• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Scalable Adaptive Approach to Multi-Vehicle Formation Control with Obstacle Avoidance

    2022-06-25 01:17:44XiaohuaGeQingLongHanJunWangandXianMingZhang
    IEEE/CAA Journal of Automatica Sinica 2022年6期

    Xiaohua Ge,, Qing-Long Han,, Jun Wang,, and Xian-Ming Zhang,

    Abstract—This paper deals with the problem of distributed formation tracking control and obstacle avoidance of multivehicle systems (MVSs) in complex obstacle-laden environments.The MVS under consideration consists of a leader vehicle with an unknown control input and a group of follower vehicles,connected via a directed interaction topology, subject to simultaneous unknown heterogeneous nonlinearities and external disturbances. The central aim is to achieve effective and collisionfree formation tracking control for the nonlinear and uncertain MVS with obstacles encountered in formation maneuvering,while not demanding global information of the interaction topology. Toward this goal, a radial basis function neural network is used to model the unknown nonlinearity of vehicle dynamics in each vehicle and repulsive potentials are employed for obstacle avoidance. Furthermore, a scalable distributed adaptive formation tracking control protocol with a built-in obstacle avoidance mechanism is developed. It is proved that, with the proposed protocol, the resulting formation tracking errors are uniformly ultimately bounded and obstacle collision avoidance is guaranteed. Comprehensive simulation results are elaborated to substantiate the effectiveness and the promising collision avoidance performance of the proposed scalable adaptive formation control approach.

    I. INTRODUCTION

    MULTI-vehicle systems (MVSs) have found their widespread applications in both military and civilian areas, such as formation flying, target tracking, surface combat operations, border patrol and surveillance, intelligent transportation, coastal environmental monitoring and mapping. A key feature of such MVSs lies in that multiple autonomous vehicles, which can be extensively deployed on the ground, in the air, at sea, and underwater, cooperate with each other through some networked medium so as to fulfill a variety of coordinated control tasks. Among various research hotspots on MVSs, formation control that aims to steer a fleet of autonomous vehicles, via collaborative and distributed information processing, into forming a specific geometric pattern in terms of their states (e.g., position, heading) has attracted intensive attention; see, e.g., the recent surveys[1]-[4], and the references therein.

    Depending on whether there is any leader, the existing results on formation control of MVSs and general multi-agent systems (MASs) can be roughly classified into three types:formation producing[5]-[10], where there is no leader involved;formation tracking[11]-[19], where is only one leader, either virtual or real, guiding a team of formable follower vehicles; andformation-containment[20]-[23],where a team of follower vehicles is to navigate into a convex hull formed by another team of formable leader vehicles.Several approaches are reported to analyze the MVS formation behaviors and design various formation control strategies [1]-[4].

    The completion and performance of coordinated control tasks for MVSs are significantly affected by nonlinearities,and their effects become particularly adverse for small vehicles due to their low inertia and small size. For example,the navigation and control of unmanned aerial vehicles can be substantially affected by uncontrolled nonlinearities including wind gusts and gravity gradients. In addition, autonomous surface and underwater vehicles usually suffer from environmental influences induced by turbulent ocean waves and currents. In this sense, some existing formation control strategies dedicated to known or linear dynamical vehicle/agent models (e.g., [5]-[8], [10], [11], [13], [16]) may no longer be applicable. Therefore, the first challenge for nonlinear MVS formation control is to deal with the unknown nonlinearities in vehicle dynamics. On the other hand,practical formation maneuvers of a team of mobile vehicles are often implemented in some unknown and obstacle-laden environments without anya priorimap knowledge. In such a scenario, there is a strong need for a safety guarantee of collision avoidance for the vehicles in some cluttered environments while maintaining task completion of the formable vehicle team. More specifically, an effective obstacle avoidance strategy is essential to be embedded in the desired formation control protocols and algorithms. However,how to realize the intrinsic collision-free formation control of MVSs in an obstacle-laden setting remains a challenge due to its complexity in analysis and design procedures [14].

    Neural networks (NNs) have been well exploited for modeling complex dynamic systems due to their great potential for identifying the unknown nonlinearities and/or uncertainties in system dynamics. For example, robust distributed adaptive NN controllers are designed for cooperative tracking control of higher-order nonlinear MASs with a nonautonomous dynamic leader [24]. Distributed NN synchronization controllers are proposed for solving the leader-follower synchronization problem of uncertain nonlinear dynamical MASs [25]. Event-based distributed cooperative NN learning control strategies are presented for different nonlinear MASs [26], [27]. Based on adaptive NN and prescribed performance control, the problem of distributed cooperative compound tracking of a platoon of vehicles of nonlinear third-order dynamics is resolved in finite time [28]. For a class of nonlinear MASs in a nonstrict feedback form, a finite-time adaptive NN fault-tolerant control method is developed to tackle actuator faults, unknown symmetric output dead zones and control coefficients [29]. An adaptive NN leader-following tracking method is proposed for a class of fractional-order MASs with unknown matched uncertainties [30].

    In order to ensure the safe mission completion of MASs,several obstacle and collision avoidance methods are available in the literature. For example, building on the concept of barrier certificates, a control barrier function-based method[31], [32] is adopted to preserve collision-free formation behaviors in MASs. Nevertheless, each agent typically relies on a formally designed nominal controller together with a tailored collision avoidance controller to make agents swap behaviors between formation maneuvers and collision avoidance navigation. Viewing the collision avoidance conditions as some design constraints, a model predictive control method [33], [34] is also employed to accomplish collision-free formation control. However, such a method may lead to some high-dimensional nonconvex and nonlinear optimization problems that are difficult to solve. On the other hand, an artificial potential field (APF) method [35] is intensively explored in the multi-vehicle (robotics) control literature. The rationale behind such a method is that an obstacle is treated as a high-potential point and a suitable repulsive potential is constructed for keeping each vehicle away from the obstacle. During a maneuver, each vehicle follows the gradient of the potential and is repelled by obstacles once it moves into a predefined range around obstacles. For example, the APF method andH∞analysis are combined to cope with the formation tracking and obstacle avoidance of a class of stochastic second-order MASs [14].Based on virtual and behavioral structures, the formation control of a team of mobile robots is studied [36], where rotational potential field is applied for obstacle avoidance of robot swarming and regular polygon formations. For linear and deterministic second-order MASs, a potential functionbased formation tracking algorithm is proposed [37] to deal with communication constraints among agents, and a timevarying formation tracking control protocol based on an improved distance- and velocity-dependent potential function[38] is developed to ensure collision avoidance among agents.Interested readers are referred to the survey [39] for more results on collision avoidance. To the best of the authors’knowledge, for MVSs with unknown nonlinearities and uncertainties, how to develop an effective formation control approach to both desired formation tracking and assured obstacle avoidance in obstacle-laden environments has not been adequately addressed hitherto, which motivates this study.

    In this paper, we address the adaptive and collision-free formation tracking issue of MVSs maneuvered in an unknown and cluttered setting. In contrast to some existing formation control frameworks which assume that vehicle (or agent)dynamics are either free of any nonlinearity or perturbation, or are subject to nonlinearity and disturbance with explicitly known bounds, a general framework of time-varying formation tracking control is established to account for simultaneous unknown heterogeneous nonlinearities and external disturbances in every follower vehicle dynamics and also unknown nonzero control input in the leader. The novelty of this paper lies in the development of a scalable adaptive formation control approach to MVSs over a directed interaction topology, which achieves simultaneous formation tracking and obstacle avoidance guarantees under unknown nonlinearities and disturbances as well as obstacles, while not relying on global information of the interaction topology of the MVS.

    The main contributions of this paper are twofold. 1)A scalable adaptive formation tracking control protocolis developed such that each individual vehicle only needs the information of its underlying neighbors and itself to compute its protocol parameters. Note that the challenge of the protocol design is to guarantee that both the formation tracking control protocol and the NN parameter tuning laws adopt merely local information available at each vehicle, and do not depend on the global topology information. It makes a distinctive difference between this work and some existing formation control laws, where their formation control protocols necessitate certain global knowledge of either nonzero eigenvalue in the Laplacian or eigenvectors related to the Laplacian, and thus may not be practically implementable by every vehicle (or agent); and 2)An efficient collision avoidance mechanismis delicately embedded into the desired distributed formation control protocol in such a way as to achieve guaranteed formation maneuver safety in obstacleladen environments. Furthermore, a design algorithm is provided to detail the main steps for the design of the desired scalable adaptive formation tracking control laws, through which the protocol gain and adaptive parameters as well as the repulsive force for collision avoidance can be determined. It is proved that all controlled variables are uniformly ultimately bounded and obstacle avoidance is guaranteed for every vehicle in formation maneuvering.

    The remainder of the paper is organized as follows.Preliminaries are provided in Section II. The formulation of the main problem is given in Section III. The main results with a detailed design algorithm and rigorous stability analysis on the resulting closed-loop MVS are stated in Section IV.Simulation results are discussed in Section V. Concluding remarks are made in Section VI.

    II. PRELIMINARIES

    A. Notations

    B. Graph Theory Fundamentals

    III. PROBLEM FORMULATION

    A. Vehicle Dynamics

    B. Vehicle Formation Geometry

    Fig. 1. Three illustrative examples of four vehicles moving in the X Y plane in various formations: (a) a parallelogram formation; (b) a straight line formation; and (c) a point formation (consensus).

    C. Obstacle Avoidance Function

    encounter bulky obstacles during formation maneuvering,making the entire vehicle team quite difficult, if not impossible, to pass by. To model a bulky obstacle properly, it is natural to assume that a bulky obstacle can be suitably approximated with some convex polyhedra. As a result, one can further take some critical sample points on the boundary of the polyhedra to approximate the bulky obstacle. In practice, this can be accomplished by using suitable cameras,sonars, or laser range finders on vehicles, to provide effective identification of the boundary surface of the polyhedra together with some signal and image processing techniques.Then, the obstacle avoidance functions can be derived from the surface integrals on boundary of the obstacle. Generally,more samples on the boundary of the polyhedra surely make the modeling of the bulky obstacle more explicit and accurate.Thus, the desired obstacle avoidance performance becomes apparent.

    D. The Problem to Be Addressed

    obstacles during formation maneuvers.

    IV. MAIN RESULTS

    In this section, we first specify the desired scalable adaptive formation tracking control protocol. We then present an algorithm for determining the gain parameters and NN parameter tuning rules for the desired control protocol.Finally, we derive the resulting closed-loop formation tracking error dynamics and perform a rigorous stability analysis by proving that all the closed-loop signals remain uniformly ultimately bounded and the desired formation tracking objective can be achieved with assured obstacle avoidance.

    A. Scalable Adaptive Formation Tracking Control Protocol

    B. Design Algorithm

    C. Stability Analysis

    Remark 9:The importance of the proposed scalable adaptive formation tracking control design approach is fourfold.(i)The developed Algorithm 1 for realizing distributed adaptive formation tracking control can adequately accommodate the unknown nonlinearity and external disturbance in follower dynamics as well as the unknown nonzero control input in the leader dynamics in a unified framework. This is contrast to some existing formation control approaches [5]-[8], [10], [11], [13], [16], [17] which assume that the vehicle (or agent) dynamics are free of any nonlinearity or external perturbation.(ii)Although the bounding conditions are exposed in Assumptions 2-4, it is clearly shown in Algorithm 1 that the bounds of the unknown disturbancewi, the unknown nonzero leader control inputu0,the signals and matrices φi,εi,Wiin NNs, and the obstacle avoidance functions ψisare not required to be knowna priorifor the design of desired distributed adaptive formation tracking protocols. It represents a clear difference from some existing results such as [12], [14] where the design criteria or algorithms necessitate the information of relevant bounds.(iii)Further to the discussion in Remark 4, the proposed design algorithm can be tailored to deal with several important cooperative control issues in MVSs/MASs, such as bounded(practical) leaderless consensus, leader-following consensus,and target enclosing and pursuing.(iv)In contrast to some existing formation (tracking) control approaches which require some global knowledge of either the nonzero eigenvalues in the Laplacian [10], [11], [16] or the eigenvectors related to the Laplacian (or matrix H ) [14], [37],the proposed adaptive formation tracking protocol (11) for each vehiclei, however, relies on only the information of itself and its underlying neighbors, and thus enjoys a scalability property. Moreover, the distributed formation tracking problem herein is pursued under a directed interaction topology, which is more difficult than that under a undirected topology [5], [7], [11], [38].

    V. ILLUSTRATIVE EXAMPLES

    In this section, two illustrative examples are provided to demonstrate the effectiveness and merits of the proposed scalable adaptive formation control approach with guaranteed collision avoidance.

    A. Multi-Vehicle Formation Tracking in An Obstacle-Laden 2D Plane

    Fig. 2. Communication topology of six followers and the virtual leader 0.

    Fig. 3. Formation tracking behaviors of the controlled vehicle fleet in an obstacle-laden environment: (a) The six follower vehicles eventually follow the virtual leader’s motion trajectory with the desired hexagon pattern subject to small formation tracking errors, while successfully avoiding collision with the obstacles during the formation maneuver; (b) The velocities viX(t) of the six follower vehicles in the X plane achieve bounded consensus on that of the virtual leader; (c) The velocities viY(t) of the six follower vehicles in theY plane achieve bounded consensus on that of the virtual leader; (d) Bounded control input uiX(t) in the X plane; (e) Bounded control input uiY(t) in theY plane; and (f) Adaptive coupling gains αi(t) is convergent to some steady values in finite time, i ∈V.

    We then evaluate the MVS formation tracking and obstacle avoidance performance by resorting to the proposed Algorithm 1. Fig. 3 (a)-(c) illustrates that all six follower vehicles smoothly bypass all obstacles without colliding with any of them, while still being capable of successfully tracking the virtual leader with the desired hexagon formation.Moreover, Fig. 3 (d)-(f) depicts that the bounded closed-loop signals, including the control inputsuiXanduiYas well as the convergent adaptive coupling gains αi. Fig. 4 illustrates six snapshots of the resultant vehicle formation at different times.Fig. 5 depicts the nonlinearityfiand its approximationf?ifor every vehicle, wherein the nonlinear functionsfiin six follower vehicles are well estimated by the RBF NN.

    Fig. 4. Snapshots of the vehicle formation at different times of t=0 s,t=20 s, t =48 s, t =56 s, t =64 s, and t =80 s.

    Fig. 5. NN approximation f?i(·)=[ f?i1 (·), f?i2(·)]T of the nonlinear fi(·)=[fi1 (·),fi2 (·)]T for each follower vehicle, i ∈V.

    In summary, the above simulation results adequately demonstrate that the proposed scalable adaptive formation tracking control approach can not only steer a fleet of follower vehicles to follow the desired virtual leader but also guarantee the obstacle avoidance during formation maneuvers in complex obstacle-laden environments.

    B. Collision-Free Vehicle Platooning in A Longitudinal Plane

    Fig. 6. Platooning and collision avoidance performance under the desired constant spacing ( si-1,i=6 m) in the presence of external disturbance input wi(t) and leader control input u0(t): (a) Inter-vehicle distancessi(t)=pi-1(t)-pi(t) between each platoon member i and its direct predecessor i-1, i ∈V,without the collision avoidance function ψ i,i-1(di,i-1(t)); (b) Vehicle velocities vi(t), i ∈V~ , without the collision avoidance function ψ i,i-1(di,i-1(t)); (c) Intervehicle distance si(t)=pi-1(t)-pi(t), i ∈V, in the presence of ψi,i-1(di,i-1(t)); (b) Vehicle velocities vi(t), i ∈V~, in the presence of ψi,i-1(di,i-1(t)); (e) Repulsive force uoi a(t), i ∈V, for collision avoidance; and(f) Adaptive coupling gains α i(t), i ∈V in the presence of ψ i,i-1(di,i-1(t)).

    Fig. 7. Snapshots of the simulated platoon driving maneuver under the desired constant spacing (6 m) without the collision avoidance function ψ i,i-1(di,i-1(t)),where potential collisions occur among followers 4 ,5, and 6 given that s 6(t)=0.4 m and s5(t)=1.0 m at time t =16 s.

    Fig. 8. Snapshots of the simulated platoon driving maneuver under the desired constant spacing (6 m) with the collision avoidance function ψi,i-1(di,i-1(t)),where the spacings among followers 4 ,5, and 6 at time t =16 s are enlarged to s 6=2.7 m and s5=2.6 m.

    VI. CONCLUSIONS

    The distributed adaptive formation tracking control is tackled for MVSs operating in unknown and cluttered environments. RBF NNs are used to model the unknown nonlinear dynamics of vehicles. Furthermore, repulsive potentials are introduced for vehicles to achieve collision avoidance with obstacles in the workspace. To accomplish the formation tracking task with promised obstacle avoidance, a scalable distributed adaptive formation tracking control protocol is developed without the need for any global information on the directed topology. It is theoretically proved that all signals of the resulting closed-loop dynamics are uniformly ultimately bounded. The efficacy of the proposed MVS formation control protocol and design algorithm is substantiated with the simulation results on some challenging formation maneuvers.

    Notice that the proposed distributed adaptive formation tracking control approach necessitates continual data communication among interacting vehicles. This may be inapplicable in a resource-constrained communication setting.Event-triggered control has yet received intensive research interests in recent years due to its prominent advantages in maintaining desired system performance and satisfactory communication efficiency; see, e.g., the recent surveys[45]-[47]. To the best of the authors’ knowledge, it remains challenging to develop a novel event-triggered scalable adaptive formation control approach which promises both satisfactory communication efficiency and collision-free formation control performance for MVSs. This constitutes one of our future works. It would be also interesting to provide secure scalable distributed adaptive control solutions that ensure successful completion of safety-critical formation maneuvering tasks in the presence of adversarial cyber attacks.

    简卡轻食公司| 一区二区三区四区激情视频| 国产一区二区在线观看日韩| 亚洲第一区二区三区不卡| 亚洲欧美中文字幕日韩二区| 国产视频首页在线观看| 亚洲av成人精品一二三区| 1000部很黄的大片| 久久久久久久久久成人| 丝袜喷水一区| 国产 亚洲一区二区三区 | 99久久九九国产精品国产免费| 最近最新中文字幕大全电影3| 在线免费十八禁| 女人十人毛片免费观看3o分钟| 亚洲自偷自拍三级| 91aial.com中文字幕在线观看| 亚洲色图av天堂| 天堂影院成人在线观看| 成年免费大片在线观看| 97热精品久久久久久| 久久久久久国产a免费观看| 亚洲精品成人久久久久久| 永久网站在线| 免费大片黄手机在线观看| 国产日韩欧美在线精品| 久久精品久久久久久久性| 男插女下体视频免费在线播放| 一级二级三级毛片免费看| 97超视频在线观看视频| 国产精品国产三级专区第一集| 欧美区成人在线视频| 中国美白少妇内射xxxbb| 久久久久久久亚洲中文字幕| 欧美成人精品欧美一级黄| 青青草视频在线视频观看| 亚洲成人中文字幕在线播放| 国产黄片美女视频| 亚洲国产精品国产精品| 高清欧美精品videossex| 欧美另类一区| 亚洲真实伦在线观看| 一个人看视频在线观看www免费| 免费看av在线观看网站| 最近中文字幕高清免费大全6| 日韩精品有码人妻一区| 欧美日韩一区二区视频在线观看视频在线 | 熟妇人妻不卡中文字幕| 男女视频在线观看网站免费| 最近中文字幕高清免费大全6| 久久久久久久午夜电影| 精品久久久久久电影网| 看非洲黑人一级黄片| 欧美日韩在线观看h| 亚洲精品久久久久久婷婷小说| 人妻夜夜爽99麻豆av| 国产免费福利视频在线观看| 国产高清不卡午夜福利| h日本视频在线播放| 亚洲欧美日韩东京热| 尾随美女入室| 亚洲精华国产精华液的使用体验| 啦啦啦韩国在线观看视频| 一级爰片在线观看| 国产色爽女视频免费观看| 极品少妇高潮喷水抽搐| 高清在线视频一区二区三区| 午夜精品国产一区二区电影 | 噜噜噜噜噜久久久久久91| 日本爱情动作片www.在线观看| 国产 亚洲一区二区三区 | 亚洲成人中文字幕在线播放| 亚洲欧美精品专区久久| 久久99蜜桃精品久久| 亚洲欧美精品专区久久| 日日啪夜夜撸| 国产极品天堂在线| 午夜福利高清视频| 亚洲av二区三区四区| 中国美白少妇内射xxxbb| 在线观看人妻少妇| 欧美极品一区二区三区四区| 美女高潮的动态| 国产成人aa在线观看| 好男人在线观看高清免费视频| 国模一区二区三区四区视频| 女人十人毛片免费观看3o分钟| 偷拍熟女少妇极品色| 亚洲国产欧美人成| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产一区有黄有色的免费视频 | 中文字幕免费在线视频6| 日韩一区二区三区影片| 丰满少妇做爰视频| 亚洲aⅴ乱码一区二区在线播放| 国产综合精华液| 欧美性猛交╳xxx乱大交人| 国产精品三级大全| 国产一区亚洲一区在线观看| 在线观看一区二区三区| 少妇人妻一区二区三区视频| av在线观看视频网站免费| 中文天堂在线官网| 插逼视频在线观看| 国产69精品久久久久777片| 69av精品久久久久久| 黑人高潮一二区| 少妇人妻一区二区三区视频| 天堂中文最新版在线下载 | 久久6这里有精品| 国产亚洲91精品色在线| 亚洲av成人av| 日韩三级伦理在线观看| 爱豆传媒免费全集在线观看| 久久人人爽人人爽人人片va| 97在线视频观看| 久久久精品欧美日韩精品| 青春草亚洲视频在线观看| 日韩强制内射视频| 亚洲av一区综合| 一二三四中文在线观看免费高清| 六月丁香七月| 国产亚洲av嫩草精品影院| 一本一本综合久久| 国产美女午夜福利| 99热这里只有是精品在线观看| 欧美3d第一页| 亚洲久久久久久中文字幕| 极品少妇高潮喷水抽搐| 国产免费又黄又爽又色| 日韩一区二区视频免费看| 人人妻人人看人人澡| 伊人久久精品亚洲午夜| 少妇高潮的动态图| 熟女电影av网| ponron亚洲| 亚洲乱码一区二区免费版| 少妇被粗大猛烈的视频| 亚洲综合色惰| 久久99热这里只有精品18| 黑人高潮一二区| 精品久久国产蜜桃| 亚洲精品乱久久久久久| 99久久中文字幕三级久久日本| 七月丁香在线播放| 亚洲怡红院男人天堂| 亚洲av男天堂| 美女国产视频在线观看| 亚洲一级一片aⅴ在线观看| 国产欧美另类精品又又久久亚洲欧美| 国产精品一区二区三区四区久久| 日韩欧美三级三区| 国产男人的电影天堂91| 精品久久久久久久久av| 又粗又硬又长又爽又黄的视频| 一级片'在线观看视频| a级毛片免费高清观看在线播放| 男女边吃奶边做爰视频| 美女黄网站色视频| 一级片'在线观看视频| 欧美另类一区| 免费看美女性在线毛片视频| 99九九线精品视频在线观看视频| 一夜夜www| 亚洲欧美一区二区三区国产| 老司机影院成人| 久99久视频精品免费| 国产乱来视频区| 亚洲国产成人一精品久久久| 精品久久久久久久久久久久久| 国产高清三级在线| 精品国内亚洲2022精品成人| 人人妻人人看人人澡| 亚洲,欧美,日韩| 亚洲不卡免费看| 色尼玛亚洲综合影院| 丝袜喷水一区| 国产激情偷乱视频一区二区| 国产亚洲精品av在线| 看免费成人av毛片| 插逼视频在线观看| 纵有疾风起免费观看全集完整版 | 国内揄拍国产精品人妻在线| 亚洲欧美成人综合另类久久久| 黄片无遮挡物在线观看| 91久久精品电影网| 午夜福利高清视频| 精品人妻偷拍中文字幕| 亚洲精品乱码久久久v下载方式| 欧美 日韩 精品 国产| 欧美 日韩 精品 国产| 欧美日韩亚洲高清精品| 晚上一个人看的免费电影| 成人二区视频| 晚上一个人看的免费电影| 国产色爽女视频免费观看| 天堂av国产一区二区熟女人妻| 亚洲色图av天堂| 亚洲精品亚洲一区二区| 男女下面进入的视频免费午夜| 精品午夜福利在线看| 嫩草影院新地址| 在现免费观看毛片| 国产精品久久久久久久久免| 成人美女网站在线观看视频| 高清视频免费观看一区二区 | 日韩成人av中文字幕在线观看| 高清欧美精品videossex| 啦啦啦啦在线视频资源| 国产精品麻豆人妻色哟哟久久 | 久久精品综合一区二区三区| 国产成人a∨麻豆精品| 久久精品夜色国产| 尤物成人国产欧美一区二区三区| 亚洲人成网站在线观看播放| 成人亚洲精品一区在线观看 | a级毛片免费高清观看在线播放| av卡一久久| 国产中年淑女户外野战色| 亚洲国产精品国产精品| 中文字幕av在线有码专区| 亚洲成色77777| 亚洲欧美一区二区三区黑人 | 青春草国产在线视频| 尤物成人国产欧美一区二区三区| 美女被艹到高潮喷水动态| 伦理电影大哥的女人| 亚洲av国产av综合av卡| 亚洲av男天堂| 听说在线观看完整版免费高清| 18禁在线无遮挡免费观看视频| 亚洲成人久久爱视频| 成年av动漫网址| 国产激情偷乱视频一区二区| 久久久久久久久久久免费av| 中文天堂在线官网| 免费播放大片免费观看视频在线观看| 亚洲内射少妇av| 一二三四中文在线观看免费高清| 国产片特级美女逼逼视频| 18禁动态无遮挡网站| 欧美97在线视频| 看免费成人av毛片| 精品人妻偷拍中文字幕| 男女下面进入的视频免费午夜| 亚洲精品色激情综合| 久久久久久国产a免费观看| 国产av国产精品国产| 亚洲欧美中文字幕日韩二区| 国产精品蜜桃在线观看| 国产伦精品一区二区三区四那| 欧美激情国产日韩精品一区| av.在线天堂| 国产精品福利在线免费观看| 在线免费观看的www视频| 欧美性猛交╳xxx乱大交人| 国内精品宾馆在线| 狠狠精品人妻久久久久久综合| 80岁老熟妇乱子伦牲交| 夫妻性生交免费视频一级片| 亚洲精品日韩在线中文字幕| 最近最新中文字幕免费大全7| 观看美女的网站| 在线免费十八禁| 伊人久久国产一区二区| 内射极品少妇av片p| 成人毛片a级毛片在线播放| 搡女人真爽免费视频火全软件| 禁无遮挡网站| 直男gayav资源| 人人妻人人看人人澡| 高清午夜精品一区二区三区| 亚洲精品日韩av片在线观看| 国产国拍精品亚洲av在线观看| 亚洲精品影视一区二区三区av| 国产精品一二三区在线看| 亚洲av成人精品一区久久| 国内精品一区二区在线观看| 男的添女的下面高潮视频| 我的女老师完整版在线观看| 天美传媒精品一区二区| 乱系列少妇在线播放| 免费黄频网站在线观看国产| 大香蕉久久网| 亚洲精品久久久久久婷婷小说| 爱豆传媒免费全集在线观看| 午夜福利视频精品| 干丝袜人妻中文字幕| 国产伦精品一区二区三区四那| 插逼视频在线观看| 国产一区二区在线观看日韩| 国国产精品蜜臀av免费| 国产在视频线精品| 中文字幕免费在线视频6| 91狼人影院| 亚洲精品亚洲一区二区| 国产亚洲91精品色在线| 日韩视频在线欧美| 狂野欧美白嫩少妇大欣赏| 国产成人aa在线观看| 国产亚洲av片在线观看秒播厂 | 亚洲真实伦在线观看| 日本猛色少妇xxxxx猛交久久| 午夜老司机福利剧场| 午夜精品国产一区二区电影 | 最近2019中文字幕mv第一页| 成人美女网站在线观看视频| 亚洲经典国产精华液单| 日本色播在线视频| 听说在线观看完整版免费高清| 国产片特级美女逼逼视频| 男女那种视频在线观看| 精品不卡国产一区二区三区| 日韩伦理黄色片| 久久99热这里只频精品6学生| 麻豆乱淫一区二区| 亚洲人成网站在线观看播放| 亚洲av日韩在线播放| 久久久久久久久久黄片| videossex国产| 免费看日本二区| 日日摸夜夜添夜夜添av毛片| 亚洲av国产av综合av卡| 九色成人免费人妻av| 日本欧美国产在线视频| 中文在线观看免费www的网站| 国产黄片美女视频| 久久久久精品久久久久真实原创| 69人妻影院| 亚洲成人一二三区av| 中国美白少妇内射xxxbb| 婷婷色麻豆天堂久久| 淫秽高清视频在线观看| 国产黄色视频一区二区在线观看| 国产淫语在线视频| 午夜福利网站1000一区二区三区| 亚洲国产欧美在线一区| 亚洲四区av| 老师上课跳d突然被开到最大视频| 网址你懂的国产日韩在线| 日韩精品有码人妻一区| 亚洲精品影视一区二区三区av| 国产91av在线免费观看| 大香蕉久久网| 成人国产麻豆网| 日日摸夜夜添夜夜爱| 中文字幕亚洲精品专区| 黄色配什么色好看| 在线观看一区二区三区| 69av精品久久久久久| 亚洲av电影不卡..在线观看| 国产一区二区三区综合在线观看 | 精品熟女少妇av免费看| 男人舔女人下体高潮全视频| 国产精品精品国产色婷婷| 男人爽女人下面视频在线观看| 在线观看人妻少妇| 国内精品一区二区在线观看| freevideosex欧美| 又粗又硬又长又爽又黄的视频| 插阴视频在线观看视频| 嘟嘟电影网在线观看| 尾随美女入室| 精品人妻偷拍中文字幕| 欧美精品国产亚洲| 国语对白做爰xxxⅹ性视频网站| 99热这里只有精品一区| 伦精品一区二区三区| 亚洲精品久久久久久婷婷小说| 精品久久国产蜜桃| 精品欧美国产一区二区三| 中文在线观看免费www的网站| 亚洲av二区三区四区| 国产一区二区在线观看日韩| 视频中文字幕在线观看| 成年免费大片在线观看| 午夜免费男女啪啪视频观看| 久久久久久九九精品二区国产| 国产精品人妻久久久影院| 一区二区三区乱码不卡18| 久久精品国产鲁丝片午夜精品| 网址你懂的国产日韩在线| 美女主播在线视频| 日本免费a在线| 成年免费大片在线观看| 亚洲人成网站在线观看播放| 国产永久视频网站| 国产黄a三级三级三级人| 国产老妇伦熟女老妇高清| www.av在线官网国产| 久久久国产一区二区| 国产片特级美女逼逼视频| 成人综合一区亚洲| 永久网站在线| 国产精品爽爽va在线观看网站| 欧美高清性xxxxhd video| 一个人看视频在线观看www免费| 亚洲成人中文字幕在线播放| av卡一久久| 久久久a久久爽久久v久久| ponron亚洲| 日本爱情动作片www.在线观看| 尤物成人国产欧美一区二区三区| 麻豆久久精品国产亚洲av| 激情五月婷婷亚洲| 女的被弄到高潮叫床怎么办| 高清午夜精品一区二区三区| 国国产精品蜜臀av免费| 亚洲精品456在线播放app| 精品不卡国产一区二区三区| 国产成人福利小说| 免费看av在线观看网站| 亚洲经典国产精华液单| 高清av免费在线| 亚洲成人一二三区av| 国产男女超爽视频在线观看| 国产成人福利小说| 嘟嘟电影网在线观看| 精品不卡国产一区二区三区| 欧美另类一区| 亚洲国产成人一精品久久久| 国产午夜福利久久久久久| 亚洲av电影在线观看一区二区三区 | 亚洲最大成人av| 免费看日本二区| 欧美日韩一区二区视频在线观看视频在线 | 亚洲av在线观看美女高潮| 日韩欧美精品v在线| 91精品伊人久久大香线蕉| 尾随美女入室| 精品久久国产蜜桃| 国产在视频线在精品| 日本与韩国留学比较| 日本欧美国产在线视频| 大香蕉久久网| 九色成人免费人妻av| 天堂俺去俺来也www色官网 | av在线观看视频网站免费| 国产成人a∨麻豆精品| 大又大粗又爽又黄少妇毛片口| 国产亚洲5aaaaa淫片| 精品久久久久久久末码| 免费人成在线观看视频色| 日韩欧美精品v在线| 精品久久久精品久久久| 小蜜桃在线观看免费完整版高清| 黄片wwwwww| 简卡轻食公司| 黄色一级大片看看| 床上黄色一级片| 欧美日韩亚洲高清精品| 身体一侧抽搐| 免费观看性生交大片5| 欧美一级a爱片免费观看看| 亚洲自拍偷在线| 国产亚洲av嫩草精品影院| 亚洲性久久影院| 国产精品国产三级国产av玫瑰| 韩国高清视频一区二区三区| 九九在线视频观看精品| 我要看日韩黄色一级片| 精品人妻一区二区三区麻豆| 日产精品乱码卡一卡2卡三| 午夜福利在线观看吧| 在线播放无遮挡| 久久久久久伊人网av| 人妻系列 视频| 国产精品久久久久久久电影| 免费看美女性在线毛片视频| 男女那种视频在线观看| 久久国产乱子免费精品| 在线 av 中文字幕| 大香蕉久久网| 97在线视频观看| 高清在线视频一区二区三区| 只有这里有精品99| 99久国产av精品国产电影| 看黄色毛片网站| 久久精品国产自在天天线| 国产精品一区www在线观看| 欧美不卡视频在线免费观看| 丰满乱子伦码专区| 极品少妇高潮喷水抽搐| av播播在线观看一区| 亚洲最大成人手机在线| www.av在线官网国产| 久久久精品94久久精品| 亚洲国产精品国产精品| 亚洲欧美精品专区久久| 日本欧美国产在线视频| 女人久久www免费人成看片| 久久精品综合一区二区三区| 精品人妻一区二区三区麻豆| 亚洲自拍偷在线| 国产人妻一区二区三区在| 欧美最新免费一区二区三区| 国产精品女同一区二区软件| 成人综合一区亚洲| 亚洲国产av新网站| 日本黄色片子视频| 久久热精品热| 免费观看的影片在线观看| 国产毛片a区久久久久| 国产视频首页在线观看| 十八禁国产超污无遮挡网站| 久久精品久久久久久噜噜老黄| 国产精品美女特级片免费视频播放器| 大陆偷拍与自拍| 91在线精品国自产拍蜜月| 看黄色毛片网站| 亚洲熟妇中文字幕五十中出| 别揉我奶头 嗯啊视频| 国产精品无大码| 最近的中文字幕免费完整| 成年女人看的毛片在线观看| 国产成人a∨麻豆精品| 欧美激情国产日韩精品一区| 色综合站精品国产| 欧美一级a爱片免费观看看| 久久这里只有精品中国| 男人狂女人下面高潮的视频| 日韩一本色道免费dvd| 在现免费观看毛片| 在线a可以看的网站| 久久精品久久精品一区二区三区| 午夜免费男女啪啪视频观看| 亚洲av福利一区| 日韩欧美国产在线观看| 精品久久久久久久久亚洲| 国产视频内射| 男女啪啪激烈高潮av片| 成年人午夜在线观看视频 | 少妇人妻一区二区三区视频| 午夜激情欧美在线| 亚洲精品自拍成人| 欧美丝袜亚洲另类| 亚洲精品乱码久久久久久按摩| 成年人午夜在线观看视频 | 黄片wwwwww| 男人狂女人下面高潮的视频| 汤姆久久久久久久影院中文字幕 | 久久久a久久爽久久v久久| 亚洲av成人精品一二三区| 免费黄网站久久成人精品| 免费看a级黄色片| 中文乱码字字幕精品一区二区三区 | 美女脱内裤让男人舔精品视频| 一级毛片久久久久久久久女| 久久这里有精品视频免费| 我的女老师完整版在线观看| 午夜福利成人在线免费观看| 日日啪夜夜撸| 老司机影院成人| 国产高清不卡午夜福利| av在线播放精品| 中文资源天堂在线| 久久久久久国产a免费观看| 国产高清三级在线| 亚洲怡红院男人天堂| 极品教师在线视频| 亚洲激情五月婷婷啪啪| 亚洲精品国产av成人精品| 免费无遮挡裸体视频| 欧美性感艳星| 看黄色毛片网站| 亚洲内射少妇av| 国产成人a区在线观看| 精品久久久久久电影网| 晚上一个人看的免费电影| 久久99蜜桃精品久久| 在线免费观看不下载黄p国产| 人妻夜夜爽99麻豆av| 亚洲精品国产av成人精品| 国产亚洲一区二区精品| 22中文网久久字幕| 好男人在线观看高清免费视频| 精品国产一区二区三区久久久樱花 | 床上黄色一级片| 赤兔流量卡办理| 偷拍熟女少妇极品色| 久久精品国产亚洲av涩爱| 啦啦啦中文免费视频观看日本| 不卡视频在线观看欧美| 69人妻影院| 人妻制服诱惑在线中文字幕| 国精品久久久久久国模美| 成人高潮视频无遮挡免费网站| 亚洲精品久久午夜乱码| 伊人久久精品亚洲午夜| 两个人视频免费观看高清| 岛国毛片在线播放| 在线观看免费高清a一片| 成年版毛片免费区| 亚洲精品国产av成人精品| 国产爱豆传媒在线观看| 少妇人妻精品综合一区二区| 日韩精品青青久久久久久| 秋霞在线观看毛片| 国产黄频视频在线观看| 免费看日本二区| 黄片wwwwww| av线在线观看网站| 99热网站在线观看| 又黄又爽又刺激的免费视频.| 亚洲熟妇中文字幕五十中出| 国产淫语在线视频| 97在线视频观看| 欧美日本视频| 亚洲av一区综合| 黄色一级大片看看| 国产成人a∨麻豆精品| 欧美日韩综合久久久久久| 禁无遮挡网站| 成人毛片a级毛片在线播放| 51国产日韩欧美|