• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In Situ Growth and Characterization of TiN/HfxZr1-xO2/TiN Ferroelectric Capacitors

    2022-06-21 07:33:40YuhaoYinYangShenHuWangXiaoChenLinShaoWenyuHuaJuanWangYiCui
    物理化學(xué)學(xué)報(bào) 2022年5期

    Yuhao Yin , Yang Shen , Hu Wang , Xiao Chen , Lin Shao , Wenyu Hua , Juan Wang , Yi Cui ,*

    1 Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences,Suzhou 215123, Jiangsu Province, China

    2 Nano Science and Technology Institute, University of Science and Technology of China, Hefei 230026, China

    3 Wuxi Petabyte Technology Co. Ltd., Wuxi 214028, Jiangsu Province, China

    4 Department of Physics and Engineering Physics, The University of Tulsa, Tulsa, OK 74104, USA.

    Abstract:HfO2-based ferroelectric capacitors, particularly TiN/HfxZr1-xO2/TiN metal insulator metal (MIM) capacitors, have attracted considerable attention as promising candidates in the new generation of nonvolatile memory applications, because of their excellent stability, high performance, and complementary metal oxide semiconductor (CMOS) compatibility. At the electrode interface of TiN/HfxZr1-xO2/TiN MIM ferroelectric devices, the existence of the TiOxNy layer, which was formed during HfxZr1-xO2 film crystallization and TiN oxidization, can affect interface/grain boundary energy, film stress, and conduction band offset at the TiN/HfxZr1-xO2 interface, thereby affecting the ferroelectric device performance. Because the electrical performance of TiN/HfxZr1-xO2/TiN capacitors depends on both the ferroelectric HfxZr1-xO2 thin films and electrode TiN/insulator HfxZr1-xO2 interface, it is essential to control the fabrication of the TiN/HfxZr1-xO2/TiN heterostructure. Herein, we report a new method for preparing HfxZr1-xO2 ferroelectric thin films, sandwiched between TiN electrodes, by atomic layer deposition (ALD) and using ultra high vacuum(UHV) sputtering equipment interconnected with an ultra-high vacuum system. The quasi in situ characterization by transmission electron microscopy (TEM), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and other analytical methods conducted in our study indicates that the surface of the bottom TiN electrode does not contain oxygen. Moreover,a flat signal for impurities at the interface suggests that the superior ferroelectric performance of HfxZr1-xO2-based device is mainly attributed to the pristine HfxZr1-xO2/TiN interface. Furthermore, the ferroelectric properties of TiN/HfxZr1-xO2/TiN heterostructures on silicon can be modulated by varying ZrO2 doping concentration and rapid thermal annealing (RTA)temperature, which can be well monitored and controlled by the interconnected system. We also investigate the ferroelectric properties of TiN/HfxZr1-xO2/TiN capacitors with different ZrO2 doping concentrations (30%-60% (x)) at room temperature by changing the ALD pulsing ratio within the vacuum interconnected system. Three identical 10 nm-thick Hf0.5Zr0.5O2 samples sandwiched between TiN electrodes are annealed in N2 ambient at 400, 450 and 600 °C for 5 min to investigate the effect of RTA on device performance. The evolution of P-E hysteresis at different applied voltages and RTA temperatures reveals that the saturation of P-E hysteresis and remanent polarization increase with RTA temperature. This increase is especially evident at low applied voltages such as 1.5 V. A higher remanent polarization of 21.5 μC·cm-2 than the previously reported value and a low coercive voltage of 1.35 V were achieved for the electric field of 3 MV·cm-1 by doping 50% (molar fraction, x) ZrO2 in HfO2 through RTA at 600 °C for film crystallization.

    Key Words:Ferroelectrics;Surface;Interface;HfO2;Vacuum interconnection;In situ

    1 Introduction

    Most conventional ferroelectric materials considering as candidates for non-volatile semiconductor memory devices,such as Pb(Zr, Ti)O3, BaTiO3, and BiFeO3, have perovskite structure, which is challenging on integration with Si-based CMOS technology. The Si-compatible, environment friendly materials with simple fabrication approach and high ferroelectric performance are intensively demanded in the next-generation“green” data storage devices. Hafnium dioxide (HfO2) can not only be used as a high-k gate dielectric1and but also be integrated with TiN electrode2, indicating its high CMOS-compatibility. In addition, it can overcome the scaling problem3-6in industrial applications. These outstanding advantages have aroused tremendous’ interests in the use of HfO2-based thin films for data and energy storage applications7-10. Since the first reported ferroelectricity in Sidoped HfO2 films by B?sckeet al11, increasingly attentions have been drawn on the dopants to provoke ferroelectricity in doped HfO2films, such as Y, Gd, Al, La and the admixture of 50%(molar fraction,x) ZrO23,12-16. HfxZr1-xO2is one of the most promising HfO2-based ferroelectrics due to its high remanent polarization (Pr)3and lower crystallization temperature, and even at low thickness a wide range of ZrO2-doping concentrations in HfO2films can sustain orthorhombic phase17.

    Over decades’ investigation, it has been indicated that the ferroelectricity in HfxZr1-xO22thin films results from a stable orthorhombic phase, which is crystallized during the thermal annealing of top capping TiN electrodes18,19. Due to the socalled interface-induced “wake-up” effect20,21, the pre-treatment of electric cycle is needed to fully exploit the ferroelectric characteristics of HfxZr1-xO2films22-25. The distribution and diffusion of oxygen vacancies and defect states at the electrode/ferroelectric films interface play an important role in“wake-up” effect20,26. For TiN/HfxZr1-xO2/TiN heterostructures,there are two interface regions: HfxZr1-xO2-TiN interface formed during HfxZr1-xO2films crystallization; TiN-O2interface(TiOxNy) formed during TiN oxidization27-29. There are two resources of oxygen for TiOxNylayer: exposure to air during the intermediate transport of sample preparation21,28,30, and TiN pulling out oxygen from the dielectric HfxZr1-xO2 layer during the annealing process21,28. The existence of the TiOxNylayer can affect the interface/grain boundary energy, film stress and the conduction band offset at the TiN/ HfxZr1-xO2interface, thereby the ferroelectric device performance31-34. Besides oxygen26,carbon35and nitrogen36impurities in the deposited HfxZr1-xO2 layer can also depress its ferroelectricity. Thein situcharacterization of oxygen vacancies at TiN/HfxZr1-xO2/TiN interfaces is significant for deep understanding the structuraldependent ferroelectric properties of HfxZr1-xO2films.

    In this article we use the vacuum interconnected system to prepare andin situcharacterize the TiN/HfxZr1-xO2/TiN metal/insulator/metal (MIM) capacitors on Si(100) substrate.The vacuum interconnected system we employed in Suzhou Vacuum Interconnect Nanotechnology Workstation (Nano-X)can link multiple thin film deposition and characterization equipment in high vacuum. This interconnected approach in vacuum can ensure the individual equipment be elaborately controlled without cross-contamination. In our study, we use the ultra-high vacuum (UHV) magnetron sputter and atomic layer deposition (ALD) system to grow TiN electrodes and HfxZr1-xO2films respectively. The separating growth of TiN electrodes and HfxZr1-xO2ferroelectric films by the two isolated equipment can avoid HfxZr1-xO2films contamination during TiN deposition.The interface chemical states and element distributions of prepared TiN/HfxZr1-xO2/TiN ferroelectric capacitors werein situcharacterized by transmission electron microscope (TEM)and time-of-flight secondary ion mass spectrometry (TOFSIMS), for the first time, through the vacuum interconnected system37. The ferroelectric properties of the prepared MIM capacitors are investigated with different ZrO2mixture contents and annealing temperatures, which can affect the phase transition and thereby the ferroelectricity of HfxZr1-xO2films.

    2 Materials and methods

    A 10 nm HfxZr1-xO2ferroelectric thin film, sandwiched between a 50 nm-thick TiN top and 30 nm-thick TiN bottom electrodes, was deposited at 300 °C by ALD on a Si(100)substrate capped with a 500 nm SiO2layer. The TiN top and bottom electrodes were grown at 200 °C by UHV DC sputtering with a deposition rate of 1.7 nm·min-1. The deposition was carried out with Ta anode target and a mixture of Ar (11 sccm(standard cubic centimeter per minute)) and N2(34 sccm). The base and working pressure in the deposition chamber were 5 ×10-9and 2.0 × 10-3Torr (1 Torr = 133.322 Pa), respectively. The sample was transferred between sputter and ALD chambers through high vacuum interconnected tubes as shown in Fig. 1a.The HfxZr1-xO2films were grown as alternating HfO2/ZrO2layers using Tetrakis (ethylmethylamino) hafnium (TEMA-Hf)and Tetrakis (ethylmethylamino) zirconium (TEMA-Zr) as the Hf and Zr precursors respectively, while N2was the carrier gas bubbled through the liquid precursor source into the main chamber and H2O was used as oxidant. The exposure time for precursors and H2O is 1.6 and 0.1 s, respectively. The growth rates of HfO2and ZrO2layers were kept as 1.0 and 0.9 ?·cycle-1(1 ? = 0.1 nm), respectively. Using HfO2-ZrO2cycle ratios of 3 : 2, 2 : 1, 1 : 1 and 1 : 2, respectively, the solid solution of HfxZr1-xO2with different mixture contents of ZrO2was obtained. After the deposition of TiN top electrode, HfxZr1-xO2thin films were crystallized by the rapid thermal annealing(RTA) process under N2ambient at a selected temperature for 5 min.

    Fig. 1 (a) Schematic diagram of vacuum interconnected system and(b) sketch of layout and fabrication of TiN/HfxZr1-xO2/TiN ferroelectric capacitors.

    The ZrO2content in HfxZr1-xO2films was characterized by X-ray photoelectron spectroscopy (XPS), equipped with a hemispherical electron energy analyzer (PHI 5000, VersaProbe II, ULVAC-PHI) and a monochromatic AlKαX-ray source of 1486.68 eV. Depth profiles of the chemical composition of the TiN/HfxZr1-xO2/TiN stack were obtained by ToF-SIMS(TOF.SIMS S5-100, ION-TOF GmbH) with the sputtering beam of 1 keV Cs+ions and the analysis beam of 30 keV Bi+ions. The crystal structure of HfxZr1-xO2films was analyzed using a grazing incidence X-ray diffraction (GIXRD, D8 Advance,Bruker). The cross-sectional specimens for TEM (Talos F200X,FEI) measurements were prepared by focused ion beam (FIB,Scios, FEI). Then, the crystal morphology and element (Ti, O,Hf, Zr) contents were studied by HR-TEM, which was preloaded with ultra-high resolution objective lens (Cs (sphericalaberration coefficient) = 0.5 mm) and an in- column energy filter to remove inelastic electrons at the acceleration voltage of 200 kV, and energy-dispersive X-ray spectroscopy (EDS)respectively.

    Afterin situcharacterization of TiN/HfxZr1-xO2/TiN heterostructures, TiN top electrode was patterned by standard contact UV lithography with 7 μm AZ4620 resist. The elaborate pattern (as shown in Fig. 1b) was completed by ion beam etch(IBE) process, which is time based to ensure landing on TiN bottom electrode. The length of the square capacitors used for electrical measurements in this article is 300 micrometers. The polarization hysteresis was characterized by an Agilent 4200 system and a customer-designed setup.

    In this study, ALD, UHV sputter, RTA, XPS, ToF-SIMS, and FIB equipped in the high vacuum interconnected system were used to fabricate andin situcharacterize the TiN/HfxZr1-xO2/TiN capacitors, while the IBE, TEM, EDS, GIXRD and ferroelectric polarization measurements were done outside the interconnected system.

    3 Results and discussion

    3.1 Structural properties of TiN/ HfxZr1-xO2/TiN heterostructure

    The structural characteristics of the prepared TiN/HfxZr1-xO2/TiN heterostructure are studied by XPS, ToFSIMS, GIXRD, TEM and EDS as shown in Fig. 2. To grow a wide composition range of HfxZr1-xO2thin films, the ALD pulsing ratio of the alkylamide precursors (TEMAH and TEMAZ) was used to determine HfO2and ZrO2contents in the HfO2-ZrO2solid solution by XPS measurement (Fig. 2a) (details of HfxZr1-xO2thin films with the ALD pulsing ratio in the Supporting Information, section S1). The direct stoichiometry control of HfxZr1-xO2films by ALD cycling can be indicated by the linear-dependence of the TEMAZ precursor ratio and ZrO2content. Specifically, the sample used for demonstration in Fig.2b-h is a TiN/Hf0.5Zr0.5O2/TiN (TiN/HZO/TiN) stack after RTA under N2ambient at 450 °C for 5 min.

    Fig. 2 (a) ZrO2 and HfO2 content in the HfO2-ZrO2 solid solution dependence on the ALD pulsing ratio of the utilized alkylamide precursors(TEMAH and TEMAZ) measured by XPS. (b) ToF-SIMS spectrum of the TiN/Hf0.5Zr0.5O2/TiN (TiN/HZO/TiN) heterostructure. Bars on the y-axis indicate a factor of 10 in intensity ratio. (c) Grazing incidence X-ray diffraction characterization of Hf0.5Zr0.5O2 (HZO) films on TiN.The dominated orthorhombic HZO(111) and a small monoclinicHZO(111) diffraction peaks are observed. (d) Z-contrast STEM and cross-sectional HRTEM images of a TiN/HZO/TiN capacitor and (e-h) EDS mapping of individual elements (Hf, Zr, O and Ti) in TiN/HZO/TiN.

    The TiN/HZO/TiN hetero interfaces werein situcharacterized by ToF-SIMS (Fig. 2b), which reveals the depth of chemical dopants and impurities in the sample. Carbon impurities at electrode/ferroelectric films interface are reported to depress the ferroelectricity in MIM devices19,34. The relative flat signal of carbon in Fig. 2b declares a high purity of the prepared TiN/HZO/TiN sample. The TiON-and TiO-chemical bonds at the HZO/bottom-TiN interface have no obvious bumps in reference to the bottom electrode, implying that Ti-O-N bonds are rarely formed at the HZO/bottom-TiN interface.Therefore, TiOxNylayer which exists to reduce the ferroelectric properties of HZO films is restrained in our sample. Whereas, a small bump of TiON- at top-TiN/HZO interface indicates TiN oxidation around the top electrodes, which could be due to the diffusion of oxygen from HZO to TiN top electrode during subsequent annealing process, or the binding between oxygen on HZO surface and the sputtering material in the initial deposition of top electrode20,34,38. The sharp signal of TiN- bond at TiN/HZO/TiN interfaces reveals a ultra-low diffusion of Ti and N atoms in HZO thin films. Additionally, the almost overlapping HfO2-and ZrO2-signals imply the well-defined stoichiometry of Hf0.5Zr0.5O2 films.

    A crystal structural investigation by GIXRD suggests the existence of orthorhombic and monoclinic phases in the prepared HZO films (Fig. 2c). The (111)odiffraction peak of the orthorhombic phase at 30.27°, which related to ferroelectricity because of its non-symmetric feature39. The smallpeak around 28.1° suggests the non-ferroelectric monoclinic phase3,5,6,22. The high area ratio ofindicates a promising ferroelectric performance of the TiN/HZO/TiN device5,40.

    The polycrystalline nature of a set of 50 nm-TiN/10 nm-HZO/30 nm-TiN heterostructures on SiO2/Si substrate is confirmed by the Z-contrast high angle annular dark field(HAADF) STEM and high-resolution TEM as shown in Fig. 2d.The EDS element mapping of the TiN/HZO/TiN stack is shown in Fig. 2e-h. Hf, Zr and Ti elements are homogeneously distributed in HZO and TiN layers, respectively. However, as shown in Fig. 2g, surface TiN oxidation due to the presence of oxygen in top TiN layer might result from the sample exposure to air during transportation or oxygen diffusion from the underneath HZO films20. In Fig. 2g, it is interesting that the surface of bottom TiN electrode is of absence of oxygen, which is different from normal HfO2/TiN interface. In fact, because the interface oxygen is important for electrical properties of MIM capacitors, the tuning of oxidation states of TiN can impact device properties41-43. So the absence of oxygen in bottom TiN electrode reveals higher quality of HZO/TiN interface achieved in this study compared to traditional MIM capacitors fabrication methods34.

    3.2 Effect of ZrO2-doping content on ferroelectric properties of HfxZr1-xO2 thin films

    The ferroelectricity in HfxZr1-xO2thin film depends on its intrinsic symmetry, which can be modulated by the ZrO2and HfO2composition3,31,44,45. ZrO2doping in HfO2can prompt the centrosymmetric tetragonal phase transition to noncentrosymmetric orthorhombic phase, meanwhile provoking the ferroelectricity in doped HfO2films. In this study, we investigated the ferroelectric properties of TiN/HfxZr1-xO2/TiN capacitors with different ZrO2doping concentrations from 30% to 60% (x) at room temperature (Fig. 3). A triangular voltage waveform is applied to study the polarization-electric field (PE) dependence as shown in the inset graph of Fig. 3a.

    Fig. 3 (a) Polarization hysteresis of different ZrO2 doped HfxZr1-xO2-based metal-insulator-metal (MIM) capacitors under 3 MV·cm-1 electric field at 2.5 kHz. The inset shows the triangular voltage sweep waveform for the hysteresis measurements with the amplitude of 3 V and period of 0.4 ms. (b) Current response to the triangular voltage stimuli reveals the ferroelectric switching current to be clearly separable from the leakage current contributions at high electric fields. (c) Summary of the Zr-doping concentration-dependent remanent polarization (Pr) and coercive voltage (Vc) of HfxZr1-xO2-based MIM capacitors.

    The characteristic ferroelectricP-Ehysteresis arises with increasing ZrO2content and a maximum remanent polarization(Pr) of 17.5 μC·cm-2is reached for an equal mixture of ZrO2and HfO2, which agrees with the previous report3,26,31,45. However,the ferroelectric hysteresis of HfxZr1-xO2 films does not evolve wildly from lightly- to heavily-doping of ZrO2 (Fig. 3a). It means that ZrO2-doping can evoke ferroelectric phase in HfO2-based films but cannot fully dominate their ferroelectric performance.Fig. 3b represents theI-Vcurves of ferroelectric HfxZr1-xO2films revealing two opposite current peaks due to polarization switching. Except the Hf0.4Zr0.6O2 sample, all HfxZr1-xO2 films possess a small leakage current, indicating good electrical performance of the TiN/HfxZr1-xO2/TiN capacitors. In addition,the coercive voltage (Vc) shifts back-and-forth with ZrO2content as shown in Fig. 3b. A summary of the Zr composition-dependentPrandVcwitnessed in Fig. 3a, b is given in Fig. 3c. It can be found that a largePr of 17.5 μC·cm-2and a smallVc of 1.69 V can be simultaneously achieved in Hf0.5Zr0.5O2 films, indicating the optimum ZrO2content of 50% (x).

    3.3 Effect of annealing temperature on ferroelectric properties of HfxZr1-xO2 thin films

    Since ferroelectricity in HfxZr1-xO2films results from the composition-dependent phase transition during the films crystallization under RTA3,26,31,45,46, the annealing temperature is expected to affect the ferroelectric properties of TiN/HfxZr1-xO2/TiN capacitors. Considering the temperature limitation on ferroelectric HZO films crystallization and CMOS device contains for 1T1C ferroelectric random access memory(FRAM) applications, three identical 10 nm-thick Hf0.5Zr0.5O2samples sandwiched with TiN electrodes were annealed under N2 ambient at temperature of 400, 450 and 600 °C for 5 min,respectively, to investigate RTA impact on device performances.

    The characteristicP-Ehysteresis andI-Vcurves of the TiN/Hf0.5Zr0.5O2/TiN capacitor at different RTA temperatures are shown in Fig. 4. The evolution ofP-Ehysteresis under different applied voltages and RTA temperatures shown in Fig. 4a-c reveals that the saturation ofP-Ehysteresis andPr increase with RTA temperature. This characteristic is especially evident at small applied voltage such as 1.5 V. At RTA temperature of 600 °C, a nearly rectangleP-Eloop with aProf 21.5 μC·cm-2under 3 MV·cm-1electric field is achieved, which is larger than the previous reportedPr3,31. It suggests that Hf0.5Zr0.5O2films have improved orthorhombic phases as the annealing temperature increases to 600 °C and the uncompleted phase transition under RTA temperature lower than 450 °C should be considered when creating Hf0.5Zr0.5O2-based electronic devices.The coercive voltage (Vc), however, shows an opposite relation to RTA temperature (Fig. 4d). The increase in annealing temperature resulted in an increase in leakage current in ferroelectric Hf0.5Zr0.5O2 films, which due to a higher RTA temperature increases the chance of leakage degradation40,47.Fig. 4e summarizes the annealing temperature-dependentPrandVcat electric field of 3 MV·cm-1. A maximumProf 21.5 μC·cm-2and a minimumVcof 1.35 V can be simultaneously obtained in Hf0.5Zr0.5O2 films at RTA temperature of 600 °C. Further increasing the annealing temperature may increase the relative ratio of the non-ferroelectric monoclinic phase and ferroelectric orthorhombic phase, reducing thePrvalue40. This finding is significant for Hf0.5Zr0.5O2-based electronic devices fabrication and usage in limited-budget industry since inferior Hf0.5Zr0.5O2films could require elevated electrical field to improve the ferroelectric memory window, increasing the unnecessary cost.

    Fig. 4 (a-c) Polarization hysteresis evolutions of Hf0.5Zr0.5O2-based MIM capacitors annealed at 400, 450 and 600 °C, respectively.The frequency of the applied triangular voltage is 2.5 kHz. (d) Current-electric field responses of ferroelectric TiN/Hf0.5Zr0.5O2/TiN capacitors.(e) Remanent polarization (Pr) and coercive voltage (Vc) of TiN/Hf0.5Zr0.5O2/TiN capacitor dependence on RTA temperature.

    4 Conclusions

    In this work, we successfully fabricated TiN/HfxZr1-xO2/TiN ferroelectric capacitors, for the first time, by vacuum interconnected ALD and UHV sputter system. Thein situcharacterization reveals a pristine HfxZr1-xO2/TiN interface as a key effect in the superior ferroelectric performance of HfxZr1-xO2-based device. We studied the ferroelectric characteristics of TiN/HfxZr1-xO2/TiN capacitors with different ZrO2doping concentrations at different annealing temperatures.A higherProf 21.5 μC·cm-2than the previous reported value and a minimumVcof 1.35 V were achieved by doping 50% ZrO2in HfO2and annealing the HfO2-ZrO2solid solution at 600 °C for films crystallization. These findings prompt a new approach inin situgrowth and analysis of the binary HfO2-based electronic devices and tmore tests on device reliabilities will be launched in the future.

    Acknowledgment:The authors are grateful for the support from Nano Fabrication Facility and Platform for Characterization & Test from Suzhou Institute of Nano-Tech and Nano-Bionics, CAS. Also thanks to the help from Prof. Rongxin Wang for fruitful discussion, Ms. Zhiyun Li with XPS experiments in Nano-X from Suzhou Institute of Nano-Tech and Nano-Bionics, CAS.

    Supporting Information:available free of chargeviathe internet at http://www.whxb.pku.edu.cn.

    国产一区在线观看成人免费| 欧美午夜高清在线| 精品高清国产在线一区| 淫妇啪啪啪对白视频| 欧美成人免费av一区二区三区| 亚洲avbb在线观看| 怎么达到女性高潮| av在线天堂中文字幕 | 午夜影院日韩av| 亚洲精品成人av观看孕妇| 男男h啪啪无遮挡| 人妻丰满熟妇av一区二区三区| 中文字幕av电影在线播放| 午夜福利影视在线免费观看| 亚洲一区二区三区不卡视频| 色婷婷久久久亚洲欧美| 欧美成人午夜精品| 日韩免费av在线播放| 12—13女人毛片做爰片一| 国产精品影院久久| 大型黄色视频在线免费观看| 亚洲精品在线观看二区| 天天影视国产精品| 国产精品久久久人人做人人爽| 天堂√8在线中文| 国产主播在线观看一区二区| 最好的美女福利视频网| 亚洲国产欧美日韩在线播放| 每晚都被弄得嗷嗷叫到高潮| 日韩欧美国产一区二区入口| 天天影视国产精品| 国产91精品成人一区二区三区| 少妇被粗大的猛进出69影院| 88av欧美| 国产av精品麻豆| 亚洲精华国产精华精| 久久九九热精品免费| aaaaa片日本免费| 精品久久久久久成人av| 高潮久久久久久久久久久不卡| 一本综合久久免费| 动漫黄色视频在线观看| 亚洲精品在线观看二区| 三上悠亚av全集在线观看| 欧美日韩黄片免| 老司机亚洲免费影院| 欧美精品亚洲一区二区| 亚洲精品在线美女| 亚洲国产精品sss在线观看 | 欧美激情高清一区二区三区| 热99re8久久精品国产| 自拍欧美九色日韩亚洲蝌蚪91| 青草久久国产| 麻豆av在线久日| 欧美成人性av电影在线观看| 欧美成人性av电影在线观看| 久久性视频一级片| 国产欧美日韩综合在线一区二区| 欧美丝袜亚洲另类 | 国产av一区二区精品久久| 激情视频va一区二区三区| 国产一区二区三区视频了| 亚洲精品在线美女| 亚洲少妇的诱惑av| 午夜福利免费观看在线| 成人黄色视频免费在线看| 亚洲人成电影免费在线| av超薄肉色丝袜交足视频| 少妇被粗大的猛进出69影院| 国产高清激情床上av| 1024香蕉在线观看| 欧美黑人欧美精品刺激| videosex国产| 丝袜美腿诱惑在线| 亚洲人成电影免费在线| 夜夜躁狠狠躁天天躁| 欧美日韩av久久| 波多野结衣高清无吗| 亚洲av成人不卡在线观看播放网| 久久久精品国产亚洲av高清涩受| 十分钟在线观看高清视频www| 91精品国产国语对白视频| 黄色怎么调成土黄色| √禁漫天堂资源中文www| 国产精品亚洲av一区麻豆| 午夜免费激情av| 在线看a的网站| 69精品国产乱码久久久| 欧美成人免费av一区二区三区| 亚洲 欧美一区二区三区| 在线观看舔阴道视频| 日韩国内少妇激情av| 久久婷婷成人综合色麻豆| 宅男免费午夜| 亚洲aⅴ乱码一区二区在线播放 | 免费一级毛片在线播放高清视频 | 精品久久久久久,| 国产精品爽爽va在线观看网站 | 女人被躁到高潮嗷嗷叫费观| 岛国视频午夜一区免费看| 免费看十八禁软件| 热99re8久久精品国产| 国产99久久九九免费精品| av免费在线观看网站| 日韩精品青青久久久久久| 天天躁夜夜躁狠狠躁躁| 伊人久久大香线蕉亚洲五| 精品人妻在线不人妻| 亚洲精品中文字幕一二三四区| 久久久久久久精品吃奶| av网站免费在线观看视频| a在线观看视频网站| 亚洲成a人片在线一区二区| 99精品在免费线老司机午夜| 色哟哟哟哟哟哟| 在线免费观看的www视频| 天堂中文最新版在线下载| 久久久精品国产亚洲av高清涩受| 久久 成人 亚洲| 国产精品亚洲一级av第二区| 无遮挡黄片免费观看| 亚洲精品一区av在线观看| 水蜜桃什么品种好| 亚洲av成人不卡在线观看播放网| 欧美日本中文国产一区发布| 国产成人精品无人区| 中文字幕色久视频| 亚洲精品av麻豆狂野| 亚洲国产欧美日韩在线播放| 国产精品日韩av在线免费观看 | 久久性视频一级片| 人人澡人人妻人| 成人特级黄色片久久久久久久| 黄色女人牲交| 久久精品成人免费网站| 欧美成人免费av一区二区三区| 高潮久久久久久久久久久不卡| 超碰97精品在线观看| 亚洲国产看品久久| 一个人免费在线观看的高清视频| 午夜精品久久久久久毛片777| 欧美最黄视频在线播放免费| av天堂中文字幕网| av国产免费在线观看| 高清日韩中文字幕在线| а√天堂www在线а√下载| 在线看三级毛片| 久久精品国产99精品国产亚洲性色| 午夜精品一区二区三区免费看| 一个人看的www免费观看视频| 久久久久久九九精品二区国产| 无遮挡黄片免费观看| 婷婷六月久久综合丁香| 综合色av麻豆| 一级作爱视频免费观看| 亚洲天堂国产精品一区在线| 在线a可以看的网站| 亚洲片人在线观看| 免费人成视频x8x8入口观看| 国产v大片淫在线免费观看| 亚洲最大成人中文| 日本五十路高清| 在线观看一区二区三区| 一二三四社区在线视频社区8| 日韩av在线大香蕉| 男人狂女人下面高潮的视频| 特级一级黄色大片| 一级a爱片免费观看的视频| 天美传媒精品一区二区| 欧美成人免费av一区二区三区| 午夜日韩欧美国产| 永久网站在线| 亚洲av.av天堂| a在线观看视频网站| 淫妇啪啪啪对白视频| 悠悠久久av| 天堂√8在线中文| 欧美日韩福利视频一区二区| 日日摸夜夜添夜夜添小说| 又粗又爽又猛毛片免费看| 国产成人福利小说| 精品一区二区三区视频在线| 人妻丰满熟妇av一区二区三区| 亚洲第一区二区三区不卡| 久久中文看片网| 99热这里只有是精品在线观看 | 国产精品久久视频播放| 精品国产三级普通话版| 亚洲国产精品sss在线观看| 深夜精品福利| 亚洲黑人精品在线| 国产久久久一区二区三区| 国产精品久久久久久人妻精品电影| 18禁黄网站禁片午夜丰满| 免费在线观看日本一区| 欧美不卡视频在线免费观看| 日本与韩国留学比较| 亚洲av免费在线观看| 亚洲aⅴ乱码一区二区在线播放| 97超级碰碰碰精品色视频在线观看| 国产伦精品一区二区三区四那| 国产精品久久久久久亚洲av鲁大| 久久久久久国产a免费观看| 亚洲最大成人手机在线| 亚洲在线自拍视频| 亚洲电影在线观看av| 日本精品一区二区三区蜜桃| 日本a在线网址| 欧美xxxx性猛交bbbb| 久久草成人影院| 人妻久久中文字幕网| 日日摸夜夜添夜夜添av毛片 | 一区二区三区高清视频在线| 亚洲综合色惰| 毛片一级片免费看久久久久 | 18禁裸乳无遮挡免费网站照片| 色av中文字幕| 小蜜桃在线观看免费完整版高清| 国产探花极品一区二区| 两个人的视频大全免费| 国产精品久久久久久精品电影| 亚洲内射少妇av| 岛国在线免费视频观看| 久久久久九九精品影院| 99久久精品国产亚洲精品| 直男gayav资源| 日韩欧美在线乱码| 久久国产精品影院| 午夜福利18| 色哟哟·www| 亚洲黑人精品在线| 国产麻豆成人av免费视频| 亚洲人成网站在线播| 在线观看免费视频日本深夜| 久久精品国产清高在天天线| 国产亚洲av嫩草精品影院| 男女那种视频在线观看| 国产精品99久久久久久久久| 日韩欧美 国产精品| 一区二区三区高清视频在线| 美女大奶头视频| 观看美女的网站| 婷婷丁香在线五月| 欧美激情久久久久久爽电影| 国内揄拍国产精品人妻在线| 精品久久久久久久末码| 国产在视频线在精品| 国语自产精品视频在线第100页| 亚洲av免费在线观看| 午夜激情欧美在线| 99国产精品一区二区三区| www.色视频.com| 精品一区二区三区视频在线| 亚洲无线观看免费| 日本 av在线| 真人一进一出gif抽搐免费| 韩国av一区二区三区四区| 久久精品国产自在天天线| 桃红色精品国产亚洲av| 小蜜桃在线观看免费完整版高清| 成人三级黄色视频| 高清毛片免费观看视频网站| 午夜免费男女啪啪视频观看 | 丁香六月欧美| 久久国产乱子伦精品免费另类| 免费搜索国产男女视频| 国产精品永久免费网站| 国产精品98久久久久久宅男小说| 成人av一区二区三区在线看| 亚洲自偷自拍三级| 99在线人妻在线中文字幕| 精品乱码久久久久久99久播| 久久亚洲真实| 免费在线观看日本一区| av国产免费在线观看| 欧美色视频一区免费| 成人永久免费在线观看视频| www.色视频.com| 亚洲欧美日韩高清专用| 搡老熟女国产l中国老女人| 日韩欧美一区二区三区在线观看| 美女 人体艺术 gogo| 老熟妇乱子伦视频在线观看| 国产成人福利小说| 精品欧美国产一区二区三| 9191精品国产免费久久| 欧美在线黄色| 一本一本综合久久| 久久精品国产亚洲av涩爱 | 一级作爱视频免费观看| 欧美绝顶高潮抽搐喷水| 日韩欧美一区二区三区在线观看| 最近在线观看免费完整版| 9191精品国产免费久久| 最新中文字幕久久久久| 国产亚洲av嫩草精品影院| 看片在线看免费视频| 欧美在线黄色| 国产亚洲av嫩草精品影院| 日韩欧美在线乱码| 香蕉av资源在线| 美女 人体艺术 gogo| 九九在线视频观看精品| 欧美性猛交╳xxx乱大交人| 一卡2卡三卡四卡精品乱码亚洲| 全区人妻精品视频| 最近视频中文字幕2019在线8| 精品久久久久久久久久久久久| 日本免费一区二区三区高清不卡| 国产高清有码在线观看视频| 天堂网av新在线| 国产精品影院久久| 国模一区二区三区四区视频| 人妻丰满熟妇av一区二区三区| 无遮挡黄片免费观看| 亚洲精品久久国产高清桃花| 国产精品人妻久久久久久| 在线播放无遮挡| 此物有八面人人有两片| 制服丝袜大香蕉在线| 观看免费一级毛片| 麻豆久久精品国产亚洲av| 舔av片在线| 校园春色视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 国产精品精品国产色婷婷| 99久国产av精品| 又紧又爽又黄一区二区| 国产精品三级大全| 在线看三级毛片| 一级黄色大片毛片| 五月玫瑰六月丁香| 成人性生交大片免费视频hd| 国产探花在线观看一区二区| 日韩中文字幕欧美一区二区| 国产一区二区激情短视频| 欧美极品一区二区三区四区| 亚洲人成网站在线播放欧美日韩| 最近视频中文字幕2019在线8| 日韩欧美国产在线观看| 亚洲精品在线观看二区| 欧美xxxx黑人xx丫x性爽| a级一级毛片免费在线观看| 日韩欧美精品v在线| 色播亚洲综合网| 免费观看精品视频网站| 久久精品夜夜夜夜夜久久蜜豆| 国产人妻一区二区三区在| 国产午夜精品论理片| 美女黄网站色视频| 国产视频内射| 亚洲电影在线观看av| 亚洲av一区综合| 99热这里只有是精品50| 99国产极品粉嫩在线观看| 毛片一级片免费看久久久久 | 99精品久久久久人妻精品| 亚洲最大成人中文| 色哟哟·www| 亚洲avbb在线观看| 此物有八面人人有两片| 欧美成人一区二区免费高清观看| 久久久久久久久中文| 国产高清激情床上av| 精品人妻熟女av久视频| 伊人久久精品亚洲午夜| 香蕉av资源在线| 一级黄片播放器| 亚洲国产高清在线一区二区三| 69人妻影院| 丁香六月欧美| 日韩欧美一区二区三区在线观看| 国产中年淑女户外野战色| 亚洲经典国产精华液单 | 国产伦精品一区二区三区四那| 美女大奶头视频| 精品熟女少妇八av免费久了| 免费无遮挡裸体视频| 国产一区二区在线av高清观看| 中出人妻视频一区二区| 亚洲成人久久性| 欧美zozozo另类| 成人一区二区视频在线观看| av欧美777| 精品无人区乱码1区二区| 在线a可以看的网站| 深爱激情五月婷婷| 日韩大尺度精品在线看网址| 久久精品国产自在天天线| 少妇人妻精品综合一区二区 | 日韩中文字幕欧美一区二区| 国产精品精品国产色婷婷| 99热这里只有是精品50| 亚洲精品日韩av片在线观看| 男人的好看免费观看在线视频| 韩国av一区二区三区四区| 五月玫瑰六月丁香| 色av中文字幕| 日韩免费av在线播放| 欧美成人a在线观看| 赤兔流量卡办理| 男女做爰动态图高潮gif福利片| 美女 人体艺术 gogo| 精品一区二区三区视频在线观看免费| 黄色视频,在线免费观看| 国产色爽女视频免费观看| 午夜免费成人在线视频| 亚洲av免费高清在线观看| 免费无遮挡裸体视频| 中文字幕熟女人妻在线| 午夜久久久久精精品| 深夜a级毛片| 18禁黄网站禁片午夜丰满| 国产亚洲精品久久久久久毛片| 一夜夜www| 日日夜夜操网爽| 一级a爱片免费观看的视频| 国产成人av教育| 国产亚洲精品久久久久久毛片| 男女之事视频高清在线观看| 国产欧美日韩精品一区二区| 国产蜜桃级精品一区二区三区| 亚洲人与动物交配视频| 久久精品91蜜桃| 97热精品久久久久久| 久久久久免费精品人妻一区二区| 国产精品日韩av在线免费观看| 日日摸夜夜添夜夜添小说| 国产成人福利小说| 真实男女啪啪啪动态图| 国产三级在线视频| 天天躁日日操中文字幕| 国产成+人综合+亚洲专区| 少妇的逼好多水| 国产又黄又爽又无遮挡在线| 少妇丰满av| 99热6这里只有精品| 成人毛片a级毛片在线播放| 嫁个100分男人电影在线观看| 欧美激情国产日韩精品一区| 久久久久久久午夜电影| 国产综合懂色| 久久精品久久久久久噜噜老黄 | 97热精品久久久久久| 国产精品乱码一区二三区的特点| a级毛片a级免费在线| 日本一本二区三区精品| 九九久久精品国产亚洲av麻豆| 亚洲欧美精品综合久久99| 日本与韩国留学比较| 一进一出抽搐动态| 最好的美女福利视频网| 国产久久久一区二区三区| 欧美黑人欧美精品刺激| 青草久久国产| 国产高清三级在线| 90打野战视频偷拍视频| 国产精品99久久久久久久久| 欧美性猛交╳xxx乱大交人| 日日摸夜夜添夜夜添小说| 极品教师在线免费播放| 国产探花在线观看一区二区| 国产精品影院久久| 久久天躁狠狠躁夜夜2o2o| 欧美高清成人免费视频www| 99在线人妻在线中文字幕| 亚洲精品乱码久久久v下载方式| 精品久久久久久,| 99久久精品国产亚洲精品| 好男人电影高清在线观看| 欧美日韩福利视频一区二区| 午夜福利在线观看免费完整高清在 | ponron亚洲| 美女cb高潮喷水在线观看| 久久国产精品影院| 久久6这里有精品| 伊人久久精品亚洲午夜| 嫩草影院新地址| 国产精品99久久久久久久久| av在线天堂中文字幕| 国产激情偷乱视频一区二区| www.999成人在线观看| 午夜久久久久精精品| 日韩欧美一区二区三区在线观看| 中出人妻视频一区二区| 精品人妻视频免费看| 日韩有码中文字幕| 永久网站在线| 亚洲精品久久国产高清桃花| 亚洲专区国产一区二区| 亚洲精华国产精华精| 激情在线观看视频在线高清| 日日干狠狠操夜夜爽| 内射极品少妇av片p| 欧美黑人欧美精品刺激| av在线老鸭窝| 日韩欧美三级三区| 中文在线观看免费www的网站| 国产蜜桃级精品一区二区三区| 欧美另类亚洲清纯唯美| 97人妻精品一区二区三区麻豆| 97超级碰碰碰精品色视频在线观看| 久久热精品热| 精品人妻熟女av久视频| 一区二区三区高清视频在线| 男插女下体视频免费在线播放| 国产毛片a区久久久久| 免费搜索国产男女视频| 少妇高潮的动态图| 亚洲五月天丁香| 日韩欧美在线二视频| 变态另类成人亚洲欧美熟女| 91久久精品国产一区二区成人| .国产精品久久| 在现免费观看毛片| 波多野结衣高清无吗| 久久久久国内视频| 黄色一级大片看看| 国产精品久久久久久人妻精品电影| 久久久久国产精品人妻aⅴ院| 一个人观看的视频www高清免费观看| 欧美激情国产日韩精品一区| 少妇裸体淫交视频免费看高清| 欧美绝顶高潮抽搐喷水| 亚洲国产精品成人综合色| 国内精品一区二区在线观看| 欧美成人a在线观看| 中文亚洲av片在线观看爽| 99精品久久久久人妻精品| 亚洲乱码一区二区免费版| 国产久久久一区二区三区| 我的女老师完整版在线观看| 高清在线国产一区| 亚洲精品色激情综合| 成人一区二区视频在线观看| 久久人人爽人人爽人人片va | 伦理电影大哥的女人| 男女视频在线观看网站免费| 变态另类成人亚洲欧美熟女| 久久久久久久久久成人| 十八禁网站免费在线| 最近最新中文字幕大全电影3| 久久这里只有精品中国| 色av中文字幕| 精华霜和精华液先用哪个| 99久久精品国产亚洲精品| 欧美+亚洲+日韩+国产| 欧美日韩福利视频一区二区| 成人av一区二区三区在线看| 最后的刺客免费高清国语| 久久国产精品影院| 色精品久久人妻99蜜桃| 欧美最新免费一区二区三区 | a在线观看视频网站| 在线a可以看的网站| 中亚洲国语对白在线视频| 国产精品国产高清国产av| 日本a在线网址| 成人高潮视频无遮挡免费网站| 免费人成视频x8x8入口观看| 三级男女做爰猛烈吃奶摸视频| 亚洲最大成人手机在线| 日本黄大片高清| 麻豆成人午夜福利视频| 日本与韩国留学比较| 久久草成人影院| 亚洲av.av天堂| 天堂av国产一区二区熟女人妻| 欧美性感艳星| 国产免费男女视频| 午夜老司机福利剧场| 精品一区二区三区人妻视频| 色视频www国产| 久久国产乱子伦精品免费另类| 校园春色视频在线观看| 国产精品免费一区二区三区在线| 国产探花在线观看一区二区| 九九热线精品视视频播放| 亚洲欧美日韩东京热| 中亚洲国语对白在线视频| 两个人的视频大全免费| 成年免费大片在线观看| 搡女人真爽免费视频火全软件 | 色综合亚洲欧美另类图片| 欧美一级a爱片免费观看看| 90打野战视频偷拍视频| 国内精品一区二区在线观看| 一本久久中文字幕| 日韩免费av在线播放| 国产单亲对白刺激| 国产欧美日韩一区二区三| 可以在线观看毛片的网站| 少妇裸体淫交视频免费看高清| 一级黄色大片毛片| 国产人妻一区二区三区在| 午夜福利18| 级片在线观看| 久久久久久国产a免费观看| 人妻制服诱惑在线中文字幕| 久久久久九九精品影院| 亚洲精品亚洲一区二区| 亚洲人成网站在线播| 深夜精品福利| netflix在线观看网站| 天天躁日日操中文字幕| 欧美一区二区精品小视频在线| 国产单亲对白刺激| 国产精品,欧美在线| 精品久久久久久久人妻蜜臀av| 日日干狠狠操夜夜爽| 成年女人看的毛片在线观看| xxxwww97欧美| 久久99热这里只有精品18| 99精品在免费线老司机午夜| 51午夜福利影视在线观看|