• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Scalable Adaptive Approach to Multi-Vehicle Formation Control with Obstacle Avoidance

    2022-06-25 01:17:44XiaohuaGeQingLongHanJunWangandXianMingZhang
    IEEE/CAA Journal of Automatica Sinica 2022年6期

    Xiaohua Ge,, Qing-Long Han,, Jun Wang,, and Xian-Ming Zhang,

    Abstract—This paper deals with the problem of distributed formation tracking control and obstacle avoidance of multivehicle systems (MVSs) in complex obstacle-laden environments.The MVS under consideration consists of a leader vehicle with an unknown control input and a group of follower vehicles,connected via a directed interaction topology, subject to simultaneous unknown heterogeneous nonlinearities and external disturbances. The central aim is to achieve effective and collisionfree formation tracking control for the nonlinear and uncertain MVS with obstacles encountered in formation maneuvering,while not demanding global information of the interaction topology. Toward this goal, a radial basis function neural network is used to model the unknown nonlinearity of vehicle dynamics in each vehicle and repulsive potentials are employed for obstacle avoidance. Furthermore, a scalable distributed adaptive formation tracking control protocol with a built-in obstacle avoidance mechanism is developed. It is proved that, with the proposed protocol, the resulting formation tracking errors are uniformly ultimately bounded and obstacle collision avoidance is guaranteed. Comprehensive simulation results are elaborated to substantiate the effectiveness and the promising collision avoidance performance of the proposed scalable adaptive formation control approach.

    I. INTRODUCTION

    MULTI-vehicle systems (MVSs) have found their widespread applications in both military and civilian areas, such as formation flying, target tracking, surface combat operations, border patrol and surveillance, intelligent transportation, coastal environmental monitoring and mapping. A key feature of such MVSs lies in that multiple autonomous vehicles, which can be extensively deployed on the ground, in the air, at sea, and underwater, cooperate with each other through some networked medium so as to fulfill a variety of coordinated control tasks. Among various research hotspots on MVSs, formation control that aims to steer a fleet of autonomous vehicles, via collaborative and distributed information processing, into forming a specific geometric pattern in terms of their states (e.g., position, heading) has attracted intensive attention; see, e.g., the recent surveys[1]-[4], and the references therein.

    Depending on whether there is any leader, the existing results on formation control of MVSs and general multi-agent systems (MASs) can be roughly classified into three types:formation producing[5]-[10], where there is no leader involved;formation tracking[11]-[19], where is only one leader, either virtual or real, guiding a team of formable follower vehicles; andformation-containment[20]-[23],where a team of follower vehicles is to navigate into a convex hull formed by another team of formable leader vehicles.Several approaches are reported to analyze the MVS formation behaviors and design various formation control strategies [1]-[4].

    The completion and performance of coordinated control tasks for MVSs are significantly affected by nonlinearities,and their effects become particularly adverse for small vehicles due to their low inertia and small size. For example,the navigation and control of unmanned aerial vehicles can be substantially affected by uncontrolled nonlinearities including wind gusts and gravity gradients. In addition, autonomous surface and underwater vehicles usually suffer from environmental influences induced by turbulent ocean waves and currents. In this sense, some existing formation control strategies dedicated to known or linear dynamical vehicle/agent models (e.g., [5]-[8], [10], [11], [13], [16]) may no longer be applicable. Therefore, the first challenge for nonlinear MVS formation control is to deal with the unknown nonlinearities in vehicle dynamics. On the other hand,practical formation maneuvers of a team of mobile vehicles are often implemented in some unknown and obstacle-laden environments without anya priorimap knowledge. In such a scenario, there is a strong need for a safety guarantee of collision avoidance for the vehicles in some cluttered environments while maintaining task completion of the formable vehicle team. More specifically, an effective obstacle avoidance strategy is essential to be embedded in the desired formation control protocols and algorithms. However,how to realize the intrinsic collision-free formation control of MVSs in an obstacle-laden setting remains a challenge due to its complexity in analysis and design procedures [14].

    Neural networks (NNs) have been well exploited for modeling complex dynamic systems due to their great potential for identifying the unknown nonlinearities and/or uncertainties in system dynamics. For example, robust distributed adaptive NN controllers are designed for cooperative tracking control of higher-order nonlinear MASs with a nonautonomous dynamic leader [24]. Distributed NN synchronization controllers are proposed for solving the leader-follower synchronization problem of uncertain nonlinear dynamical MASs [25]. Event-based distributed cooperative NN learning control strategies are presented for different nonlinear MASs [26], [27]. Based on adaptive NN and prescribed performance control, the problem of distributed cooperative compound tracking of a platoon of vehicles of nonlinear third-order dynamics is resolved in finite time [28]. For a class of nonlinear MASs in a nonstrict feedback form, a finite-time adaptive NN fault-tolerant control method is developed to tackle actuator faults, unknown symmetric output dead zones and control coefficients [29]. An adaptive NN leader-following tracking method is proposed for a class of fractional-order MASs with unknown matched uncertainties [30].

    In order to ensure the safe mission completion of MASs,several obstacle and collision avoidance methods are available in the literature. For example, building on the concept of barrier certificates, a control barrier function-based method[31], [32] is adopted to preserve collision-free formation behaviors in MASs. Nevertheless, each agent typically relies on a formally designed nominal controller together with a tailored collision avoidance controller to make agents swap behaviors between formation maneuvers and collision avoidance navigation. Viewing the collision avoidance conditions as some design constraints, a model predictive control method [33], [34] is also employed to accomplish collision-free formation control. However, such a method may lead to some high-dimensional nonconvex and nonlinear optimization problems that are difficult to solve. On the other hand, an artificial potential field (APF) method [35] is intensively explored in the multi-vehicle (robotics) control literature. The rationale behind such a method is that an obstacle is treated as a high-potential point and a suitable repulsive potential is constructed for keeping each vehicle away from the obstacle. During a maneuver, each vehicle follows the gradient of the potential and is repelled by obstacles once it moves into a predefined range around obstacles. For example, the APF method andH∞analysis are combined to cope with the formation tracking and obstacle avoidance of a class of stochastic second-order MASs [14].Based on virtual and behavioral structures, the formation control of a team of mobile robots is studied [36], where rotational potential field is applied for obstacle avoidance of robot swarming and regular polygon formations. For linear and deterministic second-order MASs, a potential functionbased formation tracking algorithm is proposed [37] to deal with communication constraints among agents, and a timevarying formation tracking control protocol based on an improved distance- and velocity-dependent potential function[38] is developed to ensure collision avoidance among agents.Interested readers are referred to the survey [39] for more results on collision avoidance. To the best of the authors’knowledge, for MVSs with unknown nonlinearities and uncertainties, how to develop an effective formation control approach to both desired formation tracking and assured obstacle avoidance in obstacle-laden environments has not been adequately addressed hitherto, which motivates this study.

    In this paper, we address the adaptive and collision-free formation tracking issue of MVSs maneuvered in an unknown and cluttered setting. In contrast to some existing formation control frameworks which assume that vehicle (or agent)dynamics are either free of any nonlinearity or perturbation, or are subject to nonlinearity and disturbance with explicitly known bounds, a general framework of time-varying formation tracking control is established to account for simultaneous unknown heterogeneous nonlinearities and external disturbances in every follower vehicle dynamics and also unknown nonzero control input in the leader. The novelty of this paper lies in the development of a scalable adaptive formation control approach to MVSs over a directed interaction topology, which achieves simultaneous formation tracking and obstacle avoidance guarantees under unknown nonlinearities and disturbances as well as obstacles, while not relying on global information of the interaction topology of the MVS.

    The main contributions of this paper are twofold. 1)A scalable adaptive formation tracking control protocolis developed such that each individual vehicle only needs the information of its underlying neighbors and itself to compute its protocol parameters. Note that the challenge of the protocol design is to guarantee that both the formation tracking control protocol and the NN parameter tuning laws adopt merely local information available at each vehicle, and do not depend on the global topology information. It makes a distinctive difference between this work and some existing formation control laws, where their formation control protocols necessitate certain global knowledge of either nonzero eigenvalue in the Laplacian or eigenvectors related to the Laplacian, and thus may not be practically implementable by every vehicle (or agent); and 2)An efficient collision avoidance mechanismis delicately embedded into the desired distributed formation control protocol in such a way as to achieve guaranteed formation maneuver safety in obstacleladen environments. Furthermore, a design algorithm is provided to detail the main steps for the design of the desired scalable adaptive formation tracking control laws, through which the protocol gain and adaptive parameters as well as the repulsive force for collision avoidance can be determined. It is proved that all controlled variables are uniformly ultimately bounded and obstacle avoidance is guaranteed for every vehicle in formation maneuvering.

    The remainder of the paper is organized as follows.Preliminaries are provided in Section II. The formulation of the main problem is given in Section III. The main results with a detailed design algorithm and rigorous stability analysis on the resulting closed-loop MVS are stated in Section IV.Simulation results are discussed in Section V. Concluding remarks are made in Section VI.

    II. PRELIMINARIES

    A. Notations

    B. Graph Theory Fundamentals

    III. PROBLEM FORMULATION

    A. Vehicle Dynamics

    B. Vehicle Formation Geometry

    Fig. 1. Three illustrative examples of four vehicles moving in the X Y plane in various formations: (a) a parallelogram formation; (b) a straight line formation; and (c) a point formation (consensus).

    C. Obstacle Avoidance Function

    encounter bulky obstacles during formation maneuvering,making the entire vehicle team quite difficult, if not impossible, to pass by. To model a bulky obstacle properly, it is natural to assume that a bulky obstacle can be suitably approximated with some convex polyhedra. As a result, one can further take some critical sample points on the boundary of the polyhedra to approximate the bulky obstacle. In practice, this can be accomplished by using suitable cameras,sonars, or laser range finders on vehicles, to provide effective identification of the boundary surface of the polyhedra together with some signal and image processing techniques.Then, the obstacle avoidance functions can be derived from the surface integrals on boundary of the obstacle. Generally,more samples on the boundary of the polyhedra surely make the modeling of the bulky obstacle more explicit and accurate.Thus, the desired obstacle avoidance performance becomes apparent.

    D. The Problem to Be Addressed

    obstacles during formation maneuvers.

    IV. MAIN RESULTS

    In this section, we first specify the desired scalable adaptive formation tracking control protocol. We then present an algorithm for determining the gain parameters and NN parameter tuning rules for the desired control protocol.Finally, we derive the resulting closed-loop formation tracking error dynamics and perform a rigorous stability analysis by proving that all the closed-loop signals remain uniformly ultimately bounded and the desired formation tracking objective can be achieved with assured obstacle avoidance.

    A. Scalable Adaptive Formation Tracking Control Protocol

    B. Design Algorithm

    C. Stability Analysis

    Remark 9:The importance of the proposed scalable adaptive formation tracking control design approach is fourfold.(i)The developed Algorithm 1 for realizing distributed adaptive formation tracking control can adequately accommodate the unknown nonlinearity and external disturbance in follower dynamics as well as the unknown nonzero control input in the leader dynamics in a unified framework. This is contrast to some existing formation control approaches [5]-[8], [10], [11], [13], [16], [17] which assume that the vehicle (or agent) dynamics are free of any nonlinearity or external perturbation.(ii)Although the bounding conditions are exposed in Assumptions 2-4, it is clearly shown in Algorithm 1 that the bounds of the unknown disturbancewi, the unknown nonzero leader control inputu0,the signals and matrices φi,εi,Wiin NNs, and the obstacle avoidance functions ψisare not required to be knowna priorifor the design of desired distributed adaptive formation tracking protocols. It represents a clear difference from some existing results such as [12], [14] where the design criteria or algorithms necessitate the information of relevant bounds.(iii)Further to the discussion in Remark 4, the proposed design algorithm can be tailored to deal with several important cooperative control issues in MVSs/MASs, such as bounded(practical) leaderless consensus, leader-following consensus,and target enclosing and pursuing.(iv)In contrast to some existing formation (tracking) control approaches which require some global knowledge of either the nonzero eigenvalues in the Laplacian [10], [11], [16] or the eigenvectors related to the Laplacian (or matrix H ) [14], [37],the proposed adaptive formation tracking protocol (11) for each vehiclei, however, relies on only the information of itself and its underlying neighbors, and thus enjoys a scalability property. Moreover, the distributed formation tracking problem herein is pursued under a directed interaction topology, which is more difficult than that under a undirected topology [5], [7], [11], [38].

    V. ILLUSTRATIVE EXAMPLES

    In this section, two illustrative examples are provided to demonstrate the effectiveness and merits of the proposed scalable adaptive formation control approach with guaranteed collision avoidance.

    A. Multi-Vehicle Formation Tracking in An Obstacle-Laden 2D Plane

    Fig. 2. Communication topology of six followers and the virtual leader 0.

    Fig. 3. Formation tracking behaviors of the controlled vehicle fleet in an obstacle-laden environment: (a) The six follower vehicles eventually follow the virtual leader’s motion trajectory with the desired hexagon pattern subject to small formation tracking errors, while successfully avoiding collision with the obstacles during the formation maneuver; (b) The velocities viX(t) of the six follower vehicles in the X plane achieve bounded consensus on that of the virtual leader; (c) The velocities viY(t) of the six follower vehicles in theY plane achieve bounded consensus on that of the virtual leader; (d) Bounded control input uiX(t) in the X plane; (e) Bounded control input uiY(t) in theY plane; and (f) Adaptive coupling gains αi(t) is convergent to some steady values in finite time, i ∈V.

    We then evaluate the MVS formation tracking and obstacle avoidance performance by resorting to the proposed Algorithm 1. Fig. 3 (a)-(c) illustrates that all six follower vehicles smoothly bypass all obstacles without colliding with any of them, while still being capable of successfully tracking the virtual leader with the desired hexagon formation.Moreover, Fig. 3 (d)-(f) depicts that the bounded closed-loop signals, including the control inputsuiXanduiYas well as the convergent adaptive coupling gains αi. Fig. 4 illustrates six snapshots of the resultant vehicle formation at different times.Fig. 5 depicts the nonlinearityfiand its approximationf?ifor every vehicle, wherein the nonlinear functionsfiin six follower vehicles are well estimated by the RBF NN.

    Fig. 4. Snapshots of the vehicle formation at different times of t=0 s,t=20 s, t =48 s, t =56 s, t =64 s, and t =80 s.

    Fig. 5. NN approximation f?i(·)=[ f?i1 (·), f?i2(·)]T of the nonlinear fi(·)=[fi1 (·),fi2 (·)]T for each follower vehicle, i ∈V.

    In summary, the above simulation results adequately demonstrate that the proposed scalable adaptive formation tracking control approach can not only steer a fleet of follower vehicles to follow the desired virtual leader but also guarantee the obstacle avoidance during formation maneuvers in complex obstacle-laden environments.

    B. Collision-Free Vehicle Platooning in A Longitudinal Plane

    Fig. 6. Platooning and collision avoidance performance under the desired constant spacing ( si-1,i=6 m) in the presence of external disturbance input wi(t) and leader control input u0(t): (a) Inter-vehicle distancessi(t)=pi-1(t)-pi(t) between each platoon member i and its direct predecessor i-1, i ∈V,without the collision avoidance function ψ i,i-1(di,i-1(t)); (b) Vehicle velocities vi(t), i ∈V~ , without the collision avoidance function ψ i,i-1(di,i-1(t)); (c) Intervehicle distance si(t)=pi-1(t)-pi(t), i ∈V, in the presence of ψi,i-1(di,i-1(t)); (b) Vehicle velocities vi(t), i ∈V~, in the presence of ψi,i-1(di,i-1(t)); (e) Repulsive force uoi a(t), i ∈V, for collision avoidance; and(f) Adaptive coupling gains α i(t), i ∈V in the presence of ψ i,i-1(di,i-1(t)).

    Fig. 7. Snapshots of the simulated platoon driving maneuver under the desired constant spacing (6 m) without the collision avoidance function ψ i,i-1(di,i-1(t)),where potential collisions occur among followers 4 ,5, and 6 given that s 6(t)=0.4 m and s5(t)=1.0 m at time t =16 s.

    Fig. 8. Snapshots of the simulated platoon driving maneuver under the desired constant spacing (6 m) with the collision avoidance function ψi,i-1(di,i-1(t)),where the spacings among followers 4 ,5, and 6 at time t =16 s are enlarged to s 6=2.7 m and s5=2.6 m.

    VI. CONCLUSIONS

    The distributed adaptive formation tracking control is tackled for MVSs operating in unknown and cluttered environments. RBF NNs are used to model the unknown nonlinear dynamics of vehicles. Furthermore, repulsive potentials are introduced for vehicles to achieve collision avoidance with obstacles in the workspace. To accomplish the formation tracking task with promised obstacle avoidance, a scalable distributed adaptive formation tracking control protocol is developed without the need for any global information on the directed topology. It is theoretically proved that all signals of the resulting closed-loop dynamics are uniformly ultimately bounded. The efficacy of the proposed MVS formation control protocol and design algorithm is substantiated with the simulation results on some challenging formation maneuvers.

    Notice that the proposed distributed adaptive formation tracking control approach necessitates continual data communication among interacting vehicles. This may be inapplicable in a resource-constrained communication setting.Event-triggered control has yet received intensive research interests in recent years due to its prominent advantages in maintaining desired system performance and satisfactory communication efficiency; see, e.g., the recent surveys[45]-[47]. To the best of the authors’ knowledge, it remains challenging to develop a novel event-triggered scalable adaptive formation control approach which promises both satisfactory communication efficiency and collision-free formation control performance for MVSs. This constitutes one of our future works. It would be also interesting to provide secure scalable distributed adaptive control solutions that ensure successful completion of safety-critical formation maneuvering tasks in the presence of adversarial cyber attacks.

    亚洲精品国产av蜜桃| 搡老熟女国产l中国老女人| 久久久久视频综合| 色精品久久人妻99蜜桃| 捣出白浆h1v1| 免费少妇av软件| 另类精品久久| 黑人操中国人逼视频| 正在播放国产对白刺激| 视频区图区小说| 日韩大码丰满熟妇| 人人妻人人澡人人爽人人夜夜| 日韩欧美一区视频在线观看| 国产深夜福利视频在线观看| 亚洲av成人一区二区三| 久久影院123| 亚洲精品国产色婷婷电影| 亚洲精品久久久久久婷婷小说| 99精国产麻豆久久婷婷| 亚洲视频免费观看视频| 精品亚洲乱码少妇综合久久| 激情视频va一区二区三区| 精品福利观看| 夜夜骑夜夜射夜夜干| 亚洲色图综合在线观看| 欧美另类亚洲清纯唯美| 亚洲国产av新网站| 免费人妻精品一区二区三区视频| 亚洲精品中文字幕一二三四区 | 国产日韩欧美视频二区| 欧美日韩国产mv在线观看视频| 免费av中文字幕在线| 亚洲av男天堂| bbb黄色大片| 久久久国产成人免费| 久久精品成人免费网站| 免费观看人在逋| 国产精品二区激情视频| 久久狼人影院| 午夜精品国产一区二区电影| 亚洲五月色婷婷综合| 一区二区三区乱码不卡18| 色播在线永久视频| 亚洲avbb在线观看| 在线观看免费日韩欧美大片| cao死你这个sao货| 久久国产精品大桥未久av| 欧美老熟妇乱子伦牲交| 亚洲av国产av综合av卡| 久久久久久久久久久久大奶| 久久人妻福利社区极品人妻图片| 精品人妻熟女毛片av久久网站| 另类亚洲欧美激情| 亚洲第一av免费看| www.自偷自拍.com| 国产成人欧美| 国产精品国产三级国产专区5o| 97人妻天天添夜夜摸| 一本综合久久免费| 中文字幕高清在线视频| 色视频在线一区二区三区| 中文字幕最新亚洲高清| 熟女少妇亚洲综合色aaa.| 久久久久久亚洲精品国产蜜桃av| 国产极品粉嫩免费观看在线| 久久香蕉激情| 欧美成狂野欧美在线观看| 亚洲av国产av综合av卡| 国产精品久久久久久人妻精品电影 | 最近最新免费中文字幕在线| 成年美女黄网站色视频大全免费| 久久久久精品人妻al黑| 国产又色又爽无遮挡免| 国产淫语在线视频| 亚洲第一av免费看| 在线观看一区二区三区激情| 国产深夜福利视频在线观看| 久久久久久久国产电影| 亚洲精品中文字幕在线视频| 一边摸一边做爽爽视频免费| 亚洲五月色婷婷综合| 狂野欧美激情性bbbbbb| 岛国在线观看网站| 中文字幕精品免费在线观看视频| 亚洲精品国产av成人精品| 欧美日韩国产mv在线观看视频| 午夜福利视频精品| 日日爽夜夜爽网站| 日本av手机在线免费观看| 国产精品一区二区免费欧美 | 99国产极品粉嫩在线观看| 每晚都被弄得嗷嗷叫到高潮| 啦啦啦啦在线视频资源| 国产精品一二三区在线看| 麻豆乱淫一区二区| 亚洲五月色婷婷综合| 欧美成人午夜精品| 欧美成人午夜精品| 精品少妇一区二区三区视频日本电影| 欧美日韩黄片免| 天天躁夜夜躁狠狠躁躁| 97精品久久久久久久久久精品| 亚洲国产精品成人久久小说| 老司机影院成人| 男人爽女人下面视频在线观看| 欧美日韩精品网址| 亚洲av成人一区二区三| 国产成人精品久久二区二区免费| 美女福利国产在线| 丁香六月欧美| 精品卡一卡二卡四卡免费| 搡老熟女国产l中国老女人| 女人爽到高潮嗷嗷叫在线视频| 高清欧美精品videossex| 欧美人与性动交α欧美软件| 91九色精品人成在线观看| 免费在线观看视频国产中文字幕亚洲 | 国产成人精品久久二区二区免费| 天天躁日日躁夜夜躁夜夜| 精品卡一卡二卡四卡免费| 一本久久精品| 亚洲va日本ⅴa欧美va伊人久久 | 亚洲伊人色综图| 十八禁高潮呻吟视频| 国产亚洲精品第一综合不卡| 在线观看一区二区三区激情| 国产淫语在线视频| 国产又色又爽无遮挡免| 99精品欧美一区二区三区四区| 国产一区二区三区综合在线观看| 老汉色av国产亚洲站长工具| 亚洲av日韩精品久久久久久密| 男女边摸边吃奶| 大码成人一级视频| 亚洲av片天天在线观看| 999精品在线视频| 午夜免费观看性视频| 免费观看人在逋| 国产国语露脸激情在线看| 国产精品一区二区免费欧美 | 交换朋友夫妻互换小说| e午夜精品久久久久久久| 国产男人的电影天堂91| 午夜免费鲁丝| 精品一区二区三区av网在线观看 | 国产成人精品无人区| 又大又爽又粗| 久久精品亚洲av国产电影网| 亚洲一码二码三码区别大吗| 久久99一区二区三区| 日本av免费视频播放| 18禁黄网站禁片午夜丰满| 老司机午夜福利在线观看视频 | 少妇裸体淫交视频免费看高清 | 夜夜夜夜夜久久久久| 人妻久久中文字幕网| av一本久久久久| 日本av手机在线免费观看| 欧美日韩国产mv在线观看视频| 五月天丁香电影| 亚洲精品一卡2卡三卡4卡5卡 | 精品人妻在线不人妻| 高清视频免费观看一区二区| 女人久久www免费人成看片| 男女免费视频国产| 男女边摸边吃奶| 久久久国产成人免费| 国产国语露脸激情在线看| 日韩大片免费观看网站| 国产男女内射视频| 成人影院久久| 中文字幕精品免费在线观看视频| 制服人妻中文乱码| 少妇猛男粗大的猛烈进出视频| 国产精品久久久久成人av| 国产精品免费视频内射| 在线观看www视频免费| 欧美日韩亚洲高清精品| 天天躁狠狠躁夜夜躁狠狠躁| 久久毛片免费看一区二区三区| 国产在线免费精品| 久久人妻熟女aⅴ| 这个男人来自地球电影免费观看| 免费在线观看黄色视频的| 日韩中文字幕视频在线看片| 国产日韩一区二区三区精品不卡| 亚洲av成人一区二区三| 九色亚洲精品在线播放| 午夜精品国产一区二区电影| 欧美97在线视频| 欧美日本中文国产一区发布| 日韩欧美免费精品| 老鸭窝网址在线观看| 操出白浆在线播放| 中文字幕色久视频| 久久久精品94久久精品| 国产成人免费无遮挡视频| 色老头精品视频在线观看| 亚洲国产欧美日韩在线播放| 午夜福利视频在线观看免费| 人妻 亚洲 视频| 国产精品自产拍在线观看55亚洲 | 黑人欧美特级aaaaaa片| 美女福利国产在线| 成年人午夜在线观看视频| 亚洲全国av大片| 考比视频在线观看| 老司机影院毛片| 大陆偷拍与自拍| 国产黄频视频在线观看| 国产成人欧美在线观看 | 欧美精品高潮呻吟av久久| 精品少妇黑人巨大在线播放| 黄频高清免费视频| 后天国语完整版免费观看| 老司机午夜福利在线观看视频 | 91国产中文字幕| 亚洲国产欧美在线一区| 日日爽夜夜爽网站| 狂野欧美激情性bbbbbb| av天堂在线播放| 欧美黄色片欧美黄色片| 亚洲欧美精品自产自拍| 国产欧美日韩一区二区精品| 亚洲精品国产一区二区精华液| 亚洲 欧美一区二区三区| 热99国产精品久久久久久7| 亚洲精品在线美女| 欧美av亚洲av综合av国产av| 国产在线免费精品| 久久久久国内视频| 精品久久久久久电影网| 9色porny在线观看| www日本在线高清视频| 午夜精品国产一区二区电影| 亚洲久久久国产精品| 啪啪无遮挡十八禁网站| 精品国产一区二区久久| 中文字幕最新亚洲高清| 免费在线观看视频国产中文字幕亚洲 | 亚洲国产毛片av蜜桃av| 欧美午夜高清在线| 黄色视频不卡| 欧美在线一区亚洲| 两人在一起打扑克的视频| 黄色怎么调成土黄色| 久热爱精品视频在线9| tube8黄色片| 女性生殖器流出的白浆| 免费人妻精品一区二区三区视频| 成年女人毛片免费观看观看9 | 国产一级毛片在线| 搡老岳熟女国产| 成在线人永久免费视频| 在线观看免费午夜福利视频| 欧美久久黑人一区二区| 国产精品免费视频内射| 日本欧美视频一区| 国产亚洲欧美在线一区二区| 亚洲五月婷婷丁香| 亚洲精品国产一区二区精华液| 天天躁日日躁夜夜躁夜夜| 免费在线观看影片大全网站| 国产精品国产av在线观看| 狠狠狠狠99中文字幕| 色婷婷av一区二区三区视频| 啦啦啦在线免费观看视频4| 一边摸一边做爽爽视频免费| 成年动漫av网址| 最近中文字幕2019免费版| 国产欧美日韩综合在线一区二区| 久久国产精品人妻蜜桃| 又紧又爽又黄一区二区| 国产淫语在线视频| 国产精品av久久久久免费| 国产国语露脸激情在线看| 淫妇啪啪啪对白视频 | 搡老岳熟女国产| 久久中文字幕一级| 亚洲一卡2卡3卡4卡5卡精品中文| svipshipincom国产片| 91精品国产国语对白视频| 日韩中文字幕欧美一区二区| 久久久欧美国产精品| 亚洲av日韩在线播放| 久久久久视频综合| 人妻人人澡人人爽人人| 欧美+亚洲+日韩+国产| 热99久久久久精品小说推荐| 高清黄色对白视频在线免费看| 在线av久久热| 午夜91福利影院| av天堂在线播放| 久久久国产精品麻豆| 久久精品久久久久久噜噜老黄| 亚洲欧美日韩高清在线视频 | 97精品久久久久久久久久精品| 日韩视频在线欧美| 欧美激情高清一区二区三区| 亚洲av男天堂| 91精品国产国语对白视频| 狠狠精品人妻久久久久久综合| www.999成人在线观看| 国产色视频综合| 国产精品一区二区免费欧美 | 精品免费久久久久久久清纯 | av在线app专区| 国产成人精品在线电影| 精品久久久久久电影网| 一区二区三区乱码不卡18| 老司机靠b影院| 80岁老熟妇乱子伦牲交| 亚洲一码二码三码区别大吗| 2018国产大陆天天弄谢| 老熟妇乱子伦视频在线观看 | 色94色欧美一区二区| 美女主播在线视频| 午夜福利视频精品| 久久精品国产a三级三级三级| 亚洲中文av在线| 精品国产一区二区久久| 一本久久精品| 99久久人妻综合| 亚洲国产日韩一区二区| 操出白浆在线播放| 99久久99久久久精品蜜桃| 999久久久国产精品视频| 亚洲精品粉嫩美女一区| 国产麻豆69| 大片免费播放器 马上看| 极品少妇高潮喷水抽搐| 日本a在线网址| 精品欧美一区二区三区在线| 国产精品熟女久久久久浪| 国产xxxxx性猛交| 天天操日日干夜夜撸| www.精华液| 亚洲欧美激情在线| 国产欧美日韩一区二区三 | 精品欧美一区二区三区在线| 欧美性长视频在线观看| 午夜影院在线不卡| 交换朋友夫妻互换小说| 法律面前人人平等表现在哪些方面 | 久久久久久人人人人人| 欧美激情极品国产一区二区三区| 别揉我奶头~嗯~啊~动态视频 | 两个人免费观看高清视频| 一级,二级,三级黄色视频| 国产片内射在线| 丝袜在线中文字幕| 日韩熟女老妇一区二区性免费视频| 日本撒尿小便嘘嘘汇集6| 无限看片的www在线观看| 日韩视频在线欧美| 电影成人av| 国产精品一区二区在线不卡| 亚洲欧美激情在线| 国产亚洲欧美在线一区二区| 欧美日韩视频精品一区| 窝窝影院91人妻| 精品亚洲成国产av| 电影成人av| 人人妻人人添人人爽欧美一区卜| 国产精品影院久久| 香蕉丝袜av| 精品欧美一区二区三区在线| 精品福利观看| 黄片小视频在线播放| 欧美人与性动交α欧美精品济南到| 精品少妇久久久久久888优播| 日韩制服丝袜自拍偷拍| 精品国产乱码久久久久久男人| av网站在线播放免费| 亚洲熟女毛片儿| 黄片小视频在线播放| 男女下面插进去视频免费观看| 欧美少妇被猛烈插入视频| 久久人人爽人人片av| 少妇被粗大的猛进出69影院| 18在线观看网站| 精品少妇久久久久久888优播| av线在线观看网站| 男女之事视频高清在线观看| 亚洲欧洲精品一区二区精品久久久| 国产亚洲一区二区精品| videosex国产| 老司机午夜福利在线观看视频 | 十分钟在线观看高清视频www| 手机成人av网站| 黄片小视频在线播放| 最黄视频免费看| 国产成+人综合+亚洲专区| 在线观看免费视频网站a站| 免费女性裸体啪啪无遮挡网站| 亚洲精品国产一区二区精华液| 一二三四在线观看免费中文在| 久热这里只有精品99| 男女免费视频国产| √禁漫天堂资源中文www| 999久久久精品免费观看国产| 亚洲av电影在线进入| 国产男人的电影天堂91| 亚洲欧美激情在线| 性高湖久久久久久久久免费观看| 成人国语在线视频| 亚洲va日本ⅴa欧美va伊人久久 | 老鸭窝网址在线观看| 精品一区在线观看国产| 欧美 日韩 精品 国产| 久久国产精品大桥未久av| 婷婷丁香在线五月| 欧美成人午夜精品| 成人免费观看视频高清| 婷婷丁香在线五月| 亚洲三区欧美一区| 亚洲av电影在线进入| 国产亚洲午夜精品一区二区久久| 欧美 日韩 精品 国产| 成年美女黄网站色视频大全免费| 久久午夜综合久久蜜桃| 成人国产一区最新在线观看| 美女脱内裤让男人舔精品视频| 多毛熟女@视频| 久久久久久人人人人人| 亚洲欧美精品自产自拍| 久久热在线av| 精品亚洲成a人片在线观看| 亚洲一区二区三区欧美精品| 国产成人精品久久二区二区免费| 美女中出高潮动态图| 69精品国产乱码久久久| 99国产精品一区二区三区| a级片在线免费高清观看视频| 人人妻人人澡人人看| 9热在线视频观看99| 91麻豆精品激情在线观看国产 | 黄色片一级片一级黄色片| 两性午夜刺激爽爽歪歪视频在线观看 | 91av网站免费观看| av又黄又爽大尺度在线免费看| 曰老女人黄片| 十八禁网站免费在线| 国产成人欧美在线观看 | 亚洲精品中文字幕一二三四区 | 欧美人与性动交α欧美精品济南到| 一本久久精品| 亚洲国产精品999| 可以免费在线观看a视频的电影网站| 99热全是精品| 黑丝袜美女国产一区| 中文字幕最新亚洲高清| 久久人人97超碰香蕉20202| 伊人亚洲综合成人网| 色视频在线一区二区三区| 午夜影院在线不卡| 中文字幕人妻熟女乱码| 亚洲午夜精品一区,二区,三区| 黄色视频不卡| 日本猛色少妇xxxxx猛交久久| 日韩制服丝袜自拍偷拍| 国产成人影院久久av| 丰满少妇做爰视频| 美女高潮喷水抽搐中文字幕| 亚洲伊人久久精品综合| 亚洲欧美激情在线| 亚洲av电影在线进入| 国产精品 欧美亚洲| 久久人人97超碰香蕉20202| 亚洲精华国产精华精| 在线看a的网站| 亚洲色图综合在线观看| avwww免费| 日本一区二区免费在线视频| 少妇 在线观看| 国产男女超爽视频在线观看| 91大片在线观看| 国产日韩欧美在线精品| 最黄视频免费看| 国产亚洲av高清不卡| 亚洲七黄色美女视频| 欧美日韩国产mv在线观看视频| 99re6热这里在线精品视频| 欧美一级毛片孕妇| 黑人巨大精品欧美一区二区mp4| 天天添夜夜摸| 国产精品 欧美亚洲| videos熟女内射| 99香蕉大伊视频| 侵犯人妻中文字幕一二三四区| 丝袜美腿诱惑在线| 脱女人内裤的视频| 国产91精品成人一区二区三区 | av福利片在线| 下体分泌物呈黄色| 国产精品av久久久久免费| xxxhd国产人妻xxx| 欧美变态另类bdsm刘玥| 一本—道久久a久久精品蜜桃钙片| 18禁观看日本| 一区二区三区精品91| 欧美精品啪啪一区二区三区 | 亚洲欧美一区二区三区黑人| 国产av国产精品国产| 国产91精品成人一区二区三区 | 亚洲av男天堂| 悠悠久久av| 亚洲精品自拍成人| 国产精品久久久久成人av| 亚洲中文av在线| 50天的宝宝边吃奶边哭怎么回事| 国产主播在线观看一区二区| 在线av久久热| 男人舔女人的私密视频| 青草久久国产| 少妇 在线观看| 男女免费视频国产| 亚洲国产欧美网| 亚洲国产日韩一区二区| 两人在一起打扑克的视频| 成人av一区二区三区在线看 | 亚洲欧美清纯卡通| 人人妻人人澡人人爽人人夜夜| 久久国产精品人妻蜜桃| 一区二区日韩欧美中文字幕| 亚洲第一欧美日韩一区二区三区 | www.精华液| 亚洲国产毛片av蜜桃av| 美女主播在线视频| 国产精品一区二区精品视频观看| 母亲3免费完整高清在线观看| 色老头精品视频在线观看| 亚洲人成77777在线视频| 黄色a级毛片大全视频| 他把我摸到了高潮在线观看 | 国产97色在线日韩免费| 久久久久久久国产电影| 亚洲天堂av无毛| 欧美成人午夜精品| 伊人亚洲综合成人网| 老司机亚洲免费影院| 久久中文字幕一级| 91精品伊人久久大香线蕉| 国产在线视频一区二区| 9色porny在线观看| 1024香蕉在线观看| 欧美少妇被猛烈插入视频| 久久精品熟女亚洲av麻豆精品| 亚洲成国产人片在线观看| 韩国高清视频一区二区三区| 大型av网站在线播放| 午夜福利影视在线免费观看| 人人妻人人澡人人爽人人夜夜| 一区二区三区四区激情视频| 99国产精品免费福利视频| 欧美大码av| 久久国产精品男人的天堂亚洲| 一本—道久久a久久精品蜜桃钙片| 黑人巨大精品欧美一区二区蜜桃| 久久香蕉激情| 国产一级毛片在线| 国产欧美日韩一区二区精品| 超碰97精品在线观看| 国产色视频综合| 建设人人有责人人尽责人人享有的| 免费看十八禁软件| 久久久久国产精品人妻一区二区| 国产黄色免费在线视频| 精品国产超薄肉色丝袜足j| 亚洲熟女精品中文字幕| 在线观看www视频免费| 亚洲精品日韩在线中文字幕| 久热爱精品视频在线9| 久久天躁狠狠躁夜夜2o2o| 99国产精品一区二区三区| 天堂中文最新版在线下载| 我要看黄色一级片免费的| 肉色欧美久久久久久久蜜桃| 亚洲专区字幕在线| 国产亚洲精品久久久久5区| 中文字幕精品免费在线观看视频| 国产伦人伦偷精品视频| 夜夜骑夜夜射夜夜干| 精品国产乱码久久久久久男人| 午夜福利影视在线免费观看| 精品国产乱码久久久久久男人| 一本久久精品| 国产伦人伦偷精品视频| 欧美性长视频在线观看| 久久99一区二区三区| 男人爽女人下面视频在线观看| 亚洲一码二码三码区别大吗| 久久久久网色| 中国美女看黄片| 日韩一区二区三区影片| 成人黄色视频免费在线看| 嫩草影视91久久| 18禁黄网站禁片午夜丰满| 午夜免费成人在线视频| 国产97色在线日韩免费| 搡老岳熟女国产| 午夜久久久在线观看| 亚洲精品久久成人aⅴ小说| 人妻久久中文字幕网| 精品一区二区三卡| 亚洲精品国产一区二区精华液| 午夜福利乱码中文字幕| 国产高清videossex| 亚洲国产精品999| 精品少妇久久久久久888优播| 岛国毛片在线播放| 大片免费播放器 马上看| 国内毛片毛片毛片毛片毛片| 欧美性长视频在线观看| 国产精品 国内视频|