• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Model Controlled Prediction: A Reciprocal Alternative of Model Predictive Control

    2022-06-25 01:18:32ShenLiYangLiuandXiaoboQu
    IEEE/CAA Journal of Automatica Sinica 2022年6期

    Shen Li, Yang Liu, and Xiaobo Qu,

    Dear editor,

    This letter presents a reciprocal alternative to model predictive control (MPC), called model controlled prediction. More specifically,in order to integrate dynamic control signals into the transportation prediction models, a new fundamental theory of machine learning based prediction models is proposed. The model can not only learn potential patterns from historical data, but also make optimal predictions based on dynamic external control signals. The model can be used in two typical scenarios: 1) For low real-time control signals (e.g., subway timetable), we use a transfer learning method,so that the prediction models obtained from training data under the old control strategy can be predicted accurately under the new control strategy. 2) For dynamic control signals with high real-time(e.g., online ride-hailing dispatching instructions), we establish a simulation environment, design a control algorithm based on reinforcement learning (RL), and then let the model learn the mapping relationship among dynamic control signals, data, and output in the simulation environment. The experimental results show that the reasonable modeling of control signals can significantly improve the performance of the traffic prediction model.

    Unprecedented urbanization has led to the expansion of urban size and density. In order to meet the challenges of mobility and sustainability, more accurate transportation prediction (e.g., passenger flow prediction in public transport systems, spatio-temporal supplydemand prediction in ride-hailing services) is essential to guide the design, planning, operations, and control of urban transportation systems.

    Numerous transportation prediction methods based on artificial intelligence (AI) techniques have emerged, such as long short-term memory network (LSTM) [1], convolution neural network (CNN) [2]and graph convolution neural network (GCN) [3]. Unfortunately,most intelligent transportation systems (ITS) are affected by external control signals (e.g., intersection signal timing, metro timetables,online ride-hailing dispatching instructions), while existing traffic prediction methods only mine potential patterns from historical data without introducing control to form a closed loop. Prediction models based on historical data tend to fail or perform poorly as external control signals change.

    In order to resolve this critical issue, substantial efforts are conducted to consolidate control and prediction, which are inextricably connected. Therefore, the well-known model predictive control has developed vigorously in enhancing the performance of optimal control, and it has also been applied in numerous traffic control problems [4], but it can not deal with other aspects of transport problems including operations, design, and planning. In the field of ITS, considering the influence of external control signals, the reciprocal alternative of model predictive control has more important and extensive value and has the potential to be applied to all aspects of ITS research.

    Related work: Transport engineering is increasingly interdisciplinary with automatic control, AI, and many other emerging areas of information science which form the core of new ITS technology [5].Traffic control and prediction are two important pillars of ITS research.

    A representative example in the field of traffic control is intersection signal control, which aims to minimize vehicle travel time by coordinating vehicle movements at road intersections. Since signalized intersection is the bottleneck of urban traffic, effective signal control will reduce traffic congestion [4]. Another example is the railway timetabling control, which has proved to be an NP-Hard problem [6]. Its offline optimization objectives include train travel time [7], total energy consumption [8], transfer waiting time [9], etc.The existing research mainly focuses on mathematical programming [10]. So far, most real-world traffic control strategies are based on offline data optimization, while online rolling optimization has not been implemented. This is due to the complexity and scale of real-world traffic problems, making it difficult to meet the real-time requirements using mathematical programming or heuristic methods.RL has the potential to address this challenge, and few studies have attempted to solve complex large-scale dynamic optimization problems in the ITS field, such as traffic signal control [11] and online ride-hailing fleet management control [12].

    Since the emergence of AI and the development of data collection techniques, the application of AI in transportation prediction has affected all aspects of ITS [13]. For example, accurate passenger flow prediction not only helps passengers make better decisions by adjusting their travel routes and departure times, but also helps transit operators optimize train timetables and save operating costs [14].Spatio-temporal data prediction is another core issue, accurately predicting future spatio-temporal supply and demand can help improve traffic conditions, fleet organization, utilization rate, and social welfare. A large number of spatio-temporal data prediction methods based on artificial intelligence techniques have been proposed and applied. Existing state-of-art research is to transform the traffic prediction problem into a regression problem in machine learning.However, these typical traffic prediction problems are affected by the above control signals, but so far, none of these algorithms consider dynamic external control signals. Therefore, it is necessary to develop a new fundamental theory of AI-driven prediction model considering dynamic control.

    The fundamental theory of model controlled prediction: As mentioned in the related work, there is no research on integrating dynamic control signals into traffic prediction models. In order to fill the research gap, we will solve three basic scientific research questions.

    Q1: Why is Model Predictive Control not applicable to many ITS studies?

    Q2: What are the flaws of existing traffic prediction methods compared with model predictive control?

    Q3: How can we deal with the flaws in Q2?

    Fig. 1 is the illustration of model predictive control. Through Fig. 1,we can analyze and answer Q1 systematically.

    The main reasons limiting the application of model predictive control in ITS are:

    1) The measurement step in ITS has not been completely solved. It is a challenging task to obtain the travel data of millions of residents in a megacity. In the era of big data and high resolution, the ITS field has only solved very preliminary data acquisition problems. For example, in the bus system, swipe cards in most cities only record the pick-up station, missing the drop-off station. As a result, the measurement step has not yet been completely solved.

    Fig. 1. Illustration of model predictive control.

    2) The computational cost of implementing online rolling optimization in ITS is high. Most ITS studies are large-scale and complex (such as optimizing the timetable of the entire city subway line), which are computationally expensive. As a result, these problems are usually optimized offline, and they are difficult to optimize online on a rolling basis.

    3) As discussed earlier, ITS systems have numerous applications not only in control, but also in operating, designing, and planning.Compared with transportation prediction, model predictive control has not been able to fully satisfy the diverse requirements of ITS systems, which further limits its wide implementation in ITS.

    Fig. 2. Illustration of the modeling process of the existing data-driven traffic prediction model.

    For Q2, it should be noted that in the existing data-driven traffic prediction models, only data (e.g., dividing training set/test set, data preprocessing, feature engineering), models, and tasks are considered in the modeling process (as shown in Fig. 2), without proper consideration and reflection of the system and optimization.Referring to the illustration of model predictive control, we complete Fig. 2 by adding components such as system and optimization. To distinguish from Figs. 1 and 2, the structure in Fig. 3 is called “control-prediction”. Note that Fig. 3 is a presentation of existing method in the form of model predictive control illustration,where the existing method is flawed. In Fig. 3, although the datadriven model can implicitly learn weak information about external control signals from a large amount of historical data, it is far from sufficient because of the model’s fragility and the inability to respond quickly when external signals change if the model fails to explicitly learn external signals.

    Fig. 3. Illustration of “control-prediction” structure in ITS.

    The focus of this paper is on explicitly learning external control signals, and below we briefly analyze the impact of external signals on existing data-driven methods.

    The control strategy in Fig. 3 is a time sequence composed of several control signals.

    Fig. 4. Flowchart of the zero-shot transfer learner.

    The essence of model transfer is to predict another system using the experience learned from the previous system. However, the online car-hailing dispatching algorithm may issue dozens of dispatching instructions per second, which will lead to dynamic changes of the system. Therefore, for these high real-time dynamic control signals, the model transfer approach is not suitable. To address this challenge, we establish a simulation environment, design a control algorithm based on RL, and subsequently let the model learn mapping relationships among dynamic control signals, data,and output in the developed simulation environment. The details of the solution in this situation will be elaborated in Scenario 2.

    Fig. 4 shows the flowchart of the zero-shot transfer learner. Based on the developed zero-shot model, the traffic information can be predicted accurately when the control strategy is unknown.

    Scenario 2: This scenario deals with high real-time control signals in ITS, which will change in real-time with the change of the system.For example, dozens of online car-hailing dispatching instructions are issued every second. To address this challenge, we establish a simulation environment, design control algorithms based on RL, and then let the model learn the mapping relationships among dynamic control signals, data, and output in the simulation environment, for improving the accuracy of spatio-temporal prediction.

    In fact, in general RL, the agent only inputs the current state of the simulator without considering the influence of previous control action on prediction. Whereas in traffic problems, previous control actions can also have a significant impact on prediction results.

    For example, the driver’s execution of the dispatching instruction issued by the online car-hailing platform will have a direct impact on the future supply and demand, resulting in a dramatic decrease in the performance of the prediction model. Therefore, we design a RL model with a “recurrent” structure. The term “recurrent” means that the output of the model depends not only on the current computation but also on previous computations, which is similar to recurrent neural networks (RNN) [18].

    Fig. 5. Illustration of one input unit and one recurrent hidden unit.

    In our method (as shown in Fig. 6), the output of the agent depends not only on the current state of the simulator, but also on the previous control actions. We consider the influence of dynamic control signals on the output in the form of “recurrent”.

    Fig. 6. Illustration of an RL model with “recurrent” structure.

    Experiments: Taking the classical passenger flow prediction problem as an example, we conducted a preliminary experiment to verify the hypothesis of this letter, i.e., whether control signals (e.g.,metro timetable) will play a key role in traffic prediction. The data were collected from the Nanjing metro system, including travel records of weekdays from March 18 to April 30 and from August 1 to November 9, 2016. A dataset containing 103 days of records was obtained by denoising, in which the last 33 days of data are the test set, while the rest of the samples were used as the training set. In this case study, the length of the time slice is set to 10 minutes, which means our task is to predict the number of card swipes in the next ten minutes.

    We use four evaluation metrics, namely, symmetric mean absolute percent error (SMAPE), root mean square error (RMSE), mean absolute error (MAE), and mean relative error (MRE), to evaluate the performance of the model separately.

    The proposed model controlled prediction method is compared with the autoregressive integrated moving average (ARIMA) model and the LSTM model. The parametersp(AR term),d(difference order), andq(MA term) of the ARIMA model are set to 7, 1, and 1 respectively. In the LSTM model, we use the information from the previous four time slices to predict the passenger flow in the next time slice, stacking three LSTM layers to enable the model to learn higher-level temporal representation.

    In the model controlled prediction model, based on the LSTM model, we further encode the metro arrival information (i.e., metro timetable) withini-th time slice as a 10-dimensional feature vector.Multiple fully connected layers are used to learn the relationship

    Table 1.Comparison of Different Models (Transfer Station)

    Table 2.Comparison of Different Models (Regular Station)

    Table 3.Comparison of Different Models (Regular Station With Low Passenger Flow)

    Conclusions: The accurate transportation prediction is the foundation for all aspects of ITS, including control, operations,design, and planning. However, most prediction models in ITS do not consider the influence of external control signals (e.g., subway timetables), which compromise the performance, applicability, and transferability of these models. So far, only model predictive control has integrated predictions with external control signals. However,these models are only used for control and not for other aspects of ITS. This research is the first attempt to deal with the most fundamental issue of traffic prediction, considering external control signals, and provide a foundation for ITS applications at all levels.Although the model is developed for ITS, the fundamental theory developed will be sufficiently general to be applicable to other disciplines and systems, provided that the predictions are heavily influenced by external control signals.

    In the short term, the research provides a theoretical basis for consolidating predictions and external control signals, thus promoting the scientific development in this area. The theory can also be used in many key use cases, such as the early warning of sudden passenger flow in public transport systems, and the supplydemand balancing in ride-hailing services. In the long run, this research will be even more important in the coming era of connected,automated, and electric vehicles, where the transportation systems,communication systems, and electricity grid are coupled together.This research provides a possible solution for the interactions among different sub-systems in the future urban transportation systems.

    Acknowledgments: This study is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sk?odowska-Curie(101025896).

    亚洲人与动物交配视频| 成人无遮挡网站| 一本—道久久a久久精品蜜桃钙片| 寂寞人妻少妇视频99o| 少妇的逼水好多| 久久99热6这里只有精品| 成年人午夜在线观看视频| 天天躁日日操中文字幕| 国产国拍精品亚洲av在线观看| 亚洲欧洲国产日韩| 亚洲精品自拍成人| av天堂中文字幕网| 黄色一级大片看看| 亚洲最大成人中文| 亚洲欧美成人精品一区二区| 日本欧美视频一区| 国产深夜福利视频在线观看| 性色av一级| a 毛片基地| 日韩免费高清中文字幕av| 欧美成人一区二区免费高清观看| 在线观看免费高清a一片| 在线观看美女被高潮喷水网站| 亚洲精品色激情综合| 久久久久精品久久久久真实原创| 2022亚洲国产成人精品| 永久免费av网站大全| 边亲边吃奶的免费视频| av网站免费在线观看视频| 精品熟女少妇av免费看| 全区人妻精品视频| 国产成人精品福利久久| 久久这里有精品视频免费| 伊人久久国产一区二区| 欧美极品一区二区三区四区| 亚洲人成网站在线播| 99热6这里只有精品| 中文字幕精品免费在线观看视频 | 国产亚洲午夜精品一区二区久久| 亚洲精品色激情综合| 久久99热这里只有精品18| 黄片wwwwww| 日韩中字成人| 在线观看免费日韩欧美大片 | 欧美xxxx黑人xx丫x性爽| 午夜福利视频精品| 国国产精品蜜臀av免费| 一级毛片 在线播放| 免费不卡的大黄色大毛片视频在线观看| 我的老师免费观看完整版| 高清视频免费观看一区二区| 人妻 亚洲 视频| 国产av一区二区精品久久 | 大香蕉久久网| 精品酒店卫生间| 女人久久www免费人成看片| 蜜桃在线观看..| 联通29元200g的流量卡| 国产日韩欧美在线精品| 亚洲国产毛片av蜜桃av| 中文字幕人妻熟人妻熟丝袜美| 成年av动漫网址| 极品少妇高潮喷水抽搐| 国产91av在线免费观看| 国产精品蜜桃在线观看| 亚洲成人一二三区av| 91精品国产九色| 久久鲁丝午夜福利片| 国产伦理片在线播放av一区| av专区在线播放| 国产av一区二区精品久久 | 精品熟女少妇av免费看| 亚洲av日韩在线播放| 亚洲国产高清在线一区二区三| 亚洲经典国产精华液单| 亚洲av二区三区四区| 久久久久久久久久久免费av| 伦理电影大哥的女人| 欧美最新免费一区二区三区| 欧美最新免费一区二区三区| 肉色欧美久久久久久久蜜桃| 国产av码专区亚洲av| 亚洲电影在线观看av| 免费观看av网站的网址| 日韩av不卡免费在线播放| 在线观看av片永久免费下载| 亚洲激情五月婷婷啪啪| freevideosex欧美| av在线观看视频网站免费| 街头女战士在线观看网站| 国产黄频视频在线观看| 欧美成人午夜免费资源| 天堂俺去俺来也www色官网| 久久久成人免费电影| 五月玫瑰六月丁香| 人妻夜夜爽99麻豆av| 三级国产精品欧美在线观看| 久久热精品热| 国产黄色免费在线视频| 街头女战士在线观看网站| 在线观看一区二区三区| 国产成人91sexporn| 国内揄拍国产精品人妻在线| 成人国产麻豆网| 少妇被粗大猛烈的视频| 亚洲av成人精品一二三区| 中国三级夫妇交换| 国产成人精品婷婷| 精品一区在线观看国产| 深爱激情五月婷婷| 男男h啪啪无遮挡| 春色校园在线视频观看| 亚洲国产色片| 久久精品国产亚洲网站| 国产精品蜜桃在线观看| 极品教师在线视频| 国产一区有黄有色的免费视频| 日韩一区二区视频免费看| 99国产精品免费福利视频| 欧美区成人在线视频| 1000部很黄的大片| 日产精品乱码卡一卡2卡三| 亚洲欧美精品专区久久| 一区二区av电影网| 少妇人妻久久综合中文| 国产亚洲欧美精品永久| 综合色丁香网| 国产成人免费无遮挡视频| 亚洲国产色片| 男人狂女人下面高潮的视频| 夜夜爽夜夜爽视频| 久久亚洲国产成人精品v| 国产欧美亚洲国产| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧美一区二区三区黑人 | 97超视频在线观看视频| 26uuu在线亚洲综合色| 国产精品免费大片| 女人十人毛片免费观看3o分钟| 最后的刺客免费高清国语| 人妻少妇偷人精品九色| 麻豆精品久久久久久蜜桃| 成人二区视频| 中国美白少妇内射xxxbb| 久久久欧美国产精品| 大陆偷拍与自拍| 国产熟女欧美一区二区| 午夜福利在线在线| 少妇被粗大猛烈的视频| 国产成人精品婷婷| 成人漫画全彩无遮挡| 卡戴珊不雅视频在线播放| 国产 精品1| 人妻系列 视频| 极品教师在线视频| 新久久久久国产一级毛片| 国产成人a区在线观看| 久久久精品免费免费高清| 国产成人精品福利久久| 国产女主播在线喷水免费视频网站| 2022亚洲国产成人精品| 精品一区二区免费观看| 亚洲精品国产色婷婷电影| 久久97久久精品| 美女cb高潮喷水在线观看| 18禁动态无遮挡网站| 18禁动态无遮挡网站| 夜夜爽夜夜爽视频| 人人妻人人爽人人添夜夜欢视频 | 国产视频内射| 直男gayav资源| 日韩一区二区视频免费看| 国产欧美亚洲国产| 成人免费观看视频高清| 色网站视频免费| 人妻夜夜爽99麻豆av| 观看av在线不卡| 在线观看三级黄色| 国产黄片视频在线免费观看| 欧美成人一区二区免费高清观看| 国产精品嫩草影院av在线观看| 一级黄片播放器| 国产亚洲av片在线观看秒播厂| 中文资源天堂在线| 美女脱内裤让男人舔精品视频| 欧美精品人与动牲交sv欧美| 美女国产视频在线观看| 大片电影免费在线观看免费| 欧美性感艳星| 亚洲婷婷狠狠爱综合网| 最近的中文字幕免费完整| 纯流量卡能插随身wifi吗| 久久国产精品男人的天堂亚洲 | 99re6热这里在线精品视频| 全区人妻精品视频| 亚洲精品自拍成人| 哪个播放器可以免费观看大片| 少妇人妻 视频| 91久久精品国产一区二区三区| 国产在视频线精品| 亚洲国产精品成人久久小说| 99久久人妻综合| 亚洲欧美成人精品一区二区| 亚洲电影在线观看av| 黄片无遮挡物在线观看| 国产精品国产三级国产av玫瑰| 噜噜噜噜噜久久久久久91| 91精品国产国语对白视频| 国产精品一区www在线观看| 午夜精品国产一区二区电影| h视频一区二区三区| 亚洲在久久综合| 老司机影院毛片| 免费高清在线观看视频在线观看| 亚洲欧洲国产日韩| 亚洲精品国产色婷婷电影| 一二三四中文在线观看免费高清| 欧美xxxx黑人xx丫x性爽| 51国产日韩欧美| 伊人久久国产一区二区| 老师上课跳d突然被开到最大视频| 熟女av电影| 看免费成人av毛片| 91久久精品电影网| 少妇人妻 视频| 多毛熟女@视频| 久久97久久精品| 少妇人妻精品综合一区二区| 国产高清三级在线| 国产精品一区二区三区四区免费观看| 这个男人来自地球电影免费观看 | 青春草亚洲视频在线观看| 国产av国产精品国产| a级毛色黄片| 青春草视频在线免费观看| 网址你懂的国产日韩在线| 日本av免费视频播放| 欧美另类一区| 我要看黄色一级片免费的| 成年av动漫网址| 99re6热这里在线精品视频| 国内少妇人妻偷人精品xxx网站| 亚洲av.av天堂| 免费大片18禁| 最近2019中文字幕mv第一页| 高清在线视频一区二区三区| 国产毛片在线视频| 国产精品久久久久久久电影| 久久国产乱子免费精品| 久久ye,这里只有精品| 国产成人aa在线观看| 亚洲国产精品国产精品| 成人高潮视频无遮挡免费网站| 亚洲精品乱码久久久久久按摩| 久久久久视频综合| 91在线精品国自产拍蜜月| 51国产日韩欧美| 国产欧美日韩精品一区二区| 午夜福利在线观看免费完整高清在| 欧美日韩视频精品一区| 我要看日韩黄色一级片| 黄色视频在线播放观看不卡| 观看免费一级毛片| 国产精品一区二区在线观看99| 精品国产乱码久久久久久小说| 日韩强制内射视频| 国产精品久久久久久精品电影小说 | 国产欧美日韩一区二区三区在线 | 国产精品免费大片| 一本一本综合久久| h视频一区二区三区| 国产免费福利视频在线观看| 久久这里有精品视频免费| 人妻制服诱惑在线中文字幕| 少妇人妻一区二区三区视频| 免费大片18禁| 麻豆精品久久久久久蜜桃| a级一级毛片免费在线观看| 在线看a的网站| 免费不卡的大黄色大毛片视频在线观看| 卡戴珊不雅视频在线播放| 女的被弄到高潮叫床怎么办| av视频免费观看在线观看| 精品熟女少妇av免费看| 少妇人妻久久综合中文| 在线观看免费高清a一片| 嘟嘟电影网在线观看| 免费人成在线观看视频色| 国产男女超爽视频在线观看| 精品国产乱码久久久久久小说| 色视频在线一区二区三区| 久久人人爽人人片av| 在线观看免费视频网站a站| 全区人妻精品视频| 久久久久久伊人网av| 啦啦啦视频在线资源免费观看| 久热久热在线精品观看| 久久久欧美国产精品| 国内少妇人妻偷人精品xxx网站| 国产男人的电影天堂91| 男人和女人高潮做爰伦理| 乱码一卡2卡4卡精品| 午夜福利在线观看免费完整高清在| 五月玫瑰六月丁香| 五月天丁香电影| 国产淫语在线视频| 午夜福利在线在线| 国产亚洲最大av| 少妇熟女欧美另类| 日日摸夜夜添夜夜添av毛片| 我的老师免费观看完整版| 久久久久视频综合| 久久久色成人| 国产伦精品一区二区三区四那| 亚洲av日韩在线播放| 日韩三级伦理在线观看| 亚洲国产最新在线播放| 中文字幕免费在线视频6| 九草在线视频观看| 26uuu在线亚洲综合色| 日日摸夜夜添夜夜爱| 高清毛片免费看| 色网站视频免费| 99热网站在线观看| 精品久久久精品久久久| 熟妇人妻不卡中文字幕| 亚洲欧美日韩东京热| 国产精品福利在线免费观看| 深爱激情五月婷婷| 国产精品蜜桃在线观看| 欧美激情极品国产一区二区三区 | 只有这里有精品99| 97在线视频观看| 久久人人爽人人片av| 中国美白少妇内射xxxbb| 日韩av不卡免费在线播放| 男女边吃奶边做爰视频| 97精品久久久久久久久久精品| 另类亚洲欧美激情| 汤姆久久久久久久影院中文字幕| 天堂8中文在线网| 内地一区二区视频在线| 99精国产麻豆久久婷婷| 一本—道久久a久久精品蜜桃钙片| 99久国产av精品国产电影| 精品一品国产午夜福利视频| 久久99蜜桃精品久久| 国产黄片视频在线免费观看| 欧美成人精品欧美一级黄| 中文资源天堂在线| 婷婷色综合大香蕉| 六月丁香七月| 联通29元200g的流量卡| 亚洲精品乱码久久久久久按摩| 国产亚洲午夜精品一区二区久久| 免费在线观看成人毛片| 伊人久久精品亚洲午夜| 99久久中文字幕三级久久日本| 久久国内精品自在自线图片| av专区在线播放| 亚洲精品,欧美精品| 国产成人免费无遮挡视频| 亚洲国产毛片av蜜桃av| 欧美精品一区二区大全| 成人漫画全彩无遮挡| 国产91av在线免费观看| av.在线天堂| 亚洲欧洲日产国产| 少妇熟女欧美另类| 人人妻人人爽人人添夜夜欢视频 | 久久久久久久久久成人| 日本wwww免费看| 亚洲四区av| 91精品一卡2卡3卡4卡| 免费观看a级毛片全部| 在现免费观看毛片| 在线亚洲精品国产二区图片欧美 | 午夜福利视频精品| 国产 一区 欧美 日韩| 欧美精品一区二区大全| 国产综合精华液| 老熟女久久久| 亚洲精品自拍成人| 午夜免费鲁丝| 亚洲精品一区蜜桃| 在线看a的网站| 我要看日韩黄色一级片| 亚洲不卡免费看| 大话2 男鬼变身卡| 在线观看国产h片| 欧美丝袜亚洲另类| 成人免费观看视频高清| 丰满人妻一区二区三区视频av| 在线免费十八禁| 蜜桃在线观看..| 一区二区av电影网| 日韩亚洲欧美综合| av视频免费观看在线观看| 国产精品福利在线免费观看| 毛片一级片免费看久久久久| 国产色婷婷99| 国产黄色免费在线视频| 久久精品国产自在天天线| 校园人妻丝袜中文字幕| 国产精品麻豆人妻色哟哟久久| 精品人妻偷拍中文字幕| 美女xxoo啪啪120秒动态图| 国产深夜福利视频在线观看| 国产永久视频网站| 偷拍熟女少妇极品色| 丝瓜视频免费看黄片| 永久网站在线| 成人特级av手机在线观看| 久久久久久久大尺度免费视频| 色网站视频免费| 成人特级av手机在线观看| 嘟嘟电影网在线观看| 边亲边吃奶的免费视频| 天美传媒精品一区二区| av黄色大香蕉| 亚洲精品亚洲一区二区| 久久 成人 亚洲| 日本欧美视频一区| 中文欧美无线码| 一区二区三区乱码不卡18| 秋霞伦理黄片| freevideosex欧美| 99九九线精品视频在线观看视频| 日日啪夜夜爽| 欧美精品人与动牲交sv欧美| 国产黄片视频在线免费观看| 成人美女网站在线观看视频| 国内少妇人妻偷人精品xxx网站| 久久 成人 亚洲| 午夜免费观看性视频| 成人国产麻豆网| 下体分泌物呈黄色| www.av在线官网国产| 十分钟在线观看高清视频www | 大片电影免费在线观看免费| 最近的中文字幕免费完整| 国产成人精品福利久久| 美女国产视频在线观看| 少妇熟女欧美另类| 亚洲av二区三区四区| 亚洲av电影在线观看一区二区三区| 欧美 日韩 精品 国产| 美女脱内裤让男人舔精品视频| 久久ye,这里只有精品| 亚洲国产欧美在线一区| 丰满少妇做爰视频| 尾随美女入室| 国产欧美另类精品又又久久亚洲欧美| 嘟嘟电影网在线观看| 亚洲av日韩在线播放| 国产精品久久久久久av不卡| 国产午夜精品一二区理论片| 亚洲欧洲国产日韩| 韩国av在线不卡| 日本免费在线观看一区| 午夜免费鲁丝| 久久精品熟女亚洲av麻豆精品| 少妇人妻 视频| 国产亚洲一区二区精品| 亚洲电影在线观看av| 色视频在线一区二区三区| 久久婷婷青草| 久久久久久久久大av| 干丝袜人妻中文字幕| 人妻夜夜爽99麻豆av| 91精品国产国语对白视频| 久久精品熟女亚洲av麻豆精品| 日本wwww免费看| 91精品国产九色| 男女边摸边吃奶| 国产精品久久久久久av不卡| 亚洲精华国产精华液的使用体验| 十分钟在线观看高清视频www | 国精品久久久久久国模美| av视频免费观看在线观看| 日韩大片免费观看网站| 如何舔出高潮| 久久精品人妻少妇| 婷婷色综合www| 黄色日韩在线| 在线观看美女被高潮喷水网站| 男人添女人高潮全过程视频| 久久久久久伊人网av| 晚上一个人看的免费电影| 男女边摸边吃奶| 亚洲四区av| 国产精品一区二区在线观看99| 18禁在线播放成人免费| 精品久久久噜噜| av免费在线看不卡| 久久久久久久国产电影| 久久精品人妻少妇| 婷婷色综合www| 在线天堂最新版资源| 午夜福利视频精品| 国产伦在线观看视频一区| 五月玫瑰六月丁香| 内地一区二区视频在线| 国产精品福利在线免费观看| 狂野欧美白嫩少妇大欣赏| 国产免费福利视频在线观看| 久久韩国三级中文字幕| 国产成人一区二区在线| 一级片'在线观看视频| 国产高清三级在线| 亚洲美女视频黄频| 美女视频免费永久观看网站| 亚洲精品自拍成人| 欧美xxxx黑人xx丫x性爽| 夜夜爽夜夜爽视频| 久久久午夜欧美精品| 天堂8中文在线网| 香蕉精品网在线| 不卡视频在线观看欧美| 欧美精品国产亚洲| 日本一二三区视频观看| www.av在线官网国产| 精品一区二区免费观看| 国产老妇伦熟女老妇高清| 久久久欧美国产精品| 日本与韩国留学比较| 我要看黄色一级片免费的| 国产探花极品一区二区| 日韩强制内射视频| 欧美一级a爱片免费观看看| 色婷婷av一区二区三区视频| 亚洲国产成人一精品久久久| 精品久久久久久久久亚洲| 国产黄色视频一区二区在线观看| av.在线天堂| 国精品久久久久久国模美| 国产毛片在线视频| 青春草亚洲视频在线观看| 国产淫语在线视频| 七月丁香在线播放| 蜜桃久久精品国产亚洲av| 观看av在线不卡| 99热这里只有是精品在线观看| 国产永久视频网站| 人妻少妇偷人精品九色| 日本免费在线观看一区| 欧美xxxx黑人xx丫x性爽| 国产精品一区二区三区四区免费观看| 一级二级三级毛片免费看| 秋霞伦理黄片| 国产男人的电影天堂91| 国产精品麻豆人妻色哟哟久久| 最新中文字幕久久久久| 一级av片app| 国产高潮美女av| 日韩免费高清中文字幕av| 99精国产麻豆久久婷婷| 亚洲婷婷狠狠爱综合网| 精品酒店卫生间| 亚洲精品久久午夜乱码| 亚洲最大成人中文| 精品少妇久久久久久888优播| 久久av网站| 亚洲精品久久午夜乱码| 国产伦理片在线播放av一区| 搡老乐熟女国产| 国产成人午夜福利电影在线观看| 国产男女内射视频| 国产成人精品一,二区| 少妇人妻久久综合中文| 老熟女久久久| 国产真实伦视频高清在线观看| 青春草国产在线视频| 久久久亚洲精品成人影院| 日韩 亚洲 欧美在线| 国产黄色免费在线视频| 久久久久国产精品人妻一区二区| 国产免费福利视频在线观看| 91精品伊人久久大香线蕉| 国产黄片美女视频| 久久青草综合色| 日韩在线高清观看一区二区三区| 日韩中文字幕视频在线看片 | 午夜福利在线在线| 国产美女午夜福利| 亚洲国产高清在线一区二区三| 丰满少妇做爰视频| 国产精品一区二区在线观看99| 高清不卡的av网站| 日韩,欧美,国产一区二区三区| 超碰av人人做人人爽久久| 赤兔流量卡办理| 多毛熟女@视频| 日韩一区二区视频免费看| 自拍欧美九色日韩亚洲蝌蚪91 | 国产久久久一区二区三区| 欧美日韩精品成人综合77777| 如何舔出高潮| 亚洲精品,欧美精品| 韩国高清视频一区二区三区| 国产精品偷伦视频观看了| 国产精品一二三区在线看| av在线观看视频网站免费| 国产中年淑女户外野战色| 成人毛片a级毛片在线播放| 五月天丁香电影| 国产免费福利视频在线观看| 亚洲四区av| 亚洲欧美精品自产自拍| 老司机影院成人| 欧美精品人与动牲交sv欧美| 少妇 在线观看| 久久99精品国语久久久| 天堂俺去俺来也www色官网| 汤姆久久久久久久影院中文字幕|