• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Scalable Adaptive Approach to Multi-Vehicle Formation Control with Obstacle Avoidance

    2022-06-25 01:17:44XiaohuaGeQingLongHanJunWangandXianMingZhang
    IEEE/CAA Journal of Automatica Sinica 2022年6期

    Xiaohua Ge,, Qing-Long Han,, Jun Wang,, and Xian-Ming Zhang,

    Abstract—This paper deals with the problem of distributed formation tracking control and obstacle avoidance of multivehicle systems (MVSs) in complex obstacle-laden environments.The MVS under consideration consists of a leader vehicle with an unknown control input and a group of follower vehicles,connected via a directed interaction topology, subject to simultaneous unknown heterogeneous nonlinearities and external disturbances. The central aim is to achieve effective and collisionfree formation tracking control for the nonlinear and uncertain MVS with obstacles encountered in formation maneuvering,while not demanding global information of the interaction topology. Toward this goal, a radial basis function neural network is used to model the unknown nonlinearity of vehicle dynamics in each vehicle and repulsive potentials are employed for obstacle avoidance. Furthermore, a scalable distributed adaptive formation tracking control protocol with a built-in obstacle avoidance mechanism is developed. It is proved that, with the proposed protocol, the resulting formation tracking errors are uniformly ultimately bounded and obstacle collision avoidance is guaranteed. Comprehensive simulation results are elaborated to substantiate the effectiveness and the promising collision avoidance performance of the proposed scalable adaptive formation control approach.

    I. INTRODUCTION

    MULTI-vehicle systems (MVSs) have found their widespread applications in both military and civilian areas, such as formation flying, target tracking, surface combat operations, border patrol and surveillance, intelligent transportation, coastal environmental monitoring and mapping. A key feature of such MVSs lies in that multiple autonomous vehicles, which can be extensively deployed on the ground, in the air, at sea, and underwater, cooperate with each other through some networked medium so as to fulfill a variety of coordinated control tasks. Among various research hotspots on MVSs, formation control that aims to steer a fleet of autonomous vehicles, via collaborative and distributed information processing, into forming a specific geometric pattern in terms of their states (e.g., position, heading) has attracted intensive attention; see, e.g., the recent surveys[1]-[4], and the references therein.

    Depending on whether there is any leader, the existing results on formation control of MVSs and general multi-agent systems (MASs) can be roughly classified into three types:formation producing[5]-[10], where there is no leader involved;formation tracking[11]-[19], where is only one leader, either virtual or real, guiding a team of formable follower vehicles; andformation-containment[20]-[23],where a team of follower vehicles is to navigate into a convex hull formed by another team of formable leader vehicles.Several approaches are reported to analyze the MVS formation behaviors and design various formation control strategies [1]-[4].

    The completion and performance of coordinated control tasks for MVSs are significantly affected by nonlinearities,and their effects become particularly adverse for small vehicles due to their low inertia and small size. For example,the navigation and control of unmanned aerial vehicles can be substantially affected by uncontrolled nonlinearities including wind gusts and gravity gradients. In addition, autonomous surface and underwater vehicles usually suffer from environmental influences induced by turbulent ocean waves and currents. In this sense, some existing formation control strategies dedicated to known or linear dynamical vehicle/agent models (e.g., [5]-[8], [10], [11], [13], [16]) may no longer be applicable. Therefore, the first challenge for nonlinear MVS formation control is to deal with the unknown nonlinearities in vehicle dynamics. On the other hand,practical formation maneuvers of a team of mobile vehicles are often implemented in some unknown and obstacle-laden environments without anya priorimap knowledge. In such a scenario, there is a strong need for a safety guarantee of collision avoidance for the vehicles in some cluttered environments while maintaining task completion of the formable vehicle team. More specifically, an effective obstacle avoidance strategy is essential to be embedded in the desired formation control protocols and algorithms. However,how to realize the intrinsic collision-free formation control of MVSs in an obstacle-laden setting remains a challenge due to its complexity in analysis and design procedures [14].

    Neural networks (NNs) have been well exploited for modeling complex dynamic systems due to their great potential for identifying the unknown nonlinearities and/or uncertainties in system dynamics. For example, robust distributed adaptive NN controllers are designed for cooperative tracking control of higher-order nonlinear MASs with a nonautonomous dynamic leader [24]. Distributed NN synchronization controllers are proposed for solving the leader-follower synchronization problem of uncertain nonlinear dynamical MASs [25]. Event-based distributed cooperative NN learning control strategies are presented for different nonlinear MASs [26], [27]. Based on adaptive NN and prescribed performance control, the problem of distributed cooperative compound tracking of a platoon of vehicles of nonlinear third-order dynamics is resolved in finite time [28]. For a class of nonlinear MASs in a nonstrict feedback form, a finite-time adaptive NN fault-tolerant control method is developed to tackle actuator faults, unknown symmetric output dead zones and control coefficients [29]. An adaptive NN leader-following tracking method is proposed for a class of fractional-order MASs with unknown matched uncertainties [30].

    In order to ensure the safe mission completion of MASs,several obstacle and collision avoidance methods are available in the literature. For example, building on the concept of barrier certificates, a control barrier function-based method[31], [32] is adopted to preserve collision-free formation behaviors in MASs. Nevertheless, each agent typically relies on a formally designed nominal controller together with a tailored collision avoidance controller to make agents swap behaviors between formation maneuvers and collision avoidance navigation. Viewing the collision avoidance conditions as some design constraints, a model predictive control method [33], [34] is also employed to accomplish collision-free formation control. However, such a method may lead to some high-dimensional nonconvex and nonlinear optimization problems that are difficult to solve. On the other hand, an artificial potential field (APF) method [35] is intensively explored in the multi-vehicle (robotics) control literature. The rationale behind such a method is that an obstacle is treated as a high-potential point and a suitable repulsive potential is constructed for keeping each vehicle away from the obstacle. During a maneuver, each vehicle follows the gradient of the potential and is repelled by obstacles once it moves into a predefined range around obstacles. For example, the APF method andH∞analysis are combined to cope with the formation tracking and obstacle avoidance of a class of stochastic second-order MASs [14].Based on virtual and behavioral structures, the formation control of a team of mobile robots is studied [36], where rotational potential field is applied for obstacle avoidance of robot swarming and regular polygon formations. For linear and deterministic second-order MASs, a potential functionbased formation tracking algorithm is proposed [37] to deal with communication constraints among agents, and a timevarying formation tracking control protocol based on an improved distance- and velocity-dependent potential function[38] is developed to ensure collision avoidance among agents.Interested readers are referred to the survey [39] for more results on collision avoidance. To the best of the authors’knowledge, for MVSs with unknown nonlinearities and uncertainties, how to develop an effective formation control approach to both desired formation tracking and assured obstacle avoidance in obstacle-laden environments has not been adequately addressed hitherto, which motivates this study.

    In this paper, we address the adaptive and collision-free formation tracking issue of MVSs maneuvered in an unknown and cluttered setting. In contrast to some existing formation control frameworks which assume that vehicle (or agent)dynamics are either free of any nonlinearity or perturbation, or are subject to nonlinearity and disturbance with explicitly known bounds, a general framework of time-varying formation tracking control is established to account for simultaneous unknown heterogeneous nonlinearities and external disturbances in every follower vehicle dynamics and also unknown nonzero control input in the leader. The novelty of this paper lies in the development of a scalable adaptive formation control approach to MVSs over a directed interaction topology, which achieves simultaneous formation tracking and obstacle avoidance guarantees under unknown nonlinearities and disturbances as well as obstacles, while not relying on global information of the interaction topology of the MVS.

    The main contributions of this paper are twofold. 1)A scalable adaptive formation tracking control protocolis developed such that each individual vehicle only needs the information of its underlying neighbors and itself to compute its protocol parameters. Note that the challenge of the protocol design is to guarantee that both the formation tracking control protocol and the NN parameter tuning laws adopt merely local information available at each vehicle, and do not depend on the global topology information. It makes a distinctive difference between this work and some existing formation control laws, where their formation control protocols necessitate certain global knowledge of either nonzero eigenvalue in the Laplacian or eigenvectors related to the Laplacian, and thus may not be practically implementable by every vehicle (or agent); and 2)An efficient collision avoidance mechanismis delicately embedded into the desired distributed formation control protocol in such a way as to achieve guaranteed formation maneuver safety in obstacleladen environments. Furthermore, a design algorithm is provided to detail the main steps for the design of the desired scalable adaptive formation tracking control laws, through which the protocol gain and adaptive parameters as well as the repulsive force for collision avoidance can be determined. It is proved that all controlled variables are uniformly ultimately bounded and obstacle avoidance is guaranteed for every vehicle in formation maneuvering.

    The remainder of the paper is organized as follows.Preliminaries are provided in Section II. The formulation of the main problem is given in Section III. The main results with a detailed design algorithm and rigorous stability analysis on the resulting closed-loop MVS are stated in Section IV.Simulation results are discussed in Section V. Concluding remarks are made in Section VI.

    II. PRELIMINARIES

    A. Notations

    B. Graph Theory Fundamentals

    III. PROBLEM FORMULATION

    A. Vehicle Dynamics

    B. Vehicle Formation Geometry

    Fig. 1. Three illustrative examples of four vehicles moving in the X Y plane in various formations: (a) a parallelogram formation; (b) a straight line formation; and (c) a point formation (consensus).

    C. Obstacle Avoidance Function

    encounter bulky obstacles during formation maneuvering,making the entire vehicle team quite difficult, if not impossible, to pass by. To model a bulky obstacle properly, it is natural to assume that a bulky obstacle can be suitably approximated with some convex polyhedra. As a result, one can further take some critical sample points on the boundary of the polyhedra to approximate the bulky obstacle. In practice, this can be accomplished by using suitable cameras,sonars, or laser range finders on vehicles, to provide effective identification of the boundary surface of the polyhedra together with some signal and image processing techniques.Then, the obstacle avoidance functions can be derived from the surface integrals on boundary of the obstacle. Generally,more samples on the boundary of the polyhedra surely make the modeling of the bulky obstacle more explicit and accurate.Thus, the desired obstacle avoidance performance becomes apparent.

    D. The Problem to Be Addressed

    obstacles during formation maneuvers.

    IV. MAIN RESULTS

    In this section, we first specify the desired scalable adaptive formation tracking control protocol. We then present an algorithm for determining the gain parameters and NN parameter tuning rules for the desired control protocol.Finally, we derive the resulting closed-loop formation tracking error dynamics and perform a rigorous stability analysis by proving that all the closed-loop signals remain uniformly ultimately bounded and the desired formation tracking objective can be achieved with assured obstacle avoidance.

    A. Scalable Adaptive Formation Tracking Control Protocol

    B. Design Algorithm

    C. Stability Analysis

    Remark 9:The importance of the proposed scalable adaptive formation tracking control design approach is fourfold.(i)The developed Algorithm 1 for realizing distributed adaptive formation tracking control can adequately accommodate the unknown nonlinearity and external disturbance in follower dynamics as well as the unknown nonzero control input in the leader dynamics in a unified framework. This is contrast to some existing formation control approaches [5]-[8], [10], [11], [13], [16], [17] which assume that the vehicle (or agent) dynamics are free of any nonlinearity or external perturbation.(ii)Although the bounding conditions are exposed in Assumptions 2-4, it is clearly shown in Algorithm 1 that the bounds of the unknown disturbancewi, the unknown nonzero leader control inputu0,the signals and matrices φi,εi,Wiin NNs, and the obstacle avoidance functions ψisare not required to be knowna priorifor the design of desired distributed adaptive formation tracking protocols. It represents a clear difference from some existing results such as [12], [14] where the design criteria or algorithms necessitate the information of relevant bounds.(iii)Further to the discussion in Remark 4, the proposed design algorithm can be tailored to deal with several important cooperative control issues in MVSs/MASs, such as bounded(practical) leaderless consensus, leader-following consensus,and target enclosing and pursuing.(iv)In contrast to some existing formation (tracking) control approaches which require some global knowledge of either the nonzero eigenvalues in the Laplacian [10], [11], [16] or the eigenvectors related to the Laplacian (or matrix H ) [14], [37],the proposed adaptive formation tracking protocol (11) for each vehiclei, however, relies on only the information of itself and its underlying neighbors, and thus enjoys a scalability property. Moreover, the distributed formation tracking problem herein is pursued under a directed interaction topology, which is more difficult than that under a undirected topology [5], [7], [11], [38].

    V. ILLUSTRATIVE EXAMPLES

    In this section, two illustrative examples are provided to demonstrate the effectiveness and merits of the proposed scalable adaptive formation control approach with guaranteed collision avoidance.

    A. Multi-Vehicle Formation Tracking in An Obstacle-Laden 2D Plane

    Fig. 2. Communication topology of six followers and the virtual leader 0.

    Fig. 3. Formation tracking behaviors of the controlled vehicle fleet in an obstacle-laden environment: (a) The six follower vehicles eventually follow the virtual leader’s motion trajectory with the desired hexagon pattern subject to small formation tracking errors, while successfully avoiding collision with the obstacles during the formation maneuver; (b) The velocities viX(t) of the six follower vehicles in the X plane achieve bounded consensus on that of the virtual leader; (c) The velocities viY(t) of the six follower vehicles in theY plane achieve bounded consensus on that of the virtual leader; (d) Bounded control input uiX(t) in the X plane; (e) Bounded control input uiY(t) in theY plane; and (f) Adaptive coupling gains αi(t) is convergent to some steady values in finite time, i ∈V.

    We then evaluate the MVS formation tracking and obstacle avoidance performance by resorting to the proposed Algorithm 1. Fig. 3 (a)-(c) illustrates that all six follower vehicles smoothly bypass all obstacles without colliding with any of them, while still being capable of successfully tracking the virtual leader with the desired hexagon formation.Moreover, Fig. 3 (d)-(f) depicts that the bounded closed-loop signals, including the control inputsuiXanduiYas well as the convergent adaptive coupling gains αi. Fig. 4 illustrates six snapshots of the resultant vehicle formation at different times.Fig. 5 depicts the nonlinearityfiand its approximationf?ifor every vehicle, wherein the nonlinear functionsfiin six follower vehicles are well estimated by the RBF NN.

    Fig. 4. Snapshots of the vehicle formation at different times of t=0 s,t=20 s, t =48 s, t =56 s, t =64 s, and t =80 s.

    Fig. 5. NN approximation f?i(·)=[ f?i1 (·), f?i2(·)]T of the nonlinear fi(·)=[fi1 (·),fi2 (·)]T for each follower vehicle, i ∈V.

    In summary, the above simulation results adequately demonstrate that the proposed scalable adaptive formation tracking control approach can not only steer a fleet of follower vehicles to follow the desired virtual leader but also guarantee the obstacle avoidance during formation maneuvers in complex obstacle-laden environments.

    B. Collision-Free Vehicle Platooning in A Longitudinal Plane

    Fig. 6. Platooning and collision avoidance performance under the desired constant spacing ( si-1,i=6 m) in the presence of external disturbance input wi(t) and leader control input u0(t): (a) Inter-vehicle distancessi(t)=pi-1(t)-pi(t) between each platoon member i and its direct predecessor i-1, i ∈V,without the collision avoidance function ψ i,i-1(di,i-1(t)); (b) Vehicle velocities vi(t), i ∈V~ , without the collision avoidance function ψ i,i-1(di,i-1(t)); (c) Intervehicle distance si(t)=pi-1(t)-pi(t), i ∈V, in the presence of ψi,i-1(di,i-1(t)); (b) Vehicle velocities vi(t), i ∈V~, in the presence of ψi,i-1(di,i-1(t)); (e) Repulsive force uoi a(t), i ∈V, for collision avoidance; and(f) Adaptive coupling gains α i(t), i ∈V in the presence of ψ i,i-1(di,i-1(t)).

    Fig. 7. Snapshots of the simulated platoon driving maneuver under the desired constant spacing (6 m) without the collision avoidance function ψ i,i-1(di,i-1(t)),where potential collisions occur among followers 4 ,5, and 6 given that s 6(t)=0.4 m and s5(t)=1.0 m at time t =16 s.

    Fig. 8. Snapshots of the simulated platoon driving maneuver under the desired constant spacing (6 m) with the collision avoidance function ψi,i-1(di,i-1(t)),where the spacings among followers 4 ,5, and 6 at time t =16 s are enlarged to s 6=2.7 m and s5=2.6 m.

    VI. CONCLUSIONS

    The distributed adaptive formation tracking control is tackled for MVSs operating in unknown and cluttered environments. RBF NNs are used to model the unknown nonlinear dynamics of vehicles. Furthermore, repulsive potentials are introduced for vehicles to achieve collision avoidance with obstacles in the workspace. To accomplish the formation tracking task with promised obstacle avoidance, a scalable distributed adaptive formation tracking control protocol is developed without the need for any global information on the directed topology. It is theoretically proved that all signals of the resulting closed-loop dynamics are uniformly ultimately bounded. The efficacy of the proposed MVS formation control protocol and design algorithm is substantiated with the simulation results on some challenging formation maneuvers.

    Notice that the proposed distributed adaptive formation tracking control approach necessitates continual data communication among interacting vehicles. This may be inapplicable in a resource-constrained communication setting.Event-triggered control has yet received intensive research interests in recent years due to its prominent advantages in maintaining desired system performance and satisfactory communication efficiency; see, e.g., the recent surveys[45]-[47]. To the best of the authors’ knowledge, it remains challenging to develop a novel event-triggered scalable adaptive formation control approach which promises both satisfactory communication efficiency and collision-free formation control performance for MVSs. This constitutes one of our future works. It would be also interesting to provide secure scalable distributed adaptive control solutions that ensure successful completion of safety-critical formation maneuvering tasks in the presence of adversarial cyber attacks.

    久久热精品热| 性高湖久久久久久久久免费观看| 久久久精品94久久精品| 三级国产精品片| 91午夜精品亚洲一区二区三区| 亚洲精品国产av蜜桃| 国产av国产精品国产| 男女免费视频国产| 亚州av有码| 熟女人妻精品中文字幕| .国产精品久久| 最近中文字幕高清免费大全6| 亚洲少妇的诱惑av| 中文字幕人妻丝袜制服| 国产高清国产精品国产三级| 亚洲人成网站在线播| 午夜av观看不卡| 日韩一区二区三区影片| 两个人的视频大全免费| 免费av中文字幕在线| 日韩一本色道免费dvd| kizo精华| 亚洲精品国产av蜜桃| 亚洲高清免费不卡视频| 日韩精品有码人妻一区| 免费黄频网站在线观看国产| 中国国产av一级| 永久网站在线| 中国美白少妇内射xxxbb| 性色av一级| 丰满迷人的少妇在线观看| 伊人亚洲综合成人网| 一级毛片aaaaaa免费看小| 国产高清国产精品国产三级| 国产男女超爽视频在线观看| 九九爱精品视频在线观看| 国产免费一区二区三区四区乱码| 亚洲美女黄色视频免费看| 欧美成人精品欧美一级黄| 亚洲精品日韩在线中文字幕| 欧美97在线视频| videossex国产| 久久这里有精品视频免费| 最近手机中文字幕大全| 国产欧美另类精品又又久久亚洲欧美| 国产伦精品一区二区三区视频9| 国产精品一区www在线观看| 99久久综合免费| 精品一区在线观看国产| 夫妻午夜视频| 日本wwww免费看| 人成视频在线观看免费观看| 国产男女超爽视频在线观看| 久久鲁丝午夜福利片| 18+在线观看网站| 极品少妇高潮喷水抽搐| av女优亚洲男人天堂| 美女内射精品一级片tv| 精品一区在线观看国产| 国产亚洲午夜精品一区二区久久| 国产熟女午夜一区二区三区 | 国产黄频视频在线观看| 99精国产麻豆久久婷婷| 人妻制服诱惑在线中文字幕| 免费少妇av软件| 久久精品国产鲁丝片午夜精品| 亚洲人与动物交配视频| 高清欧美精品videossex| 久久午夜综合久久蜜桃| 亚洲伊人久久精品综合| 精品久久久久久久久亚洲| 国产精品成人在线| 欧美精品一区二区大全| 国产男女超爽视频在线观看| 人人妻人人爽人人添夜夜欢视频| 在线观看一区二区三区激情| 久热久热在线精品观看| 秋霞在线观看毛片| 亚洲av免费高清在线观看| 美女福利国产在线| 中国国产av一级| 中文精品一卡2卡3卡4更新| 99九九线精品视频在线观看视频| 一区二区三区乱码不卡18| 少妇猛男粗大的猛烈进出视频| 亚洲精品久久午夜乱码| videossex国产| 国产精品国产三级国产专区5o| 亚洲精品国产av蜜桃| 欧美成人午夜免费资源| 欧美成人午夜免费资源| 在线观看一区二区三区激情| 夜夜爽夜夜爽视频| 免费人成在线观看视频色| www.av在线官网国产| h视频一区二区三区| 久久国产精品男人的天堂亚洲 | 午夜福利视频精品| 国产精品一区二区在线不卡| av又黄又爽大尺度在线免费看| 一区在线观看完整版| 亚洲国产精品一区二区三区在线| 婷婷色麻豆天堂久久| 成人手机av| 制服丝袜香蕉在线| 久久女婷五月综合色啪小说| 亚洲成人av在线免费| 国产免费福利视频在线观看| 免费观看在线日韩| 肉色欧美久久久久久久蜜桃| 亚洲经典国产精华液单| 成年人免费黄色播放视频| 国产探花极品一区二区| 女人久久www免费人成看片| 中文字幕人妻丝袜制服| 国产午夜精品久久久久久一区二区三区| 男人操女人黄网站| 精品国产乱码久久久久久小说| 最黄视频免费看| 搡女人真爽免费视频火全软件| 亚洲国产精品专区欧美| 我的女老师完整版在线观看| 9色porny在线观看| 久久久国产一区二区| 亚洲av.av天堂| 国产欧美日韩综合在线一区二区| 国产精品一国产av| 蜜臀久久99精品久久宅男| 我的老师免费观看完整版| 最近中文字幕2019免费版| 大陆偷拍与自拍| 国产精品久久久久久久电影| 夜夜看夜夜爽夜夜摸| 尾随美女入室| 久久久国产精品麻豆| 在线精品无人区一区二区三| 午夜影院在线不卡| 美女中出高潮动态图| 色5月婷婷丁香| kizo精华| 亚洲人成网站在线观看播放| 人人妻人人爽人人添夜夜欢视频| 日韩成人伦理影院| 人人妻人人爽人人添夜夜欢视频| 97超碰精品成人国产| tube8黄色片| 亚洲美女搞黄在线观看| 精品久久久噜噜| 秋霞伦理黄片| 久久久久久人妻| 欧美丝袜亚洲另类| 日韩 亚洲 欧美在线| 2021少妇久久久久久久久久久| 99久国产av精品国产电影| 精品卡一卡二卡四卡免费| 国产成人免费无遮挡视频| 日韩成人av中文字幕在线观看| 亚洲高清免费不卡视频| 性色avwww在线观看| 一本一本综合久久| 狂野欧美激情性xxxx在线观看| 男女高潮啪啪啪动态图| 亚洲欧洲精品一区二区精品久久久 | 免费av中文字幕在线| 在线观看免费高清a一片| 五月天丁香电影| 51国产日韩欧美| 九色亚洲精品在线播放| 美女视频免费永久观看网站| 国产日韩欧美在线精品| 国产精品国产av在线观看| 亚洲中文av在线| 满18在线观看网站| 一区二区三区精品91| 成人黄色视频免费在线看| 欧美日韩视频精品一区| 看非洲黑人一级黄片| 99热国产这里只有精品6| 久久久午夜欧美精品| 男女边摸边吃奶| 超色免费av| 亚洲美女黄色视频免费看| 欧美日韩精品成人综合77777| 美女国产视频在线观看| 国产成人精品婷婷| 亚洲av电影在线观看一区二区三区| 精品少妇内射三级| 国产 精品1| 99热这里只有是精品在线观看| 美女视频免费永久观看网站| 精品亚洲乱码少妇综合久久| 男人添女人高潮全过程视频| 不卡视频在线观看欧美| 九色成人免费人妻av| 日韩三级伦理在线观看| 亚洲情色 制服丝袜| 春色校园在线视频观看| 亚洲av综合色区一区| 另类亚洲欧美激情| 在线播放无遮挡| 人人妻人人爽人人添夜夜欢视频| 伦精品一区二区三区| 日本黄色日本黄色录像| 日本免费在线观看一区| 欧美三级亚洲精品| 日韩人妻高清精品专区| 亚洲综合色惰| 欧美性感艳星| 亚洲精品国产av成人精品| 精品人妻熟女av久视频| 国产欧美日韩一区二区三区在线 | 日韩在线高清观看一区二区三区| 看十八女毛片水多多多| 中文天堂在线官网| 草草在线视频免费看| 国产亚洲最大av| 亚洲欧美清纯卡通| 免费观看的影片在线观看| 国产精品熟女久久久久浪| 成年人午夜在线观看视频| 下体分泌物呈黄色| 一边摸一边做爽爽视频免费| 内地一区二区视频在线| 欧美一级a爱片免费观看看| 一区二区日韩欧美中文字幕 | 天美传媒精品一区二区| 亚洲成人手机| 下体分泌物呈黄色| 狠狠精品人妻久久久久久综合| 一区二区日韩欧美中文字幕 | 建设人人有责人人尽责人人享有的| 天堂俺去俺来也www色官网| 国产色爽女视频免费观看| 赤兔流量卡办理| 国产成人精品福利久久| 成年美女黄网站色视频大全免费 | 在现免费观看毛片| 在线免费观看不下载黄p国产| 欧美日韩亚洲高清精品| 国产高清三级在线| 精品久久久噜噜| 午夜免费男女啪啪视频观看| 欧美人与善性xxx| 老司机影院毛片| 亚洲精品aⅴ在线观看| 日本色播在线视频| 桃花免费在线播放| 免费av中文字幕在线| 日本爱情动作片www.在线观看| 一区二区三区乱码不卡18| 成人无遮挡网站| a级毛片黄视频| 天堂俺去俺来也www色官网| 新久久久久国产一级毛片| 国产精品国产av在线观看| 国产精品一区二区三区四区免费观看| 国产av精品麻豆| 亚洲精品日韩在线中文字幕| 国产伦精品一区二区三区视频9| 亚洲av福利一区| 久久99热这里只频精品6学生| 人妻人人澡人人爽人人| 蜜桃国产av成人99| 亚洲无线观看免费| 永久免费av网站大全| 精品久久久久久久久亚洲| 亚洲精品色激情综合| 精品少妇久久久久久888优播| 国产亚洲一区二区精品| 新久久久久国产一级毛片| 麻豆成人av视频| 亚洲av欧美aⅴ国产| 日韩av免费高清视频| 热re99久久国产66热| 日韩一区二区三区影片| 精品亚洲乱码少妇综合久久| 亚洲性久久影院| 色94色欧美一区二区| 大话2 男鬼变身卡| 日韩中字成人| 街头女战士在线观看网站| 在线观看三级黄色| 啦啦啦中文免费视频观看日本| av国产久精品久网站免费入址| 国产亚洲一区二区精品| 晚上一个人看的免费电影| 国产av一区二区精品久久| 高清视频免费观看一区二区| 国产av码专区亚洲av| 欧美日韩精品成人综合77777| 国产男女内射视频| 免费日韩欧美在线观看| 美女视频免费永久观看网站| 精品久久久噜噜| a级毛片在线看网站| 18禁裸乳无遮挡动漫免费视频| 大码成人一级视频| 成年人午夜在线观看视频| 夜夜爽夜夜爽视频| 一边摸一边做爽爽视频免费| 国产精品一二三区在线看| 99re6热这里在线精品视频| 午夜av观看不卡| 亚洲欧美成人综合另类久久久| 色哟哟·www| 国产精品久久久久成人av| 久久精品国产a三级三级三级| 另类亚洲欧美激情| 免费av不卡在线播放| 国产有黄有色有爽视频| 五月开心婷婷网| 国产精品不卡视频一区二区| 两个人免费观看高清视频| 亚洲欧美色中文字幕在线| av在线老鸭窝| 久久精品国产a三级三级三级| 晚上一个人看的免费电影| 欧美丝袜亚洲另类| 国产乱来视频区| 国产视频内射| 久久久久国产精品人妻一区二区| 国产片特级美女逼逼视频| 我要看黄色一级片免费的| 成人无遮挡网站| 国产免费一区二区三区四区乱码| 中文字幕av电影在线播放| 国产高清有码在线观看视频| 最近中文字幕高清免费大全6| 另类精品久久| 伊人久久精品亚洲午夜| av免费观看日本| 午夜福利视频精品| 国产在线一区二区三区精| 国产熟女欧美一区二区| 亚洲伊人久久精品综合| 美女内射精品一级片tv| 91精品国产九色| 不卡视频在线观看欧美| 精品国产乱码久久久久久小说| 啦啦啦视频在线资源免费观看| 免费少妇av软件| 欧美日韩成人在线一区二区| 久久国产亚洲av麻豆专区| av视频免费观看在线观看| 精品国产乱码久久久久久小说| 色婷婷久久久亚洲欧美| a级片在线免费高清观看视频| 亚洲天堂av无毛| 成人无遮挡网站| 天天影视国产精品| 亚洲欧美一区二区三区黑人 | 美女视频免费永久观看网站| 久久久国产精品麻豆| 又大又黄又爽视频免费| 中文字幕精品免费在线观看视频 | 中文字幕久久专区| 三级国产精品欧美在线观看| 精品久久国产蜜桃| 日韩一区二区三区影片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久久久精品久久久久真实原创| 丝袜美足系列| 亚洲欧美色中文字幕在线| 国产精品 国内视频| 一级二级三级毛片免费看| 飞空精品影院首页| 99国产综合亚洲精品| 亚洲内射少妇av| 国产精品久久久久久精品古装| 欧美+日韩+精品| 国产一区亚洲一区在线观看| 国产精品熟女久久久久浪| 日韩视频在线欧美| 我的老师免费观看完整版| 一级a做视频免费观看| 久久久久精品性色| 夜夜爽夜夜爽视频| 我的老师免费观看完整版| 一区二区三区精品91| 桃花免费在线播放| av在线播放精品| 国产在线一区二区三区精| 精品少妇黑人巨大在线播放| 国产精品成人在线| 夫妻午夜视频| 日韩成人av中文字幕在线观看| 亚洲精品成人av观看孕妇| 久久毛片免费看一区二区三区| 日韩一本色道免费dvd| 国国产精品蜜臀av免费| 免费黄色在线免费观看| 在线播放无遮挡| 午夜av观看不卡| 一区二区三区四区激情视频| 三上悠亚av全集在线观看| 久久久久久久久久久免费av| 一区二区av电影网| 18禁在线无遮挡免费观看视频| 狠狠精品人妻久久久久久综合| 色94色欧美一区二区| 最近最新中文字幕免费大全7| 国内精品宾馆在线| 男女无遮挡免费网站观看| 天堂中文最新版在线下载| 国产成人精品婷婷| 最近2019中文字幕mv第一页| 国产av一区二区精品久久| 免费高清在线观看视频在线观看| 成人漫画全彩无遮挡| 欧美成人精品欧美一级黄| 看十八女毛片水多多多| 亚洲av成人精品一二三区| 夜夜骑夜夜射夜夜干| tube8黄色片| 亚洲国产精品一区二区三区在线| 亚洲欧洲日产国产| a级毛色黄片| 欧美成人午夜免费资源| 日韩欧美一区视频在线观看| 亚洲av中文av极速乱| 色视频在线一区二区三区| 国产乱人偷精品视频| 我的老师免费观看完整版| 在线观看国产h片| 国产精品久久久久久久久免| 人人妻人人澡人人爽人人夜夜| 日韩三级伦理在线观看| 黄色视频在线播放观看不卡| 日韩欧美一区视频在线观看| 蜜臀久久99精品久久宅男| 久久97久久精品| tube8黄色片| 91午夜精品亚洲一区二区三区| 国产综合精华液| 国产爽快片一区二区三区| 免费观看av网站的网址| 精品久久国产蜜桃| 妹子高潮喷水视频| 国产高清不卡午夜福利| 国产国拍精品亚洲av在线观看| 97精品久久久久久久久久精品| 国产精品久久久久久av不卡| 飞空精品影院首页| 亚洲成色77777| 亚洲精品乱久久久久久| 97精品久久久久久久久久精品| 人妻制服诱惑在线中文字幕| 精品久久久久久电影网| 欧美精品亚洲一区二区| 大香蕉久久网| 国产男人的电影天堂91| 国产无遮挡羞羞视频在线观看| 性高湖久久久久久久久免费观看| 在线观看三级黄色| 国产无遮挡羞羞视频在线观看| 人体艺术视频欧美日本| 伦理电影免费视频| 天堂俺去俺来也www色官网| 大陆偷拍与自拍| 精品一区在线观看国产| 久久久久久人妻| 纵有疾风起免费观看全集完整版| 欧美日韩视频高清一区二区三区二| 老熟女久久久| 日韩av在线免费看完整版不卡| 黄色毛片三级朝国网站| 成人综合一区亚洲| av免费观看日本| 免费日韩欧美在线观看| 午夜福利,免费看| 桃花免费在线播放| 免费黄色在线免费观看| 国产成人精品在线电影| 亚洲欧洲日产国产| 中文字幕免费在线视频6| 高清黄色对白视频在线免费看| 国产精品女同一区二区软件| 国产乱人偷精品视频| 亚洲av国产av综合av卡| 丝袜美足系列| 久久婷婷青草| 免费观看a级毛片全部| 一本一本综合久久| 亚洲在久久综合| 黑人高潮一二区| 欧美3d第一页| 亚洲欧美精品自产自拍| 久久综合国产亚洲精品| 国产日韩欧美亚洲二区| 免费高清在线观看视频在线观看| 好男人视频免费观看在线| 久久久欧美国产精品| 国产毛片在线视频| 黑人高潮一二区| 国产精品久久久久久久久免| 日本黄大片高清| 午夜免费鲁丝| 国产伦理片在线播放av一区| 夫妻午夜视频| 午夜福利视频在线观看免费| 日产精品乱码卡一卡2卡三| 一区二区三区乱码不卡18| 中国美白少妇内射xxxbb| 我的女老师完整版在线观看| 韩国高清视频一区二区三区| 男女免费视频国产| 国产免费视频播放在线视频| 日韩欧美一区视频在线观看| 久久精品久久久久久噜噜老黄| 狂野欧美激情性bbbbbb| 亚洲成人av在线免费| 亚洲精品av麻豆狂野| 亚洲三级黄色毛片| 少妇丰满av| 亚洲精品第二区| 国产熟女欧美一区二区| 最近中文字幕高清免费大全6| 亚洲精华国产精华液的使用体验| 多毛熟女@视频| 免费人成在线观看视频色| 色吧在线观看| 亚洲av在线观看美女高潮| 亚洲天堂av无毛| 欧美 亚洲 国产 日韩一| 国产精品一区二区三区四区免费观看| 制服人妻中文乱码| 一级毛片aaaaaa免费看小| 少妇的逼好多水| 精品一区二区三卡| 国产国拍精品亚洲av在线观看| 久久国产精品男人的天堂亚洲 | 成人手机av| 国产黄色视频一区二区在线观看| 男女免费视频国产| 美女cb高潮喷水在线观看| 女性生殖器流出的白浆| 亚洲色图综合在线观看| 欧美激情国产日韩精品一区| a级毛片免费高清观看在线播放| 80岁老熟妇乱子伦牲交| √禁漫天堂资源中文www| 伊人久久精品亚洲午夜| 免费不卡的大黄色大毛片视频在线观看| 国产69精品久久久久777片| av在线观看视频网站免费| 亚洲人与动物交配视频| 日韩一本色道免费dvd| 国产精品一区www在线观看| 熟女电影av网| 午夜91福利影院| 亚洲经典国产精华液单| 久久韩国三级中文字幕| 少妇高潮的动态图| 一二三四中文在线观看免费高清| 人妻制服诱惑在线中文字幕| 黄色怎么调成土黄色| 尾随美女入室| 亚洲av男天堂| 国产色爽女视频免费观看| 七月丁香在线播放| 国产亚洲精品第一综合不卡 | 欧美bdsm另类| 国产精品蜜桃在线观看| 欧美日韩视频精品一区| 国产无遮挡羞羞视频在线观看| 精品人妻偷拍中文字幕| 国产黄色视频一区二区在线观看| 成人毛片60女人毛片免费| 国内精品宾馆在线| 亚洲国产精品一区二区三区在线| 日韩亚洲欧美综合| 亚洲欧美精品自产自拍| 最近手机中文字幕大全| 欧美日韩综合久久久久久| 性色avwww在线观看| 肉色欧美久久久久久久蜜桃| 美女xxoo啪啪120秒动态图| 91成人精品电影| 大码成人一级视频| 亚洲国产毛片av蜜桃av| 国产成人免费观看mmmm| tube8黄色片| 亚洲综合色网址| 一级爰片在线观看| 大码成人一级视频| 午夜免费观看性视频| 国产视频首页在线观看| 国产精品人妻久久久久久| 狂野欧美激情性xxxx在线观看| 国产又色又爽无遮挡免| 制服人妻中文乱码| 久久亚洲国产成人精品v| 亚洲av电影在线观看一区二区三区| 国产毛片在线视频| 综合色丁香网| 免费看光身美女| 精品少妇久久久久久888优播| 看免费成人av毛片| 中文字幕av电影在线播放| www.av在线官网国产| 热re99久久国产66热| 欧美最新免费一区二区三区| 精品国产国语对白av| 国产精品久久久久久久电影| 大香蕉97超碰在线| 91久久精品电影网| 国产黄色视频一区二区在线观看| 男女边摸边吃奶| 热re99久久精品国产66热6| 国产午夜精品久久久久久一区二区三区| 啦啦啦啦在线视频资源| 国产精品一国产av| 欧美成人精品欧美一级黄| av福利片在线| 亚洲av在线观看美女高潮|