• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Telepresence-Guaranteed Control Scheme for Teleoperation Applications of Transferring Weight-Unknown Objects

    2022-06-25 01:19:04JinfeiHuZhengChenXinMaHanLaiandBinYao
    IEEE/CAA Journal of Automatica Sinica 2022年6期

    Jinfei Hu, Zheng Chen,, Xin Ma, Han Lai, and Bin Yao,

    Abstract—Currently, most teleoperation work is focusing on scenarios where slave robots interact with unknown environments. However, in some fields such as medical robots or rescue robots, the other typical teleoperation application is precise object transportation. Generally, the object’s weight is unknown yet essential for both accurate control of the slave robot and intuitive perception of the human operator. However, due to high cost and limited installation space, it is unreliable to employ a force sensor to directly measure the weight. Therefore, in this paper, a control scheme free of force sensor is proposed for teleoperation robots to transfer a weight-unknown object accurately. In this scheme, the workspace mapping between master and slave robot is firstly established, based on which, the operator can generate command trajectory on-line by operating the master robot. Then, a slave controller is designed to follow the master command closely and estimate the object’s weight rapidly, accurately and robust to unmodeled uncertainties. Finally, for the sake of telepresence, a master controller is designed to generate force feedback to reproduce the estimated weight of the object. In the end,comparative experiments show that the proposed scheme can achieve better control accuracy and telepresence, with accurate force feedback generated in only 500 ms.

    I. INTRODUCTION

    WITH the development of mechatronic systems [1]-[7],teleoperation robots [8] provide an effective solution for exploration in unstructured or hazardous environments that are difficult for humans to access directly. In the past few decades, teleoperation systems have been successfully applied to submarine robotic missions, space exploration [9], nuclear waste cleanup [10], medical telesurgery [11], and rehabilitation [12]. Basically, teleoperation applications can be divided into two categories: unknown environment interaction (UEI)tasks when the slave robot contacts the environment and weight-unknown object transferring (WUOT) tasks when the slave robot transfers objects in free space.

    Currently, most teleoperation work deals with UEI situations. In this category, stability and control accuracy should be guaranteed firstly in the presence of potential time-delay and environmental uncertainties. In addition, the feedback force generated by the master robot should give the operator a sense of direct operation of the environment, which is referred to as telepresence [13]. This can be achieved by force feedback such that the master impedance matches the slave impedance[13]. For UEI tasks, the communication channel in the teleoperation robot system is widely modeled as a two-port network, and then different bilateral control algorithms are employed, such as the four-channel method [14], [15], the wave variable method [16], the time-domain passivity control approach [17], the disturbance observer [18], the radical basis function-based neural network method [19], [20] and the model predictive control approach [21].

    The other typical teleoperation applications are the WUOT applications [22], [23]. Related tasks include nuclear waste cleanup, drone object transfer tasks [24], robot grasp tasks[25], or hydraulic robot manipulation tasks [26]. As shown in Fig. 1, in these applications, the slave robot should follow the master trajectory closely; besides, the master device should provide force feedback, so that the operator has an intuitive sense of the weight of the object, i.e., good telepresence.However, the weight is usually unknown in advance. This not only introduces dynamic uncertainties to the system, making it difficult for the slave robot to follow the master command accurately, but also leads to poor telepresence. On the other hand, there are lumped unmodeled uncertainties in the slave robot, such as modeling errors and disturbances, which need to be dealt with effectively for robustness.

    Fig. 1. WUOT teleoperation tasks.

    One straightforward solution to the WUOT problem is to use force sensors to measure the payload. The sensors can be installed on the wrist [27], in the joints, or on the base of the slave robot. Among these three ways, commercial force/torque sensors on the wrist are usually expensive, fragile [28]and impractical to be installed in confined space tasks. The latter two ways are to use commercial collaborative robots[29], such as Baxter, KUKA iiwa, or UR5. However, these robots are expensive and cannot directly measure the weight of objects compared to wrist sensors. Therefore, in WUOT applications, it is an effective way to make full use of system dynamics to estimate the object’s weight and compensate for its effects.

    Some work is published about WUOT teleoperation applications. In [23], adaptive neural network control is proposed for the teleoperation system to compensate for the dynamic uncertainties by unknown payloads. But such neural network control only compensates for the lumped effects of the payload, rather than estimating the weight of the object.Therefore, the force feedback cannot be generated by the master device because it depends on the object’s weight. In[30], [31], an asymmetric teleoperation control scheme is proposed for object transferring tasks where master and slave devices are different. In their schemes, the force feedback is based on the tracking errors of the slave robot, so the operator cannot intuitively perceive the payload weight. In [22], a direct adaptive robust control approach is proposed for the WUOT teleoperation problem. The weight of the object transferred by a 7 degrees-of-freedom (DoF) robot is estimated by a direct parameter adaptation algorithm. However, the traditional direct type adaptive method which is driven by tracking errors [32] cannot guarantee rapid and accurate weight estimation. So the force feedback related to the weight estimation will become lagging and fluctuating. This will deteriorate both the telepresence for humans and the control accuracy of the slave robot.

    Above all, in WUOT teleoperation applications, the problem of achieving accurate control and good telepresence simultaneously has not been addressed well yet. Therefore, we propose a novel control scheme for WUOT teleoperation applications. In this scheme, the workspace mapping between master and slave robot is firstly established, by which human operation is converted to the slave robot motion command.Then, a direct/indirect adaptive robust controller (DIARC) is designed for the slave robot to follow the motion command closely and estimate the object’s weight rapidly and accurately. With the object’s weight estimated accurately, a master controller is designed to generate force feedback to reconstruct the weight, aiming to provide human operators with a good sense of presence. In addition, to deal with other uncertainties by frictional modeling errors and disturbances,an additional dynamic compensation term is designed to observe and compensate for the slow time-varying components of the lumped uncertainties.

    The research in this paper mainly contributes to the following aspects. 1) A telepresence-guaranteed control scheme is proposed for teleoperation applications where accurate transferring of a weight-unknown object is required. The essence is that the master controller uses force feedback to reproduce the slave-side object’s weight which is estimated on-line. 2) A slave controller is designed to estimate the object’s weight on-line and follow the master command under dynamic uncertainties. The comparative experiments validate that both better control accuracy and better telepresence can be achieved.

    This paper is organized as follows. The problem formulation is presented in Section II. Section III introduces the workspace mapping and reference trajectory generation for the slave robot. In Section IV, the proposed master controller and the slave controller are introduced. Comparative experiments are carried out in Section V to show the merits of the proposed scheme. Finally, conclusions are drawn in Section VI.

    II. DYNAMICS AND PROPOSED CONTROL SCHEME

    In this section, the slave and master robot dynamics and their properties in WUOT teleoperation applications are introduced. Then, the whole problem is split into 3 subproblems and formulated mathematically. Finally, the proposed control scheme is introduced.

    A. Master and Slave Dynamics

    Fig. 2. Proposed control scheme.

    B. Proposed Control Scheme

    In many teleoperation tasks such as medical or rescue applications, it is a common task to transfer a weightunknown object with different master and slave devices. For these applications, the proposed control scheme divides the whole task into three sub-problems, i.e., the workspace mapping, the slave controller design, and the master controller design, as shown in Fig. 2. Specifically,

    1) With the master trajectoryqm(t) generated on-line by human operator, design a mapping method to generate a

    III. SLAVE REFERENCE TRAJECTORY GENERATION

    Since the master and the slave robot are with different configurations and sizes, referred to as asymmetric teleoperation in [30], workspace mapping is firstly designed in this section, followed by the slave robot trajectory generation.

    A. Workspace Mapping

    The master device used in this paper is the 6-DoF Geomagic Omni, with an encoder in each joint. The slave robot is the 6-DoF Comau Racer3 industrial robot. However, the two devices have different workspaces with their Denavit-Hartenberg (DH) parameters shown in Tables I and II.

    TABLE I DH PARAMETERS OF COMAU-RACER3

    TABLE II DH PARAMETERS OF GEOMAGIC OMNI

    B. Trajectory Generation

    A. Slave Robot Control Law

    B. Slave-Side Object’s Weight Estimation Algorithm

    C. Master Robot Control Law and Passivity Analysis

    The first three joints of the master device, i.e., Geomagic Omni are equipped with motors for force feedback. And the master controller for these three joints will be designed in Cartesian space as the manufacturer provides access to command the Cartesian space force directly. Therefore,instead of joint space dynamics described in (1), the following Cartesian space dynamics is used in the master controller design:

    Therefore, the operator can perceive the payload weight more intuitively when it is estimated more accurately.

    Generally, teleoperation applications suffer from the stability issues under time-delay, which as pointed in [38], is due to the power signals (force and velocity) transferred in the communication channel. However, in the proposed scheme,the variable transferred in the communication channel is the estimated system parameter, i.e., non-power signals, which makes the communication channel passive under arbitrary time-delay [38]. Note that the master device, the slave robot and the operator are also passive, the passivity of the entire system can be guaranteed automatically. Therefore, even the existence of time-delay will not lead to stability issues.

    D. Theoretical Results

    Remark 4:Practically, to reduce the effect of the friction modeling errors at low speed, the adaptation for the payload estimation can be turned off when the joint velocity is less than a threshold. The theoretical results still hold because of the separation of control law and adaptation law. Such modification will be further explained in the experimental results later.

    V. COMPARATIVE EXPERIMENTS

    In this section, comparative experiments are carried out to show the superiority of the proposed control scheme, i.e.,better control accuracy under dynamic uncertainties and better telepresence by reproducing the payload weight more accurately.

    A. Experiment Setup

    The hardware used in the experiments is shown in Fig. 3.The master device is Geomagic Omni [40], with encoders in all the 6 joints to generate motion command and motors in the first 3 joints for force feedback. According to the manufacturer, the maximum force output is 3.3 N. The slave robot is the 6-DoF Comau Racer3 industrial robot with a 19-bits encoder in each joint and 3 kg maximum payload capacity.The workspace mapping and the slave control algorithm are executed on the control desk of the slave robot with 1250 Hz sampling frequency, whereas, the master control algorithm runs in MATLAB at 1000 Hz. The communication is by the Quanser data acquisition board and the B&R Automation X20AI4632 module. The communication delay is designed to beT= 200 ms. The Geomagic Omni and the Quanser data acquisition board are both connected to a PC, in which Matlab/Simulink can be used to transfer the command trajectoryqm(t) to Quanser analog output (AO) in real-time.The B&R Automation X20AI4632 module is used as analog input (AI) to transferqm(t) to the control desk of the slave robot. In turn, the estimated object’s weightm?L(t) is transferred from the slave robot to master robot in the similar way.

    Fig. 3. Tele-robot system setup.

    The experiment is to mimic a periodical back and forth movement for the tele-robot where the slave robot holds an object with unknown weight. The operator manipulates the master robot to generate a trajectory on-line to control the slave robot. The master command trajectoryqm(t) is not shown for simplicity and the slave desired trajectoryqd(t) is recorded in Fig. 4. Note thatqd(t-T) rather thanqd(t) is shown in Fig. 4 becauseqdis delayed byTin communication with respect toqm. Also note thatqd(t) is obtained by applying the workspace mapping (7) and the low-pass filter (8) toqm(t).

    Fig. 4. Reference trajectory qd(t-T) for the slave robot.

    To verify that the proposed method can deal with objects with various weight, two different payloads are attached to the end-effector. We refer the experiments with 1.445 kg payload as Set I and experiments with 2.275 kg payload as Set II.

    B. Performance Indices

    C. Experiment Results

    The proposed control method is compared with the baseline method in [22]. The workspace mapping approach and the master controller are kept the same, while the slave controller is modified to the one in [22]. Note that for the fair comparison, the command trajectoryqm(t) for the proposed and baseline method should be the same. However, human operator cannot move along the same trajectory twice.Therefore, the command trajectory used for the baseline method is the recorded trajectory when conducting the experiment for proposed method.

    The master controller is designed in (31) with parameters specified as

    The slave robot trajectory tracking errors are shown in Figs. 5 and 6, respectively. In terms of control accuracy under uncertainties, the proposed method achieves smaller tracking errors with the equivalent control feedback gains, especially in joints affected by the payload significantly, i.e., joints 2, 3, 5.The quantitative control accuracy performance is shown in Fig. 7, where only results of Set II are presented in Fig. 6 due to the page limit.

    Fig. 5. Slave robot tracking errors in Set I. The proposed method achieves higher control accuracy, especially in those joints affected by the transferred object significantly, i.e., joints 2, 3, 5.

    Fig. 6. Slave robot tracking errors in Set II.

    The payload weight estimation histories are shown in Fig. 8.Note that in experiments, the slave robot joint frictions are discontinuous when the joint velocities cross zeros, which makes the friction model inaccurate in low speed movement[41] and results in the payload estimation drift. Therefore, as explained inRemark 4, the adaptations are reasonably turned off when the velocities are smaller than a threshold, which leads to certain unchanged periods of the payload estimations in Fig. 8. Besides, in the proposed method, only the data of joints 2 and 3 which are greatly affected by the payload is used in the payload estimation to reduce the on-line computation. With such modification, all the theoretical results still hold thanks to the separation of the payload estimation law and the slave control law. The lumped uncertainty estimation of the proposed method is shown in Fig. 9 for Set II. Note that Figs. 8 and 9 represent the estimation of two kinds of uncertainties as explained inRemark 2.

    Fig. 7. The maximum and RMS values of the slave tracking errors in Set II.

    Fig. 8. The payload estimation histories. By separating control law and adaptation law, the proposed controller can estimate the unknown object’s weight more rapidly and accurately according to system input/output (joint control torque/position and velocity). In contrast, the adaptation of the baseline method is driven by tracking errors, so the estimation histories have the similar shape as the tracking errors as shown in Figs. 5 and 6. When the tracking errors fluctuate due to the back-and-forth trajectory, the estimation does as well.

    The master Cartesian space trajectory and the feedback force are shown in Fig. 10. For clarity, only the trajectory from 6 s to 10 s is shown. In the force feedback, the reproduced payload weight is shown in Fig. 11. In terms of telepresence performance, it is obvious in Fig. 8 that the payload can be estimated more rapidly and accurately in the proposed method. As a result, in Fig. 11, the force feedback on the master side can be reproduced more rapidly and accurately by the proposed scheme. A quantitative comparison is made in Fig. 12 based on the results in Fig. 11. Therefore,the operator can have an intuitive sense of payload, i.e., the proposed scheme can achieve better telepresence.

    Fig. 9. Lumped uncertainties estimation of the proposed method in Set II.

    Fig. 10. The master device Cartesian space trajectory and force feedback from 6 s to 10 s. As the command trajectories for the compared controllers are the same, the added damping forces are also the same. Whereas, the reproduced object’s weight for are not the same as their payload estimation histories are not the same.

    Fig. 11. Reproduced object’s weight by the master device. The payload weight can be reproduced more rapidly and accurately in the master device,i.e., achieving better telepresence performance.

    VI. CONCLUSION

    Fig. 12. The force feedback speed and accuracy in Set II. The force feedback time is very fast with only 500 ms to reach 9 0% of the ground truth in transient state and the force feedback RMS error is less than 0.05 N in steady-state.

    This paper proposed a telepresence-guaranteed control scheme for teleoperation system with an unknown slave-side payload. The basic idea is that the master device reproduces the payload weight so that the operator can manipulate it intuitively. Specifically, the proposed scheme consists of 3 components, the mapping method, the master controller and the slave controller. The mapping method maps the master motion to the slave motion, which can generate a reference trajectory online for the slave robot. Then the slave controller drives the slave robot to follow the trajectory closely and estimate the unknown payload accurately. The master controller reproduces the payload weight estimated on-line for the sake of telepresence. The experiment results show that both better control accuracy and better telepresence can be achieved by the proposed methods. The accurate force feedback only needs 500 ms to be generated.

    亚洲精品久久午夜乱码| 精品国产一区二区三区久久久樱花| 日本欧美视频一区| 亚洲专区中文字幕在线 | 国产极品天堂在线| 男女免费视频国产| 美女大奶头黄色视频| 色精品久久人妻99蜜桃| 欧美日韩成人在线一区二区| 日本av免费视频播放| 在线观看免费午夜福利视频| 99热网站在线观看| 亚洲欧洲日产国产| 亚洲,一卡二卡三卡| 不卡av一区二区三区| 国产精品一区二区精品视频观看| 国产亚洲一区二区精品| 亚洲专区中文字幕在线 | 777米奇影视久久| 一级毛片电影观看| 久久青草综合色| 国产在视频线精品| www日本在线高清视频| 少妇 在线观看| 三上悠亚av全集在线观看| 一个人免费看片子| 成人午夜精彩视频在线观看| 99re6热这里在线精品视频| 久久女婷五月综合色啪小说| 黄频高清免费视频| 男的添女的下面高潮视频| 国产精品成人在线| 久久这里只有精品19| 午夜激情久久久久久久| 天堂8中文在线网| 毛片一级片免费看久久久久| 老司机亚洲免费影院| 国产亚洲av高清不卡| 亚洲av成人不卡在线观看播放网 | 亚洲国产最新在线播放| 9热在线视频观看99| 亚洲国产欧美日韩在线播放| 精品人妻一区二区三区麻豆| 一区二区日韩欧美中文字幕| 亚洲国产日韩一区二区| 伊人亚洲综合成人网| 日本色播在线视频| 国产一区亚洲一区在线观看| 中文字幕最新亚洲高清| 男男h啪啪无遮挡| 777久久人妻少妇嫩草av网站| 婷婷色av中文字幕| 欧美av亚洲av综合av国产av | 精品一区二区三区av网在线观看 | 丝袜脚勾引网站| 999精品在线视频| 丁香六月天网| 热99久久久久精品小说推荐| 国产成人精品在线电影| 亚洲av欧美aⅴ国产| 69精品国产乱码久久久| 少妇的丰满在线观看| 久久综合国产亚洲精品| 丰满少妇做爰视频| 国产精品久久久久久久久免| 日本欧美视频一区| 九草在线视频观看| 亚洲欧美一区二区三区黑人| 国产精品国产三级专区第一集| 桃花免费在线播放| 国产日韩一区二区三区精品不卡| netflix在线观看网站| 亚洲欧美精品综合一区二区三区| 男人舔女人的私密视频| 国产精品久久久人人做人人爽| 女性生殖器流出的白浆| 久久免费观看电影| 成人国产麻豆网| www.熟女人妻精品国产| 精品卡一卡二卡四卡免费| 少妇人妻精品综合一区二区| 最近的中文字幕免费完整| 黑人巨大精品欧美一区二区蜜桃| 一级爰片在线观看| 欧美变态另类bdsm刘玥| 国产成人精品在线电影| 欧美亚洲 丝袜 人妻 在线| 最新在线观看一区二区三区 | av片东京热男人的天堂| 成人影院久久| 日韩欧美精品免费久久| 亚洲三区欧美一区| 精品亚洲成国产av| 黄片小视频在线播放| 国产精品av久久久久免费| 亚洲人成电影观看| 久久久久视频综合| 最近中文字幕高清免费大全6| 亚洲国产精品成人久久小说| 飞空精品影院首页| 男人添女人高潮全过程视频| 黄色一级大片看看| 美女大奶头黄色视频| 最近最新中文字幕大全免费视频 | www.自偷自拍.com| 国产xxxxx性猛交| 亚洲中文av在线| 男的添女的下面高潮视频| 色婷婷av一区二区三区视频| 黑人欧美特级aaaaaa片| 最近手机中文字幕大全| 婷婷色av中文字幕| 成人午夜精彩视频在线观看| 中文字幕人妻丝袜制服| 成人黄色视频免费在线看| 免费av中文字幕在线| 婷婷色综合www| 国产精品蜜桃在线观看| 欧美变态另类bdsm刘玥| 亚洲第一区二区三区不卡| 国产极品粉嫩免费观看在线| 中文字幕最新亚洲高清| 最近手机中文字幕大全| 久久久久久人妻| 久久亚洲国产成人精品v| 亚洲av电影在线进入| 亚洲人成电影观看| 国产男女内射视频| 亚洲婷婷狠狠爱综合网| 精品国产超薄肉色丝袜足j| 久久久精品免费免费高清| 美女脱内裤让男人舔精品视频| 国产黄频视频在线观看| 色综合欧美亚洲国产小说| 热re99久久国产66热| 亚洲成人一二三区av| 精品人妻在线不人妻| 国产免费福利视频在线观看| 日本色播在线视频| 国产精品 欧美亚洲| 久久精品亚洲熟妇少妇任你| 欧美日韩亚洲高清精品| 少妇被粗大的猛进出69影院| 最近中文字幕2019免费版| 国产一区二区三区av在线| 日韩中文字幕视频在线看片| 久久97久久精品| 777久久人妻少妇嫩草av网站| 无遮挡黄片免费观看| 欧美日本中文国产一区发布| 欧美精品人与动牲交sv欧美| 日韩制服骚丝袜av| www.精华液| netflix在线观看网站| 超碰97精品在线观看| 精品一区二区三卡| 最近中文字幕2019免费版| 最黄视频免费看| 中国国产av一级| 九色亚洲精品在线播放| 中文字幕制服av| 99re6热这里在线精品视频| a级毛片在线看网站| 中文精品一卡2卡3卡4更新| 黄色怎么调成土黄色| 97精品久久久久久久久久精品| 精品亚洲成国产av| 黄色视频不卡| 日韩av不卡免费在线播放| 亚洲av福利一区| 亚洲婷婷狠狠爱综合网| 午夜精品国产一区二区电影| 亚洲成人国产一区在线观看 | 亚洲五月婷婷丁香| 午夜福利成人在线免费观看| 国产伦一二天堂av在线观看| 久久久久亚洲av毛片大全| 午夜免费观看网址| 亚洲欧美一区二区三区黑人| 日本撒尿小便嘘嘘汇集6| 国产99久久九九免费精品| 亚洲中文字幕日韩| 在线视频色国产色| 亚洲av电影在线进入| 日本一区二区免费在线视频| 久久热在线av| 97人妻天天添夜夜摸| 神马国产精品三级电影在线观看 | 国产乱人伦免费视频| 亚洲自拍偷在线| 90打野战视频偷拍视频| 男人操女人黄网站| 久久国产精品人妻蜜桃| 黄色成人免费大全| 中文字幕人成人乱码亚洲影| 91成年电影在线观看| 欧美人与性动交α欧美精品济南到| 久久影院123| 日韩国内少妇激情av| 波多野结衣av一区二区av| 亚洲九九香蕉| 非洲黑人性xxxx精品又粗又长| 欧美一级a爱片免费观看看 | 日韩欧美在线二视频| 亚洲午夜精品一区,二区,三区| 美女免费视频网站| 国产精品爽爽va在线观看网站 | 亚洲aⅴ乱码一区二区在线播放 | 成人亚洲精品一区在线观看| 亚洲一码二码三码区别大吗| 久久精品国产99精品国产亚洲性色 | 久久久国产成人精品二区| 一级毛片女人18水好多| 又紧又爽又黄一区二区| 免费av毛片视频| 久久中文字幕一级| 亚洲一码二码三码区别大吗| 亚洲av电影不卡..在线观看| 久久久久久久久中文| 亚洲专区中文字幕在线| videosex国产| 久99久视频精品免费| 脱女人内裤的视频| 欧美一区二区精品小视频在线| 亚洲精品粉嫩美女一区| 一区在线观看完整版| 黄片播放在线免费| 欧美日韩黄片免| 亚洲av成人av| 久9热在线精品视频| 亚洲精品国产色婷婷电影| 国产亚洲精品久久久久久毛片| 亚洲第一青青草原| 亚洲精华国产精华精| 美女扒开内裤让男人捅视频| 757午夜福利合集在线观看| 日韩 欧美 亚洲 中文字幕| av视频在线观看入口| 女人被狂操c到高潮| 淫妇啪啪啪对白视频| 在线观看免费视频日本深夜| 精品国产美女av久久久久小说| 高清毛片免费观看视频网站| 9色porny在线观看| 免费在线观看影片大全网站| 啦啦啦 在线观看视频| 国产熟女午夜一区二区三区| 九色国产91popny在线| 不卡一级毛片| 欧美日本中文国产一区发布| 国产精品秋霞免费鲁丝片| 丝袜美足系列| 亚洲全国av大片| 日韩视频一区二区在线观看| 女人精品久久久久毛片| 9191精品国产免费久久| 女人高潮潮喷娇喘18禁视频| 变态另类丝袜制服| 亚洲人成电影免费在线| 看片在线看免费视频| 国产亚洲精品第一综合不卡| 亚洲人成77777在线视频| 日韩一卡2卡3卡4卡2021年| 女人爽到高潮嗷嗷叫在线视频| 在线视频色国产色| cao死你这个sao货| 法律面前人人平等表现在哪些方面| 国产精品1区2区在线观看.| 国产精品,欧美在线| 午夜福利视频1000在线观看 | 国产一区二区三区综合在线观看| 久久午夜亚洲精品久久| 麻豆一二三区av精品| 精品国产超薄肉色丝袜足j| 国产欧美日韩精品亚洲av| 可以在线观看的亚洲视频| 成人精品一区二区免费| 国产精品影院久久| 久久人妻熟女aⅴ| 日本在线视频免费播放| 精品一区二区三区视频在线观看免费| 欧美黑人欧美精品刺激| 在线观看免费午夜福利视频| 精品卡一卡二卡四卡免费| 97人妻精品一区二区三区麻豆 | 国产精品二区激情视频| 成人手机av| 国产激情欧美一区二区| 欧美av亚洲av综合av国产av| 这个男人来自地球电影免费观看| 成人18禁高潮啪啪吃奶动态图| 亚洲精品国产区一区二| 国产三级黄色录像| 国产精品秋霞免费鲁丝片| 99国产精品一区二区三区| 国产蜜桃级精品一区二区三区| 国产av又大| 中文字幕av电影在线播放| 波多野结衣高清无吗| cao死你这个sao货| 色综合欧美亚洲国产小说| 欧美日本视频| 国产xxxxx性猛交| 国产一区二区三区综合在线观看| 久久久久久久精品吃奶| 精品欧美一区二区三区在线| 看免费av毛片| 此物有八面人人有两片| 香蕉丝袜av| 国产高清videossex| 嫩草影视91久久| 亚洲aⅴ乱码一区二区在线播放 | 黄色视频,在线免费观看| 久久精品国产99精品国产亚洲性色 | 变态另类成人亚洲欧美熟女 | 国产极品粉嫩免费观看在线| 欧美乱码精品一区二区三区| 亚洲国产精品999在线| 十八禁人妻一区二区| 国产精品电影一区二区三区| 老汉色∧v一级毛片| 国产精品香港三级国产av潘金莲| 久久久精品欧美日韩精品| 精品午夜福利视频在线观看一区| 麻豆成人av在线观看| 午夜福利免费观看在线| 免费久久久久久久精品成人欧美视频| 亚洲精品国产区一区二| 国产午夜精品久久久久久| 99久久精品国产亚洲精品| 亚洲自偷自拍图片 自拍| 亚洲视频免费观看视频| 黄色片一级片一级黄色片| 国产精品99久久99久久久不卡| 国产亚洲欧美在线一区二区| 一卡2卡三卡四卡精品乱码亚洲| 国产亚洲精品久久久久久毛片| 一个人免费在线观看的高清视频| 亚洲国产精品久久男人天堂| 999精品在线视频| 国产av精品麻豆| 18禁黄网站禁片午夜丰满| 欧美激情久久久久久爽电影 | 一区在线观看完整版| 我的亚洲天堂| 国产1区2区3区精品| 午夜精品国产一区二区电影| av视频在线观看入口| 啦啦啦观看免费观看视频高清 | 国产欧美日韩综合在线一区二区| 亚洲午夜理论影院| 黄色女人牲交| 人人妻人人澡人人看| 色老头精品视频在线观看| 欧美午夜高清在线| 女警被强在线播放| 日韩精品中文字幕看吧| 亚洲久久久国产精品| 国产97色在线日韩免费| 国产精品99久久99久久久不卡| 久久久久久国产a免费观看| 成人三级做爰电影| 亚洲电影在线观看av| 亚洲人成77777在线视频| 亚洲男人的天堂狠狠| 嫩草影视91久久| www.www免费av| 国产精品乱码一区二三区的特点 | 免费观看精品视频网站| 日韩欧美国产一区二区入口| av超薄肉色丝袜交足视频| 丁香六月欧美| 国产又色又爽无遮挡免费看| 国产欧美日韩综合在线一区二区| 国产精品1区2区在线观看.| 亚洲无线在线观看| 高清在线国产一区| 欧美成人午夜精品| 久久中文字幕人妻熟女| 9色porny在线观看| 免费看a级黄色片| 亚洲精品久久国产高清桃花| 好看av亚洲va欧美ⅴa在| 深夜精品福利| 色av中文字幕| 自线自在国产av| 香蕉丝袜av| 人人澡人人妻人| 97人妻精品一区二区三区麻豆 | 在线永久观看黄色视频| 国产麻豆69| 妹子高潮喷水视频| 极品教师在线免费播放| 亚洲情色 制服丝袜| 美女免费视频网站| 两性夫妻黄色片| 日韩精品中文字幕看吧| 亚洲av电影在线进入| 九色国产91popny在线| 久久狼人影院| 国产欧美日韩综合在线一区二区| 亚洲五月色婷婷综合| 99精品欧美一区二区三区四区| 亚洲欧美激情综合另类| 不卡一级毛片| 欧美在线一区亚洲| 亚洲国产欧美网| 亚洲精品美女久久久久99蜜臀| 99久久综合精品五月天人人| 一区二区三区高清视频在线| av网站免费在线观看视频| 国产熟女xx| 人人妻人人爽人人添夜夜欢视频| 女人被狂操c到高潮| 精品电影一区二区在线| 国产精品久久视频播放| 搞女人的毛片| 久热这里只有精品99| 精品熟女少妇八av免费久了| 少妇 在线观看| 51午夜福利影视在线观看| 国产成人免费无遮挡视频| 免费av毛片视频| 欧美丝袜亚洲另类 | 曰老女人黄片| 丝袜美腿诱惑在线| 国产成人av激情在线播放| 乱人伦中国视频| 给我免费播放毛片高清在线观看| 国产成人免费无遮挡视频| av欧美777| 久久精品国产99精品国产亚洲性色 | 国产精品综合久久久久久久免费 | 成人欧美大片| 久热这里只有精品99| 精品熟女少妇八av免费久了| 亚洲国产高清在线一区二区三 | 黄色视频不卡| 国产日韩一区二区三区精品不卡| 男女下面进入的视频免费午夜 | 88av欧美| 免费久久久久久久精品成人欧美视频| 国产三级在线视频| 免费在线观看黄色视频的| 亚洲精品在线美女| 一级片免费观看大全| 少妇熟女aⅴ在线视频| 极品教师在线免费播放| av天堂久久9| 男人舔女人下体高潮全视频| 中文字幕色久视频| 亚洲少妇的诱惑av| 日本一区二区免费在线视频| 亚洲精品在线美女| 性色av乱码一区二区三区2| 亚洲国产日韩欧美精品在线观看 | 久9热在线精品视频| 亚洲欧美精品综合久久99| 99精品欧美一区二区三区四区| 国产伦人伦偷精品视频| 日韩av在线大香蕉| 成人亚洲精品av一区二区| 国产亚洲精品综合一区在线观看 | 电影成人av| 熟女少妇亚洲综合色aaa.| 亚洲色图av天堂| 满18在线观看网站| 亚洲最大成人中文| www.www免费av| 女同久久另类99精品国产91| 丝袜人妻中文字幕| 久久久久久人人人人人| 亚洲欧美激情综合另类| 97人妻精品一区二区三区麻豆 | 久久午夜综合久久蜜桃| 日韩欧美三级三区| 真人做人爱边吃奶动态| 国产伦人伦偷精品视频| 欧美成人午夜精品| 久久久国产成人免费| 久久欧美精品欧美久久欧美| 大码成人一级视频| 色综合亚洲欧美另类图片| 国产aⅴ精品一区二区三区波| 一二三四社区在线视频社区8| 丁香六月欧美| 国产伦人伦偷精品视频| 午夜两性在线视频| 国产精品美女特级片免费视频播放器 | 黑人操中国人逼视频| 91九色精品人成在线观看| 精品日产1卡2卡| 国产成人av激情在线播放| 国产99白浆流出| 宅男免费午夜| 最近最新免费中文字幕在线| 色尼玛亚洲综合影院| 老司机靠b影院| 久久久精品欧美日韩精品| 老司机午夜福利在线观看视频| 国产视频一区二区在线看| 亚洲精品粉嫩美女一区| 免费在线观看黄色视频的| 超碰成人久久| 在线天堂中文资源库| 亚洲成国产人片在线观看| 在线观看www视频免费| 少妇裸体淫交视频免费看高清 | 国产免费男女视频| 亚洲男人天堂网一区| 女人被狂操c到高潮| 超碰成人久久| 国产亚洲av嫩草精品影院| 欧美+亚洲+日韩+国产| 99久久综合精品五月天人人| 国产免费av片在线观看野外av| 黄片播放在线免费| 国产精品精品国产色婷婷| 欧美激情久久久久久爽电影 | 亚洲伊人色综图| 一卡2卡三卡四卡精品乱码亚洲| 午夜免费观看网址| 久久精品国产综合久久久| av网站免费在线观看视频| 身体一侧抽搐| 女人被狂操c到高潮| 在线免费观看的www视频| 热re99久久国产66热| 大型av网站在线播放| 激情视频va一区二区三区| 国产精品秋霞免费鲁丝片| 一a级毛片在线观看| 精品一区二区三区av网在线观看| 黄色视频,在线免费观看| 9热在线视频观看99| 精品欧美国产一区二区三| 涩涩av久久男人的天堂| 国产av一区在线观看免费| 国产一区二区激情短视频| 亚洲va日本ⅴa欧美va伊人久久| 又大又爽又粗| 波多野结衣高清无吗| 欧美中文综合在线视频| 国产黄a三级三级三级人| 日韩国内少妇激情av| 男人的好看免费观看在线视频 | 免费少妇av软件| 亚洲国产精品999在线| 国产伦人伦偷精品视频| 国产精品 欧美亚洲| 国产在线观看jvid| x7x7x7水蜜桃| 丝袜在线中文字幕| av视频在线观看入口| 精品一区二区三区av网在线观看| 搡老岳熟女国产| 久久这里只有精品19| 国产亚洲av高清不卡| 少妇裸体淫交视频免费看高清 | 久久久久久久久中文| 99在线人妻在线中文字幕| 多毛熟女@视频| 波多野结衣av一区二区av| 日韩有码中文字幕| 身体一侧抽搐| 久久久久国内视频| 午夜激情av网站| 国产伦人伦偷精品视频| 成人永久免费在线观看视频| 琪琪午夜伦伦电影理论片6080| 欧美另类亚洲清纯唯美| 欧美日本亚洲视频在线播放| tocl精华| 老熟妇乱子伦视频在线观看| 国产精品精品国产色婷婷| 国产成人免费无遮挡视频| 亚洲成人国产一区在线观看| 亚洲avbb在线观看| 免费看a级黄色片| 日本一区二区免费在线视频| 国产亚洲av高清不卡| 这个男人来自地球电影免费观看| 亚洲va日本ⅴa欧美va伊人久久| 午夜亚洲福利在线播放| 咕卡用的链子| 亚洲性夜色夜夜综合| 成人18禁高潮啪啪吃奶动态图| 嫩草影视91久久| 亚洲色图 男人天堂 中文字幕| 国产精品亚洲美女久久久| 国产欧美日韩精品亚洲av| 久久伊人香网站| 在线观看一区二区三区| 亚洲欧美精品综合久久99| 韩国精品一区二区三区| 亚洲五月天丁香| 欧美乱码精品一区二区三区| 99精品欧美一区二区三区四区| 老司机午夜福利在线观看视频| 天天躁夜夜躁狠狠躁躁| 国产成人影院久久av| 国产精品98久久久久久宅男小说| 69av精品久久久久久| 国产亚洲精品一区二区www| 欧美黄色片欧美黄色片| 色综合欧美亚洲国产小说| 亚洲精品国产区一区二| 成人亚洲精品一区在线观看| 日本在线视频免费播放| 在线观看一区二区三区| 可以免费在线观看a视频的电影网站| 好男人电影高清在线观看| 国产亚洲av嫩草精品影院| 国产精品1区2区在线观看.| 日韩av在线大香蕉|