| 精品一品国产午夜福利视频| 一区二区av电影网| 麻豆乱淫一区二区| 国产免费福利视频在线观看| 青青草视频在线视频观看| 精品99又大又爽又粗少妇毛片| 大话2 男鬼变身卡| 午夜免费鲁丝| 黄色欧美视频在线观看| 视频区图区小说| 国产精品嫩草影院av在线观看| 午夜视频国产福利| 欧美bdsm另类| 国产乱来视频区| 久久久久久久久久人人人人人人| 舔av片在线| 日韩亚洲欧美综合| 欧美精品亚洲一区二区| 在线天堂最新版资源| 男女免费视频国产| 国内揄拍国产精品人妻在线| 校园人妻丝袜中文字幕| 性色av一级| 日韩成人伦理影院| 日本与韩国留学比较| 久久ye,这里只有精品| 精品一区二区三区视频在线| av在线老鸭窝| 99视频精品全部免费 在线| 日本wwww免费看| 91精品国产国语对白视频| 精品99又大又爽又粗少妇毛片| 岛国毛片在线播放| 亚洲欧美成人综合另类久久久| 欧美zozozo另类| 亚洲美女搞黄在线观看| 亚洲久久久国产精品| 亚洲av欧美aⅴ国产| 免费在线观看成人毛片| 人妻少妇偷人精品九色| 大又大粗又爽又黄少妇毛片口| 国产精品.久久久| 在线观看免费日韩欧美大片 | 国产亚洲av片在线观看秒播厂| 久久久久久久久久人人人人人人| 久久久成人免费电影| 最后的刺客免费高清国语| 乱码一卡2卡4卡精品| 欧美日韩综合久久久久久| 九九久久精品国产亚洲av麻豆| 久久人人爽人人爽人人片va| av不卡在线播放| 男人添女人高潮全过程视频| 22中文网久久字幕| 成人特级av手机在线观看| 啦啦啦啦在线视频资源| 国产成人精品福利久久| 国产精品爽爽va在线观看网站| 精品人妻一区二区三区麻豆| 看非洲黑人一级黄片| 狂野欧美白嫩少妇大欣赏| 国产男女超爽视频在线观看| 黄色怎么调成土黄色| 又爽又黄a免费视频| freevideosex欧美| 国产片特级美女逼逼视频| 九草在线视频观看| 免费大片18禁| 欧美高清成人免费视频www| 亚洲国产精品专区欧美| 纯流量卡能插随身wifi吗| 交换朋友夫妻互换小说| 我要看黄色一级片免费的| 伦精品一区二区三区| 欧美精品国产亚洲| 高清在线视频一区二区三区| 国产一区二区在线观看日韩| 天堂俺去俺来也www色官网| 免费观看av网站的网址| 男男h啪啪无遮挡| 久热这里只有精品99| 日韩不卡一区二区三区视频在线| 欧美3d第一页| 亚洲精品日韩在线中文字幕| 亚洲国产色片| 国国产精品蜜臀av免费| 熟妇人妻不卡中文字幕| 免费高清在线观看视频在线观看| 男人爽女人下面视频在线观看| 伊人久久精品亚洲午夜| 国产精品女同一区二区软件| 人妻 亚洲 视频| 我的女老师完整版在线观看| 免费看日本二区| 1000部很黄的大片| 欧美成人一区二区免费高清观看| 亚洲中文av在线| 夫妻午夜视频| 乱码一卡2卡4卡精品| 哪个播放器可以免费观看大片| 丝袜脚勾引网站| 夫妻性生交免费视频一级片| 亚洲,一卡二卡三卡| av视频免费观看在线观看| 七月丁香在线播放| 欧美成人午夜免费资源| 在线观看一区二区三区| 99热这里只有是精品在线观看| 国产精品一区二区性色av| 毛片一级片免费看久久久久| 国产成人freesex在线| 多毛熟女@视频| 免费黄频网站在线观看国产| 七月丁香在线播放| 国产乱人偷精品视频| 亚洲欧美日韩无卡精品| 午夜激情福利司机影院| 欧美精品一区二区大全| 国语对白做爰xxxⅹ性视频网站| 看免费成人av毛片| 精品人妻偷拍中文字幕| 欧美日韩国产mv在线观看视频 | 天天躁日日操中文字幕| 久久久久久久久久成人| 在线观看国产h片| 亚洲第一av免费看| 高清日韩中文字幕在线| 极品少妇高潮喷水抽搐| 少妇人妻 视频| 妹子高潮喷水视频| 一区二区三区精品91| 水蜜桃什么品种好| 永久网站在线| 久久国内精品自在自线图片| 99视频精品全部免费 在线| 女人十人毛片免费观看3o分钟| 色5月婷婷丁香| 欧美国产精品一级二级三级 | 国产高潮美女av| 亚洲婷婷狠狠爱综合网| 内射极品少妇av片p| 亚洲国产欧美人成| 成年女人在线观看亚洲视频| 久久人人爽人人爽人人片va| 男女无遮挡免费网站观看| 一本—道久久a久久精品蜜桃钙片| 亚洲精品国产av蜜桃| av在线观看视频网站免费| 简卡轻食公司| av网站免费在线观看视频| 日韩免费高清中文字幕av| 久久久久国产网址| 啦啦啦视频在线资源免费观看| 蜜桃在线观看..| 国产精品免费大片| 夜夜爽夜夜爽视频| 国产亚洲91精品色在线| 成人一区二区视频在线观看| 麻豆国产97在线/欧美| 国产一区有黄有色的免费视频| 亚洲国产精品专区欧美| 涩涩av久久男人的天堂| 国产精品国产三级国产av玫瑰| 国产久久久一区二区三区| 看非洲黑人一级黄片| 大片免费播放器 马上看| 麻豆乱淫一区二区| 美女福利国产在线 | 高清在线视频一区二区三区| 在线看a的网站| 国产精品一区二区在线不卡| 欧美高清性xxxxhd video| 天天躁夜夜躁狠狠久久av| 插阴视频在线观看视频| 国产精品国产av在线观看| 国内揄拍国产精品人妻在线| 亚洲欧美中文字幕日韩二区| 亚洲在久久综合| 最近最新中文字幕免费大全7| 欧美xxxx性猛交bbbb| 黄色配什么色好看| 日韩大片免费观看网站| 99热这里只有是精品在线观看| 日本免费在线观看一区| 欧美一区二区亚洲| 老女人水多毛片| 免费人妻精品一区二区三区视频| 精品久久久精品久久久| 中国美白少妇内射xxxbb| 一级a做视频免费观看| 中文字幕久久专区| 九色成人免费人妻av| 精品视频人人做人人爽| 成人特级av手机在线观看| 99久久精品一区二区三区| 久久久国产一区二区| 中文字幕久久专区| 欧美少妇被猛烈插入视频| 成人一区二区视频在线观看| 男女国产视频网站| 午夜免费男女啪啪视频观看| 国产精品女同一区二区软件| 免费大片黄手机在线观看| 日韩成人av中文字幕在线观看| 国产精品国产av在线观看| 日韩三级伦理在线观看| 免费看av在线观看网站| 国产av精品麻豆| 91在线精品国自产拍蜜月| 国产成人精品一,二区| 欧美亚洲 丝袜 人妻 在线| 丝袜脚勾引网站| 在线观看av片永久免费下载| 人妻系列 视频| 欧美亚洲 丝袜 人妻 在线| 国产视频内射| 亚洲精品日韩av片在线观看| 在线亚洲精品国产二区图片欧美 | 日本与韩国留学比较| 久久精品久久久久久久性| 国产黄频视频在线观看| 亚洲精品456在线播放app| 五月伊人婷婷丁香| 精品亚洲乱码少妇综合久久| 97超视频在线观看视频| 欧美97在线视频| 一边亲一边摸免费视频| 亚洲欧美成人精品一区二区| 久久精品久久精品一区二区三区| 久久女婷五月综合色啪小说| 亚洲四区av| 日韩欧美 国产精品| 亚洲欧美中文字幕日韩二区| 国产亚洲5aaaaa淫片| 国产亚洲一区二区精品| 婷婷色综合大香蕉| 精品人妻一区二区三区麻豆| 午夜激情久久久久久久| 久久久欧美国产精品| 18禁在线播放成人免费| 亚洲中文av在线| videossex国产| 天堂中文最新版在线下载| 男人爽女人下面视频在线观看| 国内少妇人妻偷人精品xxx网站| 97精品久久久久久久久久精品| 亚洲一区二区三区欧美精品| 国产v大片淫在线免费观看| 免费播放大片免费观看视频在线观看| 国产亚洲av片在线观看秒播厂| 亚洲国产欧美在线一区| 99久久精品一区二区三区| 我要看日韩黄色一级片| 国产在线视频一区二区| 成人无遮挡网站| 亚洲电影在线观看av| 国产精品嫩草影院av在线观看| 在线观看av片永久免费下载| 亚洲成人一二三区av| 黄片wwwwww| 日韩在线高清观看一区二区三区| 亚洲色图综合在线观看| av福利片在线观看| 日本欧美国产在线视频| 2022亚洲国产成人精品| 精品99又大又爽又粗少妇毛片| 久久久久久久久大av| 日韩视频在线欧美| 一级二级三级毛片免费看| 日韩国内少妇激情av| 久久 成人 亚洲| av福利片在线观看| 亚洲国产色片| 日本av免费视频播放| 欧美极品一区二区三区四区| 久久久久视频综合| 蜜桃在线观看..| 国产黄片视频在线免费观看| 亚洲av欧美aⅴ国产| 色婷婷久久久亚洲欧美| 这个男人来自地球电影免费观看 | 国产精品99久久99久久久不卡 | 男人舔奶头视频| 国产一级毛片在线| av免费在线看不卡| 80岁老熟妇乱子伦牲交| 久久精品久久精品一区二区三区| 高清午夜精品一区二区三区| 在线免费观看不下载黄p国产| 在线观看免费日韩欧美大片 | 国产精品伦人一区二区| 高清日韩中文字幕在线| 赤兔流量卡办理| 嫩草影院新地址| 人体艺术视频欧美日本| 少妇人妻精品综合一区二区| 免费观看a级毛片全部| 国产在线一区二区三区精| xxx大片免费视频| 97超碰精品成人国产| 一二三四中文在线观看免费高清| 寂寞人妻少妇视频99o| 在线免费观看不下载黄p国产| 欧美日韩精品成人综合77777| 在线观看人妻少妇| 成人影院久久| 色综合色国产| 精品一区二区三区视频在线| 精品人妻视频免费看| 丝瓜视频免费看黄片| 一级片'在线观看视频| 国产毛片在线视频| 一区二区三区免费毛片| 中文字幕av成人在线电影| 久热久热在线精品观看| 日韩三级伦理在线观看| 久久av网站| 99久久综合免费| 国产高潮美女av| 男人狂女人下面高潮的视频| 国产精品国产三级国产av玫瑰| 另类亚洲欧美激情| 日日摸夜夜添夜夜爱| 欧美日韩一区二区视频在线观看视频在线| 免费黄色在线免费观看| 少妇人妻 视频| 久久婷婷青草| 国产黄片视频在线免费观看| 制服丝袜香蕉在线| 国产无遮挡羞羞视频在线观看| 久久久久久伊人网av| 少妇的逼水好多| 亚洲色图综合在线观看| 我的老师免费观看完整版| 国产视频内射| 我的女老师完整版在线观看| 91精品一卡2卡3卡4卡| 美女内射精品一级片tv| 亚洲精品亚洲一区二区| 久久精品国产a三级三级三级| 国产精品三级大全| 女人久久www免费人成看片| 精品一区二区三区视频在线| 3wmmmm亚洲av在线观看| 夜夜爽夜夜爽视频| 免费观看性生交大片5| 肉色欧美久久久久久久蜜桃| 大香蕉97超碰在线| 男女免费视频国产| 五月天丁香电影| 欧美日韩一区二区视频在线观看视频在线| 91精品伊人久久大香线蕉| 在线精品无人区一区二区三 | 人人妻人人看人人澡| 一级毛片电影观看| 亚洲av中文字字幕乱码综合| 免费久久久久久久精品成人欧美视频 | 99热网站在线观看| 久久精品国产a三级三级三级| 国产成人91sexporn| 涩涩av久久男人的天堂| 一本—道久久a久久精品蜜桃钙片| 国产色爽女视频免费观看| 亚洲自偷自拍三级| 国产成人a区在线观看| 国产精品人妻久久久影院| 亚洲av成人精品一区久久| av又黄又爽大尺度在线免费看| av专区在线播放| 成人影院久久| 欧美+日韩+精品| 91精品国产国语对白视频| 夜夜看夜夜爽夜夜摸| 欧美3d第一页| 亚洲国产欧美在线一区| 看免费成人av毛片| 国产 精品1| 一区二区av电影网| 国产精品人妻久久久久久| 美女内射精品一级片tv| 国产极品天堂在线| 国产 一区 欧美 日韩| 超碰av人人做人人爽久久| 免费观看av网站的网址| 91精品国产九色| 一边亲一边摸免费视频| 成人亚洲精品一区在线观看 | 永久网站在线| 久久久久久久大尺度免费视频| 国产亚洲欧美精品永久| 大香蕉久久网| 97精品久久久久久久久久精品| 日本vs欧美在线观看视频 | 欧美日韩视频精品一区| 青春草视频在线免费观看| 亚洲欧美日韩卡通动漫| 久久精品人妻少妇| 精品人妻一区二区三区麻豆| 一级毛片久久久久久久久女| 国产免费一级a男人的天堂| 极品教师在线视频| 一边亲一边摸免费视频| 国产精品一区二区在线观看99| 日韩一区二区三区影片| 十分钟在线观看高清视频www | 熟女电影av网| 蜜桃亚洲精品一区二区三区| 亚洲欧洲日产国产| 最近中文字幕2019免费版| 国产无遮挡羞羞视频在线观看| 午夜激情久久久久久久| 一个人看的www免费观看视频| 人妻系列 视频| 日韩中文字幕视频在线看片 | 大香蕉97超碰在线| 国产一区二区在线观看日韩| 欧美变态另类bdsm刘玥| 亚洲精品国产av成人精品| 五月伊人婷婷丁香| 亚洲人成网站在线观看播放| 欧美日韩国产mv在线观看视频 | tube8黄色片| 亚洲,一卡二卡三卡| 亚洲av中文av极速乱| 少妇精品久久久久久久| 欧美zozozo另类| 久久久午夜欧美精品| 国产成人a区在线观看| 午夜福利视频精品| 久久99精品国语久久久| 精品一区二区三卡| 18禁在线无遮挡免费观看视频| 在线观看免费日韩欧美大片 | 久久久a久久爽久久v久久| 国产av国产精品国产| 日韩人妻高清精品专区| 亚洲av在线观看美女高潮| 综合色丁香网| 男女啪啪激烈高潮av片| 一个人免费看片子| 国精品久久久久久国模美| 日日啪夜夜撸| 欧美一级a爱片免费观看看| 嫩草影院入口|