• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Model Controlled Prediction: A Reciprocal Alternative of Model Predictive Control

    2022-06-25 01:18:32ShenLiYangLiuandXiaoboQu
    IEEE/CAA Journal of Automatica Sinica 2022年6期

    Shen Li, Yang Liu, and Xiaobo Qu,

    Dear editor,

    This letter presents a reciprocal alternative to model predictive control (MPC), called model controlled prediction. More specifically,in order to integrate dynamic control signals into the transportation prediction models, a new fundamental theory of machine learning based prediction models is proposed. The model can not only learn potential patterns from historical data, but also make optimal predictions based on dynamic external control signals. The model can be used in two typical scenarios: 1) For low real-time control signals (e.g., subway timetable), we use a transfer learning method,so that the prediction models obtained from training data under the old control strategy can be predicted accurately under the new control strategy. 2) For dynamic control signals with high real-time(e.g., online ride-hailing dispatching instructions), we establish a simulation environment, design a control algorithm based on reinforcement learning (RL), and then let the model learn the mapping relationship among dynamic control signals, data, and output in the simulation environment. The experimental results show that the reasonable modeling of control signals can significantly improve the performance of the traffic prediction model.

    Unprecedented urbanization has led to the expansion of urban size and density. In order to meet the challenges of mobility and sustainability, more accurate transportation prediction (e.g., passenger flow prediction in public transport systems, spatio-temporal supplydemand prediction in ride-hailing services) is essential to guide the design, planning, operations, and control of urban transportation systems.

    Numerous transportation prediction methods based on artificial intelligence (AI) techniques have emerged, such as long short-term memory network (LSTM) [1], convolution neural network (CNN) [2]and graph convolution neural network (GCN) [3]. Unfortunately,most intelligent transportation systems (ITS) are affected by external control signals (e.g., intersection signal timing, metro timetables,online ride-hailing dispatching instructions), while existing traffic prediction methods only mine potential patterns from historical data without introducing control to form a closed loop. Prediction models based on historical data tend to fail or perform poorly as external control signals change.

    In order to resolve this critical issue, substantial efforts are conducted to consolidate control and prediction, which are inextricably connected. Therefore, the well-known model predictive control has developed vigorously in enhancing the performance of optimal control, and it has also been applied in numerous traffic control problems [4], but it can not deal with other aspects of transport problems including operations, design, and planning. In the field of ITS, considering the influence of external control signals, the reciprocal alternative of model predictive control has more important and extensive value and has the potential to be applied to all aspects of ITS research.

    Related work: Transport engineering is increasingly interdisciplinary with automatic control, AI, and many other emerging areas of information science which form the core of new ITS technology [5].Traffic control and prediction are two important pillars of ITS research.

    A representative example in the field of traffic control is intersection signal control, which aims to minimize vehicle travel time by coordinating vehicle movements at road intersections. Since signalized intersection is the bottleneck of urban traffic, effective signal control will reduce traffic congestion [4]. Another example is the railway timetabling control, which has proved to be an NP-Hard problem [6]. Its offline optimization objectives include train travel time [7], total energy consumption [8], transfer waiting time [9], etc.The existing research mainly focuses on mathematical programming [10]. So far, most real-world traffic control strategies are based on offline data optimization, while online rolling optimization has not been implemented. This is due to the complexity and scale of real-world traffic problems, making it difficult to meet the real-time requirements using mathematical programming or heuristic methods.RL has the potential to address this challenge, and few studies have attempted to solve complex large-scale dynamic optimization problems in the ITS field, such as traffic signal control [11] and online ride-hailing fleet management control [12].

    Since the emergence of AI and the development of data collection techniques, the application of AI in transportation prediction has affected all aspects of ITS [13]. For example, accurate passenger flow prediction not only helps passengers make better decisions by adjusting their travel routes and departure times, but also helps transit operators optimize train timetables and save operating costs [14].Spatio-temporal data prediction is another core issue, accurately predicting future spatio-temporal supply and demand can help improve traffic conditions, fleet organization, utilization rate, and social welfare. A large number of spatio-temporal data prediction methods based on artificial intelligence techniques have been proposed and applied. Existing state-of-art research is to transform the traffic prediction problem into a regression problem in machine learning.However, these typical traffic prediction problems are affected by the above control signals, but so far, none of these algorithms consider dynamic external control signals. Therefore, it is necessary to develop a new fundamental theory of AI-driven prediction model considering dynamic control.

    The fundamental theory of model controlled prediction: As mentioned in the related work, there is no research on integrating dynamic control signals into traffic prediction models. In order to fill the research gap, we will solve three basic scientific research questions.

    Q1: Why is Model Predictive Control not applicable to many ITS studies?

    Q2: What are the flaws of existing traffic prediction methods compared with model predictive control?

    Q3: How can we deal with the flaws in Q2?

    Fig. 1 is the illustration of model predictive control. Through Fig. 1,we can analyze and answer Q1 systematically.

    The main reasons limiting the application of model predictive control in ITS are:

    1) The measurement step in ITS has not been completely solved. It is a challenging task to obtain the travel data of millions of residents in a megacity. In the era of big data and high resolution, the ITS field has only solved very preliminary data acquisition problems. For example, in the bus system, swipe cards in most cities only record the pick-up station, missing the drop-off station. As a result, the measurement step has not yet been completely solved.

    Fig. 1. Illustration of model predictive control.

    2) The computational cost of implementing online rolling optimization in ITS is high. Most ITS studies are large-scale and complex (such as optimizing the timetable of the entire city subway line), which are computationally expensive. As a result, these problems are usually optimized offline, and they are difficult to optimize online on a rolling basis.

    3) As discussed earlier, ITS systems have numerous applications not only in control, but also in operating, designing, and planning.Compared with transportation prediction, model predictive control has not been able to fully satisfy the diverse requirements of ITS systems, which further limits its wide implementation in ITS.

    Fig. 2. Illustration of the modeling process of the existing data-driven traffic prediction model.

    For Q2, it should be noted that in the existing data-driven traffic prediction models, only data (e.g., dividing training set/test set, data preprocessing, feature engineering), models, and tasks are considered in the modeling process (as shown in Fig. 2), without proper consideration and reflection of the system and optimization.Referring to the illustration of model predictive control, we complete Fig. 2 by adding components such as system and optimization. To distinguish from Figs. 1 and 2, the structure in Fig. 3 is called “control-prediction”. Note that Fig. 3 is a presentation of existing method in the form of model predictive control illustration,where the existing method is flawed. In Fig. 3, although the datadriven model can implicitly learn weak information about external control signals from a large amount of historical data, it is far from sufficient because of the model’s fragility and the inability to respond quickly when external signals change if the model fails to explicitly learn external signals.

    Fig. 3. Illustration of “control-prediction” structure in ITS.

    The focus of this paper is on explicitly learning external control signals, and below we briefly analyze the impact of external signals on existing data-driven methods.

    The control strategy in Fig. 3 is a time sequence composed of several control signals.

    Fig. 4. Flowchart of the zero-shot transfer learner.

    The essence of model transfer is to predict another system using the experience learned from the previous system. However, the online car-hailing dispatching algorithm may issue dozens of dispatching instructions per second, which will lead to dynamic changes of the system. Therefore, for these high real-time dynamic control signals, the model transfer approach is not suitable. To address this challenge, we establish a simulation environment, design a control algorithm based on RL, and subsequently let the model learn mapping relationships among dynamic control signals, data,and output in the developed simulation environment. The details of the solution in this situation will be elaborated in Scenario 2.

    Fig. 4 shows the flowchart of the zero-shot transfer learner. Based on the developed zero-shot model, the traffic information can be predicted accurately when the control strategy is unknown.

    Scenario 2: This scenario deals with high real-time control signals in ITS, which will change in real-time with the change of the system.For example, dozens of online car-hailing dispatching instructions are issued every second. To address this challenge, we establish a simulation environment, design control algorithms based on RL, and then let the model learn the mapping relationships among dynamic control signals, data, and output in the simulation environment, for improving the accuracy of spatio-temporal prediction.

    In fact, in general RL, the agent only inputs the current state of the simulator without considering the influence of previous control action on prediction. Whereas in traffic problems, previous control actions can also have a significant impact on prediction results.

    For example, the driver’s execution of the dispatching instruction issued by the online car-hailing platform will have a direct impact on the future supply and demand, resulting in a dramatic decrease in the performance of the prediction model. Therefore, we design a RL model with a “recurrent” structure. The term “recurrent” means that the output of the model depends not only on the current computation but also on previous computations, which is similar to recurrent neural networks (RNN) [18].

    Fig. 5. Illustration of one input unit and one recurrent hidden unit.

    In our method (as shown in Fig. 6), the output of the agent depends not only on the current state of the simulator, but also on the previous control actions. We consider the influence of dynamic control signals on the output in the form of “recurrent”.

    Fig. 6. Illustration of an RL model with “recurrent” structure.

    Experiments: Taking the classical passenger flow prediction problem as an example, we conducted a preliminary experiment to verify the hypothesis of this letter, i.e., whether control signals (e.g.,metro timetable) will play a key role in traffic prediction. The data were collected from the Nanjing metro system, including travel records of weekdays from March 18 to April 30 and from August 1 to November 9, 2016. A dataset containing 103 days of records was obtained by denoising, in which the last 33 days of data are the test set, while the rest of the samples were used as the training set. In this case study, the length of the time slice is set to 10 minutes, which means our task is to predict the number of card swipes in the next ten minutes.

    We use four evaluation metrics, namely, symmetric mean absolute percent error (SMAPE), root mean square error (RMSE), mean absolute error (MAE), and mean relative error (MRE), to evaluate the performance of the model separately.

    The proposed model controlled prediction method is compared with the autoregressive integrated moving average (ARIMA) model and the LSTM model. The parametersp(AR term),d(difference order), andq(MA term) of the ARIMA model are set to 7, 1, and 1 respectively. In the LSTM model, we use the information from the previous four time slices to predict the passenger flow in the next time slice, stacking three LSTM layers to enable the model to learn higher-level temporal representation.

    In the model controlled prediction model, based on the LSTM model, we further encode the metro arrival information (i.e., metro timetable) withini-th time slice as a 10-dimensional feature vector.Multiple fully connected layers are used to learn the relationship

    Table 1.Comparison of Different Models (Transfer Station)

    Table 2.Comparison of Different Models (Regular Station)

    Table 3.Comparison of Different Models (Regular Station With Low Passenger Flow)

    Conclusions: The accurate transportation prediction is the foundation for all aspects of ITS, including control, operations,design, and planning. However, most prediction models in ITS do not consider the influence of external control signals (e.g., subway timetables), which compromise the performance, applicability, and transferability of these models. So far, only model predictive control has integrated predictions with external control signals. However,these models are only used for control and not for other aspects of ITS. This research is the first attempt to deal with the most fundamental issue of traffic prediction, considering external control signals, and provide a foundation for ITS applications at all levels.Although the model is developed for ITS, the fundamental theory developed will be sufficiently general to be applicable to other disciplines and systems, provided that the predictions are heavily influenced by external control signals.

    In the short term, the research provides a theoretical basis for consolidating predictions and external control signals, thus promoting the scientific development in this area. The theory can also be used in many key use cases, such as the early warning of sudden passenger flow in public transport systems, and the supplydemand balancing in ride-hailing services. In the long run, this research will be even more important in the coming era of connected,automated, and electric vehicles, where the transportation systems,communication systems, and electricity grid are coupled together.This research provides a possible solution for the interactions among different sub-systems in the future urban transportation systems.

    Acknowledgments: This study is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sk?odowska-Curie(101025896).

    国产三级黄色录像| 国产精品久久电影中文字幕| 9191精品国产免费久久| 国产三级中文精品| 噜噜噜噜噜久久久久久91| 俺也久久电影网| 99久国产av精品| netflix在线观看网站| 人妻夜夜爽99麻豆av| 国产不卡一卡二| 午夜福利免费观看在线| x7x7x7水蜜桃| 一级毛片高清免费大全| 欧美+亚洲+日韩+国产| 深夜精品福利| 久久久久九九精品影院| 日本一本二区三区精品| 国产亚洲精品久久久久久毛片| www日本黄色视频网| 久久久久久大精品| 在线免费观看不下载黄p国产 | 又粗又爽又猛毛片免费看| 深夜精品福利| 99在线视频只有这里精品首页| 久久人妻av系列| 国产精品99久久99久久久不卡| 五月伊人婷婷丁香| 亚洲黑人精品在线| 精品午夜福利视频在线观看一区| 亚洲av成人精品一区久久| 欧美性猛交黑人性爽| 亚洲欧美精品综合一区二区三区| ponron亚洲| 一区福利在线观看| 国产一区二区三区在线臀色熟女| 久久久久九九精品影院| 久久这里只有精品19| 免费在线观看亚洲国产| 亚洲国产精品久久男人天堂| 制服人妻中文乱码| 国产亚洲精品av在线| 一区二区三区激情视频| 欧美av亚洲av综合av国产av| 亚洲精品国产精品久久久不卡| 日日干狠狠操夜夜爽| 亚洲欧美日韩高清专用| 久久久久国产一级毛片高清牌| 级片在线观看| 免费在线观看视频国产中文字幕亚洲| 成人高潮视频无遮挡免费网站| 九九在线视频观看精品| 12—13女人毛片做爰片一| 美女午夜性视频免费| 亚洲av成人av| 国产精品久久久久久人妻精品电影| 香蕉国产在线看| 精品午夜福利视频在线观看一区| 国内精品久久久久精免费| 欧美日韩国产亚洲二区| 亚洲成人免费电影在线观看| 欧美又色又爽又黄视频| 国产精品香港三级国产av潘金莲| 一二三四社区在线视频社区8| 精品免费久久久久久久清纯| 男人和女人高潮做爰伦理| xxxwww97欧美| 久久热在线av| 亚洲午夜理论影院| 动漫黄色视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 黄片小视频在线播放| 国产一区二区激情短视频| 国产黄色小视频在线观看| 美女cb高潮喷水在线观看 | 超碰成人久久| 手机成人av网站| 夜夜看夜夜爽夜夜摸| 日本免费一区二区三区高清不卡| 婷婷精品国产亚洲av在线| 老熟妇仑乱视频hdxx| 国产男靠女视频免费网站| av国产免费在线观看| 日韩欧美一区二区三区在线观看| 婷婷六月久久综合丁香| 成人三级黄色视频| 草草在线视频免费看| 亚洲国产欧洲综合997久久,| 变态另类丝袜制服| 亚洲九九香蕉| 国产精品久久久久久人妻精品电影| 最近在线观看免费完整版| 中出人妻视频一区二区| 成年版毛片免费区| 丰满人妻一区二区三区视频av | 两性夫妻黄色片| 久久久精品大字幕| 国产精品影院久久| av视频在线观看入口| 人妻久久中文字幕网| 亚洲最大成人中文| 色吧在线观看| 成人av在线播放网站| 日日夜夜操网爽| 国产高潮美女av| 亚洲国产欧美人成| 桃色一区二区三区在线观看| 色老头精品视频在线观看| 一a级毛片在线观看| 久久亚洲真实| 淫妇啪啪啪对白视频| 人妻夜夜爽99麻豆av| 国产一区二区在线av高清观看| bbb黄色大片| 在线观看舔阴道视频| 午夜影院日韩av| 日本a在线网址| 日韩欧美在线二视频| 国产精品亚洲一级av第二区| 欧美日韩中文字幕国产精品一区二区三区| 国产69精品久久久久777片 | av女优亚洲男人天堂 | 免费搜索国产男女视频| 国产综合懂色| 亚洲av成人不卡在线观看播放网| 18禁美女被吸乳视频| 成熟少妇高潮喷水视频| 三级国产精品欧美在线观看 | 日本熟妇午夜| 久久中文看片网| 亚洲成av人片免费观看| 日日摸夜夜添夜夜添小说| 99国产极品粉嫩在线观看| 国内毛片毛片毛片毛片毛片| 久久久久精品国产欧美久久久| 一区二区三区激情视频| 俄罗斯特黄特色一大片| 精品99又大又爽又粗少妇毛片 | 真人一进一出gif抽搐免费| 窝窝影院91人妻| 国产av在哪里看| 最近最新中文字幕大全免费视频| 最新美女视频免费是黄的| 我的老师免费观看完整版| 九九热线精品视视频播放| 欧美黄色淫秽网站| 日本黄色视频三级网站网址| 久久中文字幕一级| 九色国产91popny在线| 成人av一区二区三区在线看| 精品国产乱码久久久久久男人| 麻豆成人午夜福利视频| 人人妻人人看人人澡| 男女午夜视频在线观看| 嫁个100分男人电影在线观看| 怎么达到女性高潮| 国产一区在线观看成人免费| 欧美乱妇无乱码| 一级毛片高清免费大全| 久久这里只有精品中国| 国产美女午夜福利| 国产精品98久久久久久宅男小说| 国产三级黄色录像| 成年女人毛片免费观看观看9| 亚洲专区国产一区二区| 中文字幕熟女人妻在线| 一本精品99久久精品77| 亚洲美女黄片视频| 欧美乱妇无乱码| 亚洲国产欧美网| 亚洲成人中文字幕在线播放| 亚洲五月婷婷丁香| 又黄又粗又硬又大视频| 香蕉av资源在线| 狂野欧美白嫩少妇大欣赏| 免费在线观看视频国产中文字幕亚洲| 亚洲av免费在线观看| 成人性生交大片免费视频hd| 搞女人的毛片| 88av欧美| 久久久久国产一级毛片高清牌| 精品不卡国产一区二区三区| 黄色视频,在线免费观看| 欧美日韩亚洲国产一区二区在线观看| ponron亚洲| 国产精品女同一区二区软件 | 亚洲美女视频黄频| 成人av在线播放网站| 中文资源天堂在线| 欧美午夜高清在线| 成人鲁丝片一二三区免费| h日本视频在线播放| 88av欧美| 校园春色视频在线观看| 精品国产亚洲在线| 我要搜黄色片| 精品国内亚洲2022精品成人| 亚洲成人精品中文字幕电影| 99在线视频只有这里精品首页| 国产成+人综合+亚洲专区| 一进一出好大好爽视频| www国产在线视频色| 精品国产亚洲在线| 亚洲国产精品成人综合色| 高潮久久久久久久久久久不卡| 2021天堂中文幕一二区在线观| 最近最新免费中文字幕在线| 好看av亚洲va欧美ⅴa在| 九九久久精品国产亚洲av麻豆 | 亚洲电影在线观看av| 国产精品自产拍在线观看55亚洲| 久久久精品大字幕| 亚洲欧美日韩无卡精品| 色综合婷婷激情| 18禁黄网站禁片免费观看直播| 给我免费播放毛片高清在线观看| 成年版毛片免费区| 免费看美女性在线毛片视频| 国产激情欧美一区二区| 精品国产三级普通话版| 可以在线观看的亚洲视频| 日韩精品中文字幕看吧| 国产一区二区三区在线臀色熟女| 国产 一区 欧美 日韩| 日韩欧美国产一区二区入口| 日本一二三区视频观看| 国产毛片a区久久久久| 天堂√8在线中文| 久久久久国产一级毛片高清牌| 国产99白浆流出| 亚洲av第一区精品v没综合| 91老司机精品| av欧美777| 精品一区二区三区视频在线 | 国产精品av视频在线免费观看| 别揉我奶头~嗯~啊~动态视频| 亚洲va日本ⅴa欧美va伊人久久| 深夜精品福利| 亚洲第一电影网av| 国产成人系列免费观看| 精品无人区乱码1区二区| 又紧又爽又黄一区二区| 亚洲欧美日韩卡通动漫| 亚洲国产日韩欧美精品在线观看 | 免费观看的影片在线观看| 搡老熟女国产l中国老女人| 国产私拍福利视频在线观看| 成人三级做爰电影| 国产三级中文精品| 给我免费播放毛片高清在线观看| 免费无遮挡裸体视频| 女生性感内裤真人,穿戴方法视频| 美女扒开内裤让男人捅视频| 日本免费一区二区三区高清不卡| 毛片女人毛片| 黄色日韩在线| 日本a在线网址| 丁香六月欧美| 88av欧美| 中文在线观看免费www的网站| 99国产极品粉嫩在线观看| 黄片大片在线免费观看| 老司机在亚洲福利影院| 51午夜福利影视在线观看| 成人欧美大片| 男女床上黄色一级片免费看| 国产久久久一区二区三区| 欧美又色又爽又黄视频| 精品熟女少妇八av免费久了| 成年女人看的毛片在线观看| 99国产精品一区二区蜜桃av| 搞女人的毛片| 亚洲中文av在线| 午夜久久久久精精品| 亚洲成人中文字幕在线播放| 色视频www国产| 日本黄大片高清| 最近最新中文字幕大全免费视频| 好看av亚洲va欧美ⅴa在| 长腿黑丝高跟| 亚洲av成人精品一区久久| 中文字幕人成人乱码亚洲影| e午夜精品久久久久久久| 亚洲一区二区三区色噜噜| 欧美在线一区亚洲| 一个人看视频在线观看www免费 | 久久精品国产99精品国产亚洲性色| 国内精品美女久久久久久| 91久久精品国产一区二区成人 | 又黄又爽又免费观看的视频| 舔av片在线| 精品一区二区三区av网在线观看| 日韩欧美一区二区三区在线观看| 校园春色视频在线观看| 久久国产乱子伦精品免费另类| 亚洲欧美日韩高清专用| 国产黄片美女视频| 成人午夜高清在线视频| 无限看片的www在线观看| 日韩三级视频一区二区三区| 91老司机精品| 国产精品免费一区二区三区在线| 亚洲男人的天堂狠狠| 亚洲精品在线观看二区| 成年人黄色毛片网站| 亚洲午夜精品一区,二区,三区| 天天躁日日操中文字幕| 无限看片的www在线观看| 国产精品爽爽va在线观看网站| 真实男女啪啪啪动态图| 九九久久精品国产亚洲av麻豆 | 国语自产精品视频在线第100页| av在线天堂中文字幕| 欧美最黄视频在线播放免费| 欧美黑人欧美精品刺激| 最近最新中文字幕大全电影3| 男女下面进入的视频免费午夜| 国产成人av教育| 亚洲电影在线观看av| 免费人成视频x8x8入口观看| 国产精品99久久久久久久久| 国产一区二区三区在线臀色熟女| 最近最新中文字幕大全电影3| 巨乳人妻的诱惑在线观看| 午夜激情欧美在线| 欧美日韩黄片免| 亚洲黑人精品在线| 欧美激情久久久久久爽电影| 午夜亚洲福利在线播放| 亚洲一区二区三区不卡视频| 国内毛片毛片毛片毛片毛片| 天堂网av新在线| 九九在线视频观看精品| 久久久久国内视频| 国产亚洲av高清不卡| 啪啪无遮挡十八禁网站| 欧美精品啪啪一区二区三区| 日日干狠狠操夜夜爽| 亚洲无线观看免费| 国产精品女同一区二区软件 | 99国产精品一区二区蜜桃av| 老熟妇乱子伦视频在线观看| 久久精品91无色码中文字幕| 欧美日韩综合久久久久久 | 国产精品一区二区三区四区免费观看 | 免费看美女性在线毛片视频| 国产伦一二天堂av在线观看| 性色av乱码一区二区三区2| 香蕉久久夜色| 嫩草影院精品99| 久久久久久久久中文| 国产一区二区在线av高清观看| 免费观看精品视频网站| 五月玫瑰六月丁香| 国产激情欧美一区二区| a级毛片a级免费在线| 麻豆一二三区av精品| 琪琪午夜伦伦电影理论片6080| 日韩大尺度精品在线看网址| 国产av不卡久久| 人妻丰满熟妇av一区二区三区| 亚洲国产欧洲综合997久久,| 精品国产乱子伦一区二区三区| 88av欧美| 国产av麻豆久久久久久久| 久久久水蜜桃国产精品网| 黑人欧美特级aaaaaa片| 亚洲熟妇中文字幕五十中出| 欧美最黄视频在线播放免费| 淫秽高清视频在线观看| 国产熟女xx| 国产精品精品国产色婷婷| 久久精品国产综合久久久| 亚洲狠狠婷婷综合久久图片| 亚洲自偷自拍图片 自拍| 搡老妇女老女人老熟妇| 国产精品国产高清国产av| 亚洲国产精品成人综合色| 国产黄片美女视频| 国模一区二区三区四区视频 | 在线观看免费午夜福利视频| 日本免费一区二区三区高清不卡| 麻豆成人午夜福利视频| 国内少妇人妻偷人精品xxx网站 | 女同久久另类99精品国产91| 久久精品91无色码中文字幕| xxx96com| 中文字幕人妻丝袜一区二区| 免费一级毛片在线播放高清视频| 99国产综合亚洲精品| 国产日本99.免费观看| 午夜影院日韩av| 免费观看的影片在线观看| 国产一区二区三区视频了| 国产黄a三级三级三级人| 天堂影院成人在线观看| 久久久久久九九精品二区国产| 操出白浆在线播放| 身体一侧抽搐| 18禁黄网站禁片午夜丰满| 欧美日韩精品网址| 国模一区二区三区四区视频 | 长腿黑丝高跟| 国产成人av激情在线播放| 美女午夜性视频免费| 欧美另类亚洲清纯唯美| 神马国产精品三级电影在线观看| 最新在线观看一区二区三区| 神马国产精品三级电影在线观看| 成年免费大片在线观看| 老熟妇仑乱视频hdxx| a在线观看视频网站| 身体一侧抽搐| 香蕉国产在线看| ponron亚洲| 午夜免费激情av| 国产精品99久久99久久久不卡| 99riav亚洲国产免费| 国产精品乱码一区二三区的特点| 亚洲国产精品成人综合色| 欧美乱色亚洲激情| 欧美黄色片欧美黄色片| 国产激情偷乱视频一区二区| 亚洲18禁久久av| 一级毛片精品| 十八禁网站免费在线| 一级毛片高清免费大全| 变态另类丝袜制服| 欧美乱色亚洲激情| 亚洲九九香蕉| 婷婷精品国产亚洲av| 午夜福利在线观看吧| 国产黄片美女视频| 午夜精品在线福利| 国产一区二区三区视频了| 一进一出抽搐动态| 久久精品人妻少妇| 99久久综合精品五月天人人| 午夜福利18| 法律面前人人平等表现在哪些方面| 免费电影在线观看免费观看| 99久久成人亚洲精品观看| 日本五十路高清| 可以在线观看的亚洲视频| 1000部很黄的大片| 国产97色在线日韩免费| 无遮挡黄片免费观看| 校园春色视频在线观看| 美女午夜性视频免费| 国产高清videossex| 99精品欧美一区二区三区四区| 日本一本二区三区精品| 国产一区二区三区在线臀色熟女| 在线国产一区二区在线| 欧美zozozo另类| 美女被艹到高潮喷水动态| 黄色视频,在线免费观看| 色老头精品视频在线观看| 国内毛片毛片毛片毛片毛片| 一个人看的www免费观看视频| av视频在线观看入口| 午夜两性在线视频| 毛片女人毛片| 亚洲真实伦在线观看| 麻豆国产av国片精品| 国产精品综合久久久久久久免费| 亚洲狠狠婷婷综合久久图片| 国产亚洲精品综合一区在线观看| 岛国在线免费视频观看| 无限看片的www在线观看| 在线观看66精品国产| 日韩精品青青久久久久久| 又粗又爽又猛毛片免费看| 亚洲狠狠婷婷综合久久图片| 一进一出抽搐动态| 国产成人精品久久二区二区免费| 国产三级在线视频| 国产精品女同一区二区软件 | 免费电影在线观看免费观看| 可以在线观看的亚洲视频| 久久国产精品人妻蜜桃| 欧美一区二区精品小视频在线| 欧美xxxx黑人xx丫x性爽| 99国产精品99久久久久| 一a级毛片在线观看| 亚洲aⅴ乱码一区二区在线播放| 高潮久久久久久久久久久不卡| 亚洲成人久久性| 国产成年人精品一区二区| 中文字幕精品亚洲无线码一区| 又黄又粗又硬又大视频| 久久精品综合一区二区三区| 老司机福利观看| 国产三级中文精品| 最近最新中文字幕大全免费视频| 国产成人啪精品午夜网站| 午夜福利高清视频| 亚洲欧美一区二区三区黑人| 日韩大尺度精品在线看网址| 国产精品久久久人人做人人爽| 久久九九热精品免费| 欧美绝顶高潮抽搐喷水| 午夜福利欧美成人| 美女cb高潮喷水在线观看 | 国产av在哪里看| 亚洲aⅴ乱码一区二区在线播放| 怎么达到女性高潮| 久久欧美精品欧美久久欧美| 最近最新中文字幕大全免费视频| 国产精品 欧美亚洲| 99视频精品全部免费 在线 | 少妇人妻一区二区三区视频| 好男人在线观看高清免费视频| 一二三四在线观看免费中文在| 中国美女看黄片| 国产成+人综合+亚洲专区| 久久精品夜夜夜夜夜久久蜜豆| 操出白浆在线播放| 国产毛片a区久久久久| 99热只有精品国产| 欧美3d第一页| 少妇的逼水好多| 99热只有精品国产| 国产单亲对白刺激| 999久久久精品免费观看国产| 听说在线观看完整版免费高清| 国产又黄又爽又无遮挡在线| 亚洲成人中文字幕在线播放| 男插女下体视频免费在线播放| 午夜精品一区二区三区免费看| 午夜福利高清视频| a在线观看视频网站| 老司机深夜福利视频在线观看| 99久久精品热视频| 国产亚洲av嫩草精品影院| 国内精品久久久久精免费| 一进一出好大好爽视频| 99久久精品国产亚洲精品| 超碰成人久久| 久久久久久久久久黄片| 日本撒尿小便嘘嘘汇集6| 午夜视频精品福利| 亚洲七黄色美女视频| 国产1区2区3区精品| 国产精品久久久av美女十八| 又大又爽又粗| 无限看片的www在线观看| 午夜福利免费观看在线| 精品99又大又爽又粗少妇毛片 | 熟女少妇亚洲综合色aaa.| 欧美日本亚洲视频在线播放| 日本一二三区视频观看| 国产伦一二天堂av在线观看| 久久久久久国产a免费观看| 校园春色视频在线观看| 999久久久国产精品视频| 久久精品综合一区二区三区| 人妻久久中文字幕网| 亚洲专区中文字幕在线| 精品国产乱码久久久久久男人| 黄色丝袜av网址大全| 亚洲 国产 在线| 日日干狠狠操夜夜爽| 天堂av国产一区二区熟女人妻| АⅤ资源中文在线天堂| 亚洲第一电影网av| 国产成年人精品一区二区| 亚洲欧洲精品一区二区精品久久久| 在线视频色国产色| 成熟少妇高潮喷水视频| 日本与韩国留学比较| 精品久久蜜臀av无| 亚洲专区中文字幕在线| 香蕉国产在线看| 超碰成人久久| 成人特级av手机在线观看| 久久这里只有精品19| 国产黄片美女视频| 少妇裸体淫交视频免费看高清| 国产aⅴ精品一区二区三区波| 岛国在线观看网站| 免费高清视频大片| 欧美日韩一级在线毛片| 国产精品国产高清国产av| 中文字幕熟女人妻在线| 成人18禁在线播放| 国产午夜福利久久久久久| 国产精品亚洲一级av第二区| 天堂√8在线中文| 蜜桃久久精品国产亚洲av| 999精品在线视频| 久久亚洲真实| 午夜日韩欧美国产| 免费高清视频大片| 女人被狂操c到高潮| 国产亚洲精品久久久久久毛片| 欧美黑人巨大hd| 日韩国内少妇激情av| 日本免费a在线| 国产亚洲精品综合一区在线观看| 亚洲精品美女久久av网站| 成人三级做爰电影| 亚洲自拍偷在线| 国产成人av教育| 精品人妻1区二区| 国产麻豆成人av免费视频| 日韩免费av在线播放| 亚洲色图 男人天堂 中文字幕| 麻豆久久精品国产亚洲av| 好男人在线观看高清免费视频| 1000部很黄的大片| 国模一区二区三区四区视频 | 欧美不卡视频在线免费观看| or卡值多少钱| www.熟女人妻精品国产| 久久精品国产清高在天天线|