• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variance-Constrained Filtering Fusion for Nonlinear Cyber-Physical Systems With the Denial-of-Service Attacks and Stochastic Communication Protocol

    2022-06-25 01:18:38HangGengZidongWangYunChenXiaojianYiandYuhuaChengSinior
    IEEE/CAA Journal of Automatica Sinica 2022年6期

    Hang Geng,, Zidong Wang,, Yun Chen, Xiaojian Yi, and Yuhua Cheng, Sinior

    Abstract—In this paper, a new filtering fusion problem is studied for nonlinear cyber-physical systems under errorvariance constraints and denial-of-service attacks. To prevent data collision and reduce communication cost, the stochastic communication protocol is adopted in the sensor-to-filter channels to regulate the transmission order of sensors. Each sensor is allowed to enter the network according to the transmission priority decided by a set of independent and identicallydistributed random variables. From the defenders’ view, the occurrence of the denial-of-service attack is governed by the randomly Bernoulli-distributed sequence. At the local filtering stage, a set of variance-constrained local filters are designed where the upper bounds (on the filtering error covariances) are first acquired and later minimized by appropriately designing filter parameters. At the fusion stage, all local estimates and error covariances are combined to develop a variance-constrained fusion estimator under the federated fusion rule. Furthermore,the performance of the fusion estimator is examined by studying the boundedness of the fused error covariance. A simulation example is finally presented to demonstrate the effectiveness of the proposed fusion estimator.

    1. INTRODUCTION

    IN general, cyber-physical systems (CPSs) encompass a wide collection of physical and computer infrastructures/components that are connected and intertwined with each other in a cooperative way. Typical examples of CPSs include smart grids [1], [2], water plants [3], [4], robotics systems [5],[6], tracking systems [7]-[9], etc. The real-world implementation of CPSs often requires system components to operate on a shared communication network [10]-[13] which, unfortunately, results in a higher chance of malicious cyber-attacks towards control commands and system outputs. In order to safely and efficiently carry out the desired cyber-physical process, increasing research efforts have recently been made on the secure filtering/control problems for CPSs under deception attacks, replay attacks and denial-of-service (DoS)attacks [14]-[19].

    It should be pointed out that most CPS-related literature has been concerned with filtering/control problems for linear systems only despite the fact that practical CPSs often exhibit inherently nonlinear characteristics [20]-[24]. Clearly, the underlying nonlinearities with the CPSs would inevitably bring in substantial challenges to the development of the filtering/control algorithms [25]. Note that the cooperative control problem has recently been studied in [26] for nonlinear CPSs subject to multiple DoS attacks. Although the filtering problem for nonlinear CPSs has drawn some preliminary attention, the corresponding results have not and the filtering error covariance is of a major concern, and this constitutes one of our motivations to look into varianceconstrained filter design for a class of nonlinear CPSs.

    In response to rapid advancement in technologies involving data sensing, acquisition and analysis, the so-called multisensor filtering fusion problem has attracted unprecedented attention in a wide variety of fields ranging from signal processing to target tracking, see e.g., [27]-[32]. In the context of multi-sensor filtering fusion, it is often the case that the sensors send their respective measurements to remote filters simultaneously [33]-[36], and such simultaneous communication of big data would undoubtedly lead to excessive data transmission which, in turn, gives rise to serious data collision over communication networks with limited resources[37]. In order to control the data traffic and guarantee fusion performance, an important measure is to introduce certain scheduling rules/protocols to govern sensor communication in the hope of utilizing the limited network resources efficiently.

    Regarding the analysis/synthesis issues under communication protocols, a large quantity of research results have recently been attained, and some well-investigated communication protocols include the Round-Robin protocol, the tryonce-discard protocol and the stochastic communication protocol (SCP) [38]-[40]. Among others, the SCP has been deemed to be particularly efficient in assigning network resources because of its dynamic yet stochastic allocation mechanism [41]-[45]. Nevertheless, in relation to nonlinear CPS, the corresponding SCP-based analysis/synthesis results have been very scattered especially when multi-sensor fusion and error-variance constraints are also addressed. Such a lack of adequate results stems mainly from the mathematical challenges in coping with the couplings between the attacking behavior, nonlinear feature, scheduling protocol, variance constraints as well as fusion rule. As such, the motivation arising here is to tackle the variance-constrained filtering fusion problem for nonlinear CPSs under SCP scheduling and DoS attacks.

    In this paper, we endeavor to develop a new varianceconstrained fusion estimator for a general class of nonlinear CPSs that encompass the complexities brought from system nonlinearity, SCP scheduling and DoS attacks. To be more specific, a set of variance-constrained local filters is devised by first accommodating the addressed complexities via a dedicated introduced filter structure and then minimizing certain upper bounds on local filtering error covariances. By means of the matrix inequality and stochastic analysis technique, a variance-constrained fusion estimator is put forward through fully integrating the estimates from all local filters and rigorously studying the boundedness of the fused error covariance.

    The primary contributions made in this paper are highlighted as follows. 1) A new variance-constrained nonlinear fusion estimator is developed to facilitate the mitigation of the adverse influence induced by system nonlinearity, SCP scheduling and DoS attacks that are embedded in both system and measurement models. 2) A set of minimal upper bounds (on both local and fused error covariances) is found to exist by subtly parameterizing the estimators to cope with the tight couplings (between the system nonlinearity, attacking behavior, scheduling protocol as well as fusion rule). 3) The performance of the designed variance-constrained fusion scheme is thoroughly investigated through establishing the boundedness of the fused error covariance.

    The rest of this paper is structured as follows. In Section II,we formulate the considered variance-constrained filtering fusion problem under the SCP and DoS attacks. In Section III,a variance-constrained nonlinear fusion estimator is carefully designed with its parameters determined and performance thoroughly analyzed. In Section IV, a numerical example is given in order to showcase the usefulness of the proposed fusion framework, and a few conclusions are drawn in Section V.

    II. PROBLEM FORMULATION

    Consider the following nonlinear system:

    Pertaining to these challenges, our tasks in this paper are to:1) devise the variance-constrained nonlinear fusion estimator(6) by appropriately determining parametersKm,sandWm,s; 2)assess fusion estimation performance through studying the boundedness property of obtained covariance bounds; and 3)study the effects from the system nonlinearities, SCP scheduling and DoS attacks with parameter determination and a boundedness investigation.

    III. MAIN RESULTS

    Algorithm 1 Variance-Constrained Filtering Fusion ?x0 Pmin~x0 ym,1:s Input: ,, ,?xs Pmin Output: , .?xm,0= ?x0 Pmin~xs m P~x0 Qm,0=?-1m Q0 1: let , , .~xm,0 =?-1 2: for do s=1:N ?x-m,s 3: calculate local prediction by (6);4: calculate filter gain by (25);Pmin~xm,s Km,s 5: calculate minimal bound by (21)-(29);?xm,s 6: calculate the local estimate by (6);Pmin~xs 7: calculate fused bound by (44);Wm,s 8: calculate weight matrix by (41);?xs 9: calculate fused estimate by (6);?xm,s Pmin 10: reallocate , and by (53);11: end for~ξm,s Qm,s

    Remark 5:In comparison to the available filtering literature on CPSs, our primary results own the following distinctive merits: 1) the addressed problem is new as multiple engineering-oriented phenomena (e.g., the system nonlinearity,cyber-attack and communication protocol) are comprehensively considered; 2) the devised fusion paradigm is new as the variance-constrained estimator is purposely built by means of intensive stochastic analysis; and 3) the performance evaluation is new where boundedness of minimal upper bounds with respect to both fused and local error covariances is rigorously guaranteed.

    Remark 6:It can be seen from the design and analysis of the proposed variance-constrained filtering fusion algorithm that,the implementation of such an algorithm involves the calculation of a few matrix equations. Consequently, the computational complexity of the proposed algorithm is highly dependent on both the dimensions of equations and number of decision variables. Generally speaking, there are two effective methods that can be used to reduce the computational complexity of filtering algorithm involving mass matrix operations, i.e., the model reduction method and the suboptimal method. To be specific, the mode reduction refers to the exploration of a possible lower-dimensional model that can be used to replace the original model without adding significant errors in practical applications, while the suboptimal method means that the development of certain suboptimal filtering algorithms might have worse performance but lower computation cost in contrast to the original algorithm. Obviously, in both methods, a proper trade-off between the filtering performance and the computation complexity should be found in order to accomplish the filtering task in an efficient and accurate way.

    IV. ILLUSTRATIVE EXAMPLE

    Fig. 1. DoS attacks on two sensors with success rates β ˉ1=0.2 and β ˉ2=0.3.The blue/green dots on or above the horizontal axis indicate unsuccessful or successful DoS attacks on sensor 1/2 measurements. For instance, at time k, if a blue dot is located on or above the horizontal axis, it indicates that the measurement of sensor 1 is free from or under DoS attacks.

    Fig. 2. MSE1 comparison.

    Fig. 3. MSE2 comparison.

    Fig. 4. Comparison between lg( tr{Pmx~sin}) and its bounds.

    TABLE I AMSE COMPARISON UNDER DIFFERENT SUCCESS RATES [βˉ1,βˉ2]

    TABLE II AMSE COMPARISON UNDER DIFFERENT OCCURRENCE PROBABILITIES [αˉ1,αˉ2]

    nts, sensor 2 measurements and all measurements, respectively. It is observed from Figs. 2 and 3 that, the tracking performance based on all information outperforms that based on either sensor information. This is because 1) all available data is properly fused to achieve the tracking target in the fusion algorithm; and 2) only partial sensor information is used to carry out the tracking task in both local filtering algorithms.associatedAMSEsof both local and fusion estimator are clearly outlined in Table II after 1000 Monte Carlo trials.Looking at Table II, we draw conclusions: 1) the performance of the fusion estimator always outperforms that of local estimators under all occurrence probabilities [αˉ1,αˉ2]; and 2)the local estimator corresponding to the sensor with a larger(smaller) occurrence probability (of the scheduling behavior)has higher (lower) tracking accuracy.

    V. CONCLUSION

    In this paper, we have addressed the variance-constrained filtering fusion problem for a nonlinear CPS under the DoS attacks and the SCP. A set of local nonlinear filters have been adopted under variance constraints, and restrict upper bounds on both local and fused error covariances that have been guaranteed, where filter gains and weight matrices have been parameterized by minimizing such upper bounds. By resorting to the federated fusion criterion, all local estimates have been incorporated to obtain a fusion estimate. Further evaluation has been given by analyzing boundedness of gained upper bounds. Finally, the applicability of the proposed nonlinear fusion estimator has been validated by a simulation experiment. Some future research directions include 1) solving the variance-constrained filtering fusion problem for nonlinear cyber-physical systems under other communication protocols,e.g., the Round-Robin protocol and the try-once-discard protocol; and 2) solving the variance-constrained filtering fusion problem for nonlinear cyber-physical systems with other communication protocols, e.g., the Round-Robin protocol and the try-once-discard protocol.

    亚洲18禁久久av| 亚洲五月天丁香| 久99久视频精品免费| 色尼玛亚洲综合影院| 波多野结衣巨乳人妻| av免费在线观看网站| 日韩欧美国产一区二区入口| 草草在线视频免费看| 99国产综合亚洲精品| 亚洲人成电影免费在线| 亚洲人成网站高清观看| 久热爱精品视频在线9| 色噜噜av男人的天堂激情| 免费看美女性在线毛片视频| 精品无人区乱码1区二区| 看免费av毛片| 精品国产亚洲在线| 五月伊人婷婷丁香| 老熟妇仑乱视频hdxx| 亚洲国产看品久久| 日本免费a在线| 最近在线观看免费完整版| 91大片在线观看| 午夜激情av网站| 美女大奶头视频| 88av欧美| videosex国产| 日本a在线网址| 亚洲国产欧美一区二区综合| 日韩大码丰满熟妇| 亚洲欧美日韩高清专用| 欧美色欧美亚洲另类二区| 国产私拍福利视频在线观看| 成人三级黄色视频| 一级a爱片免费观看的视频| 香蕉av资源在线| 免费电影在线观看免费观看| 99久久精品热视频| 亚洲精品美女久久av网站| 国产精品自产拍在线观看55亚洲| 欧美在线一区亚洲| 麻豆成人午夜福利视频| 国产亚洲欧美98| 丰满人妻熟妇乱又伦精品不卡| 成人欧美大片| 无限看片的www在线观看| 久久香蕉精品热| 嫩草影视91久久| 国产高清激情床上av| 亚洲国产欧美人成| 男女视频在线观看网站免费 | 曰老女人黄片| 美女免费视频网站| 搡老妇女老女人老熟妇| 欧美黄色淫秽网站| 欧美日韩国产亚洲二区| 亚洲真实伦在线观看| 国产精品自产拍在线观看55亚洲| 国内精品久久久久久久电影| 看黄色毛片网站| 伊人久久大香线蕉亚洲五| 国产精品日韩av在线免费观看| 欧美日韩福利视频一区二区| 亚洲精品av麻豆狂野| 黄色 视频免费看| 亚洲av成人av| 真人一进一出gif抽搐免费| 一级毛片女人18水好多| 999精品在线视频| 长腿黑丝高跟| 精品熟女少妇八av免费久了| 成人欧美大片| www.自偷自拍.com| 亚洲无线在线观看| 禁无遮挡网站| 18禁黄网站禁片午夜丰满| 色综合亚洲欧美另类图片| 男人舔女人下体高潮全视频| 欧美日韩黄片免| 18禁黄网站禁片免费观看直播| 日韩欧美一区二区三区在线观看| 久久精品国产亚洲av高清一级| 欧美色视频一区免费| 国产精品 欧美亚洲| 日韩国内少妇激情av| 一区二区三区激情视频| 精品久久久久久,| 岛国视频午夜一区免费看| 18禁美女被吸乳视频| 成年人黄色毛片网站| aaaaa片日本免费| 黄色a级毛片大全视频| 亚洲va日本ⅴa欧美va伊人久久| 动漫黄色视频在线观看| www日本黄色视频网| 国产三级黄色录像| 亚洲aⅴ乱码一区二区在线播放 | 99国产极品粉嫩在线观看| 久久中文字幕一级| 少妇的丰满在线观看| 日韩精品中文字幕看吧| 99久久精品热视频| 桃红色精品国产亚洲av| 高潮久久久久久久久久久不卡| 日韩免费av在线播放| 色综合站精品国产| 国产成人一区二区三区免费视频网站| 韩国av一区二区三区四区| 亚洲自拍偷在线| 男女之事视频高清在线观看| 精品日产1卡2卡| 亚洲av五月六月丁香网| 欧美午夜高清在线| tocl精华| 波多野结衣巨乳人妻| 久久久国产欧美日韩av| av视频在线观看入口| 日本在线视频免费播放| 亚洲国产高清在线一区二区三| 床上黄色一级片| 精品无人区乱码1区二区| 免费在线观看视频国产中文字幕亚洲| 五月伊人婷婷丁香| 亚洲精品久久国产高清桃花| 看免费av毛片| 免费看a级黄色片| 亚洲av熟女| 高清在线国产一区| 黄色 视频免费看| 亚洲av电影在线进入| www国产在线视频色| 国产乱人伦免费视频| 88av欧美| 99热6这里只有精品| 又黄又粗又硬又大视频| 草草在线视频免费看| 国产亚洲av嫩草精品影院| 国产99久久九九免费精品| 免费观看精品视频网站| 天天躁夜夜躁狠狠躁躁| 天堂√8在线中文| bbb黄色大片| 91九色精品人成在线观看| 亚洲成人中文字幕在线播放| 日韩高清综合在线| 日日摸夜夜添夜夜添小说| 国产野战对白在线观看| 99久久无色码亚洲精品果冻| 精品第一国产精品| 亚洲av成人不卡在线观看播放网| 搡老妇女老女人老熟妇| 亚洲天堂国产精品一区在线| 久久久久久九九精品二区国产 | 成人国产综合亚洲| 免费在线观看完整版高清| 18禁黄网站禁片午夜丰满| 亚洲国产日韩欧美精品在线观看 | 神马国产精品三级电影在线观看 | 99久久久亚洲精品蜜臀av| 听说在线观看完整版免费高清| 亚洲第一欧美日韩一区二区三区| 国产亚洲av高清不卡| 国产三级黄色录像| 特大巨黑吊av在线直播| 黑人巨大精品欧美一区二区mp4| 亚洲精品粉嫩美女一区| 可以免费在线观看a视频的电影网站| 免费无遮挡裸体视频| 88av欧美| 桃色一区二区三区在线观看| 黄色成人免费大全| 亚洲精品粉嫩美女一区| 久久草成人影院| 午夜两性在线视频| 欧美日韩中文字幕国产精品一区二区三区| 成年女人毛片免费观看观看9| 黑人巨大精品欧美一区二区mp4| 女生性感内裤真人,穿戴方法视频| 成年女人毛片免费观看观看9| 中文亚洲av片在线观看爽| 久久久久久大精品| 亚洲男人的天堂狠狠| 亚洲精品中文字幕在线视频| 免费观看人在逋| 色尼玛亚洲综合影院| 国产爱豆传媒在线观看 | 国产精品久久久久久久电影 | 国产高清视频在线观看网站| 夜夜夜夜夜久久久久| av福利片在线观看| 亚洲精品美女久久久久99蜜臀| 亚洲人与动物交配视频| 日韩精品中文字幕看吧| 久久久水蜜桃国产精品网| 国产69精品久久久久777片 | 99热只有精品国产| 国产视频内射| 熟女电影av网| 一个人免费在线观看的高清视频| 日本三级黄在线观看| 午夜视频精品福利| 亚洲七黄色美女视频| 国产成人av激情在线播放| 日韩成人在线观看一区二区三区| a在线观看视频网站| 亚洲av成人一区二区三| 国产精品久久久久久精品电影| 国产成人aa在线观看| 婷婷亚洲欧美| 19禁男女啪啪无遮挡网站| 色综合欧美亚洲国产小说| 欧美三级亚洲精品| 丝袜美腿诱惑在线| 国产又黄又爽又无遮挡在线| 午夜免费成人在线视频| 在线观看午夜福利视频| 亚洲国产欧美网| 国产精品久久久人人做人人爽| 亚洲人与动物交配视频| 一二三四在线观看免费中文在| 久久久久久久午夜电影| 亚洲国产精品久久男人天堂| www.自偷自拍.com| 又大又爽又粗| 国产亚洲精品综合一区在线观看 | 99久久99久久久精品蜜桃| 国产免费av片在线观看野外av| 亚洲人与动物交配视频| 精品少妇一区二区三区视频日本电影| 国产一区二区激情短视频| 日韩欧美在线二视频| 成人国产一区最新在线观看| 中国美女看黄片| 9191精品国产免费久久| 国产精品一及| 成年女人毛片免费观看观看9| 人妻夜夜爽99麻豆av| 亚洲av熟女| 99国产精品99久久久久| 国产精品久久久久久精品电影| 99久久精品国产亚洲精品| 国产亚洲精品久久久久久毛片| 日韩欧美免费精品| 人妻丰满熟妇av一区二区三区| 美女免费视频网站| 可以在线观看的亚洲视频| 国产精品98久久久久久宅男小说| 久久久精品欧美日韩精品| 最近最新中文字幕大全电影3| 亚洲国产精品999在线| 一本一本综合久久| 曰老女人黄片| 国产精品精品国产色婷婷| 久久人妻av系列| www日本黄色视频网| bbb黄色大片| 一边摸一边做爽爽视频免费| 在线观看美女被高潮喷水网站 | 国产私拍福利视频在线观看| 精品久久蜜臀av无| 日本免费一区二区三区高清不卡| 亚洲五月天丁香| 国产伦在线观看视频一区| 亚洲精品美女久久av网站| 国内久久婷婷六月综合欲色啪| 女人高潮潮喷娇喘18禁视频| 最近在线观看免费完整版| 国产精品98久久久久久宅男小说| 香蕉丝袜av| 啦啦啦韩国在线观看视频| 久久这里只有精品中国| 国产视频内射| 久久久久久九九精品二区国产 | 久久久久亚洲av毛片大全| 禁无遮挡网站| 欧美精品亚洲一区二区| 午夜亚洲福利在线播放| 窝窝影院91人妻| 亚洲激情在线av| 久久草成人影院| 男人舔奶头视频| 国产亚洲av嫩草精品影院| 老司机在亚洲福利影院| 国产亚洲精品久久久久5区| 一级毛片精品| 亚洲精品色激情综合| 亚洲男人的天堂狠狠| 国产亚洲精品第一综合不卡| 精品熟女少妇八av免费久了| 午夜激情av网站| 欧美性猛交╳xxx乱大交人| 亚洲 欧美一区二区三区| avwww免费| 久久久久久亚洲精品国产蜜桃av| 老司机靠b影院| 久久精品成人免费网站| 日本熟妇午夜| 叶爱在线成人免费视频播放| 亚洲精品av麻豆狂野| 99热只有精品国产| 在线播放国产精品三级| 搡老岳熟女国产| 亚洲人成伊人成综合网2020| 亚洲中文字幕日韩| 夜夜爽天天搞| 特级一级黄色大片| 黄色视频,在线免费观看| 国产av麻豆久久久久久久| 丰满人妻一区二区三区视频av | a级毛片在线看网站| 淫妇啪啪啪对白视频| 精品国产亚洲在线| 免费高清视频大片| 一本一本综合久久| 亚洲av成人一区二区三| 日韩欧美精品v在线| 男女之事视频高清在线观看| 日韩欧美在线二视频| 中文亚洲av片在线观看爽| 亚洲熟妇中文字幕五十中出| 法律面前人人平等表现在哪些方面| 久久人人精品亚洲av| 欧美日韩一级在线毛片| 999精品在线视频| 男插女下体视频免费在线播放| 精品福利观看| 欧美成人性av电影在线观看| 欧美日韩国产亚洲二区| 最近视频中文字幕2019在线8| 日日摸夜夜添夜夜添小说| 亚洲熟妇中文字幕五十中出| 精品久久久久久久久久免费视频| 国产91精品成人一区二区三区| 亚洲av电影不卡..在线观看| 精品久久久久久,| 国产视频内射| av中文乱码字幕在线| 亚洲人与动物交配视频| 午夜福利高清视频| av福利片在线| 老汉色∧v一级毛片| 午夜免费激情av| 黑人巨大精品欧美一区二区mp4| a级毛片在线看网站| 成年版毛片免费区| 日韩av在线大香蕉| 在线十欧美十亚洲十日本专区| 成在线人永久免费视频| 黑人操中国人逼视频| 久久精品综合一区二区三区| 日日爽夜夜爽网站| 变态另类丝袜制服| 日韩大尺度精品在线看网址| 亚洲国产欧洲综合997久久,| 淫妇啪啪啪对白视频| 亚洲av美国av| 男女那种视频在线观看| 18禁国产床啪视频网站| 91大片在线观看| 国产私拍福利视频在线观看| 国产aⅴ精品一区二区三区波| 欧美黑人精品巨大| 一卡2卡三卡四卡精品乱码亚洲| 美女大奶头视频| 久久草成人影院| 97人妻精品一区二区三区麻豆| 狂野欧美激情性xxxx| 午夜福利18| 99久久国产精品久久久| 国产精品影院久久| 免费在线观看亚洲国产| 最好的美女福利视频网| 久久久久久亚洲精品国产蜜桃av| 成人av一区二区三区在线看| 国产成人影院久久av| 亚洲欧美日韩东京热| av有码第一页| √禁漫天堂资源中文www| 18禁观看日本| 免费搜索国产男女视频| 脱女人内裤的视频| 久久久国产欧美日韩av| 高清毛片免费观看视频网站| 国产av麻豆久久久久久久| 日韩 欧美 亚洲 中文字幕| 久久香蕉激情| 国产精品乱码一区二三区的特点| 十八禁网站免费在线| av片东京热男人的天堂| 国产一区二区三区在线臀色熟女| 亚洲天堂国产精品一区在线| 欧美av亚洲av综合av国产av| 后天国语完整版免费观看| 国产精品免费视频内射| 国产精品精品国产色婷婷| 淫妇啪啪啪对白视频| 一a级毛片在线观看| 无人区码免费观看不卡| 一边摸一边做爽爽视频免费| 国产黄色小视频在线观看| 窝窝影院91人妻| 美女黄网站色视频| 老司机福利观看| av中文乱码字幕在线| 精品欧美国产一区二区三| 欧美日韩精品网址| 精品国产乱码久久久久久男人| 人妻丰满熟妇av一区二区三区| 99久久精品热视频| 欧美中文日本在线观看视频| 伊人久久大香线蕉亚洲五| 男插女下体视频免费在线播放| 激情在线观看视频在线高清| 丝袜美腿诱惑在线| 国产激情偷乱视频一区二区| 国产蜜桃级精品一区二区三区| 精品久久蜜臀av无| 久久精品aⅴ一区二区三区四区| 久久久久精品国产欧美久久久| 亚洲,欧美精品.| 亚洲欧美日韩高清在线视频| 国产黄a三级三级三级人| 99国产精品99久久久久| 91av网站免费观看| 午夜激情av网站| 俺也久久电影网| 色哟哟哟哟哟哟| 狂野欧美白嫩少妇大欣赏| 国产三级在线视频| 久久草成人影院| 久久婷婷人人爽人人干人人爱| 两个人看的免费小视频| 变态另类丝袜制服| 好看av亚洲va欧美ⅴa在| 岛国在线免费视频观看| 变态另类成人亚洲欧美熟女| 两性夫妻黄色片| 大型黄色视频在线免费观看| 97超级碰碰碰精品色视频在线观看| 丁香欧美五月| 成人18禁在线播放| 波多野结衣高清作品| 一级毛片高清免费大全| 国产伦人伦偷精品视频| 亚洲专区国产一区二区| 久9热在线精品视频| 波多野结衣高清无吗| 国产97色在线日韩免费| 草草在线视频免费看| 国产精品一区二区免费欧美| 午夜福利免费观看在线| 亚洲欧美日韩东京热| 国模一区二区三区四区视频 | 国产高清激情床上av| 观看免费一级毛片| videosex国产| 国内精品一区二区在线观看| 桃红色精品国产亚洲av| 国产三级中文精品| 成熟少妇高潮喷水视频| 久久国产精品影院| 亚洲成av人片免费观看| www.自偷自拍.com| 最新在线观看一区二区三区| 久久婷婷人人爽人人干人人爱| 男女那种视频在线观看| 舔av片在线| 亚洲av五月六月丁香网| 青草久久国产| 女人高潮潮喷娇喘18禁视频| 日本在线视频免费播放| 国产一区二区在线av高清观看| 女人爽到高潮嗷嗷叫在线视频| 一个人观看的视频www高清免费观看 | 欧美极品一区二区三区四区| 深夜精品福利| 搡老熟女国产l中国老女人| 久久久久久久精品吃奶| 老汉色∧v一级毛片| 97超级碰碰碰精品色视频在线观看| av在线播放免费不卡| 亚洲av成人精品一区久久| 中文字幕熟女人妻在线| 亚洲欧美精品综合一区二区三区| 久99久视频精品免费| 国产在线观看jvid| 男女那种视频在线观看| av在线天堂中文字幕| 亚洲欧美精品综合一区二区三区| 免费在线观看黄色视频的| 一级a爱片免费观看的视频| 国产又黄又爽又无遮挡在线| or卡值多少钱| 国产精品一区二区精品视频观看| 在线观看免费午夜福利视频| 日韩 欧美 亚洲 中文字幕| 亚洲av成人精品一区久久| 亚洲性夜色夜夜综合| 婷婷亚洲欧美| 成人av在线播放网站| 无遮挡黄片免费观看| 国产人伦9x9x在线观看| or卡值多少钱| 日本成人三级电影网站| x7x7x7水蜜桃| 两个人免费观看高清视频| 国产久久久一区二区三区| 日韩精品免费视频一区二区三区| 久久草成人影院| 午夜福利欧美成人| 国产精品久久电影中文字幕| 国产免费av片在线观看野外av| 黄色a级毛片大全视频| 久久人妻福利社区极品人妻图片| 亚洲人成网站在线播放欧美日韩| 久久久精品国产亚洲av高清涩受| 久久婷婷人人爽人人干人人爱| 国产激情偷乱视频一区二区| 久久亚洲真实| 国产精品综合久久久久久久免费| 99久久综合精品五月天人人| 国产又色又爽无遮挡免费看| www.精华液| 香蕉av资源在线| 91大片在线观看| 日本 av在线| 国产av一区在线观看免费| 少妇被粗大的猛进出69影院| 国产精品永久免费网站| 宅男免费午夜| 欧美一级a爱片免费观看看 | 亚洲欧洲精品一区二区精品久久久| 99久久精品热视频| 正在播放国产对白刺激| 香蕉av资源在线| 两个人看的免费小视频| 国产高清视频在线观看网站| 精品国内亚洲2022精品成人| 久久久久久国产a免费观看| 麻豆一二三区av精品| 黄色视频,在线免费观看| 国产伦在线观看视频一区| 亚洲欧美一区二区三区黑人| www日本在线高清视频| 久久久久久久精品吃奶| 成年版毛片免费区| 久久精品成人免费网站| 精品国产亚洲在线| 99精品久久久久人妻精品| 天天躁夜夜躁狠狠躁躁| 免费在线观看亚洲国产| 亚洲成人精品中文字幕电影| 色综合欧美亚洲国产小说| 国产av一区二区精品久久| √禁漫天堂资源中文www| 亚洲成人国产一区在线观看| 50天的宝宝边吃奶边哭怎么回事| av有码第一页| 在线观看舔阴道视频| 欧美日韩乱码在线| 757午夜福利合集在线观看| 男女视频在线观看网站免费 | cao死你这个sao货| 变态另类成人亚洲欧美熟女| 一本久久中文字幕| 每晚都被弄得嗷嗷叫到高潮| 成人av在线播放网站| 又紧又爽又黄一区二区| 国产亚洲精品久久久久久毛片| 亚洲欧美日韩东京热| 岛国在线免费视频观看| 欧美成人午夜精品| 在线观看日韩欧美| 欧美av亚洲av综合av国产av| 在线播放国产精品三级| 久久精品国产亚洲av香蕉五月| 国产高清videossex| 久久久水蜜桃国产精品网| 中文资源天堂在线| 日本a在线网址| 成人欧美大片| 日本免费a在线| 激情在线观看视频在线高清| 老鸭窝网址在线观看| 日本成人三级电影网站| 免费看十八禁软件| 一区二区三区高清视频在线| 99在线视频只有这里精品首页| 午夜免费成人在线视频| 亚洲avbb在线观看| 免费在线观看完整版高清| 久久久久久久久免费视频了| www.999成人在线观看| 在线国产一区二区在线| 一夜夜www| 亚洲成人免费电影在线观看| 在线观看日韩欧美| 国产三级在线视频| 精品午夜福利视频在线观看一区| 草草在线视频免费看| 久久久精品大字幕| 天天添夜夜摸| 老司机在亚洲福利影院| 亚洲欧美日韩高清专用| 成人国产一区最新在线观看| 欧美一级毛片孕妇| 日韩欧美三级三区| 黑人操中国人逼视频| 欧美黑人巨大hd| 我的老师免费观看完整版| 最新在线观看一区二区三区| 久久精品国产清高在天天线| 国产精品野战在线观看| 欧美成人性av电影在线观看| 妹子高潮喷水视频|