李衛(wèi)錦 鐘才榮 張穎 袁長(zhǎng)春 李仁茂
摘要:【目的】對(duì)鹽脅迫下海馬齒根系進(jìn)行轉(zhuǎn)錄組測(cè)序分析,挖掘海馬齒根系耐鹽相關(guān)基因,為揭示海馬齒耐鹽的分子機(jī)制提供參考?!痉椒ā坷肐llumina測(cè)序技術(shù)對(duì)0 mmol/L NaCl(對(duì)照組)和400 mmol/L NaCl脅迫處理(鹽脅迫處理組)下的海馬齒根系進(jìn)行轉(zhuǎn)錄組測(cè)序分析,從中篩選出差異表達(dá)基因,選取13個(gè)基因進(jìn)行實(shí)時(shí)熒光定量PCR(qRT-PCR)檢測(cè),以驗(yàn)證轉(zhuǎn)錄組數(shù)據(jù)的可靠性。【結(jié)果】在海馬齒根系轉(zhuǎn)錄組中共鑒定出305145個(gè)轉(zhuǎn)錄本,平均長(zhǎng)度為622 bp,其中,對(duì)照組有146177個(gè)長(zhǎng)度>300 bp的轉(zhuǎn)錄本,鹽脅迫處理組有72173個(gè)長(zhǎng)度>300 bp的轉(zhuǎn)錄本;共有65535條Unigenes在Nr、GO、Swiss-Prot、COG和KEGG五大數(shù)據(jù)庫(kù)注釋成功,占Unigenes總數(shù)的52.36%。對(duì)照組和鹽脅迫處理組共有65535個(gè)差異Unigenes,其中,有182個(gè)熱休克蛋白基因。對(duì)照組和鹽脅迫處理組間共有24042個(gè)差異表達(dá)基因,從中選取13個(gè)基因進(jìn)行qRT-PCR檢測(cè),結(jié)果顯示,9個(gè)基因表達(dá)上調(diào),其余4個(gè)基因表達(dá)下調(diào),與轉(zhuǎn)錄組測(cè)序結(jié)果一致。24042個(gè)差異表達(dá)基因中,共有10106個(gè)顯著差異基因富集到129條代謝通路,其中富集程度排名前10的代謝途徑為核糖體、次級(jí)代謝生物合成、RNA轉(zhuǎn)運(yùn)、內(nèi)吞作用、剪接體、甘油磷脂代謝、內(nèi)質(zhì)網(wǎng)加工、吞噬、醚脂類代謝和植物-病原體相互作用,參與鹽脅迫相關(guān)的硫代謝、脯氨酸積累、活性氧(ROS)代謝、與鹽脅迫相關(guān)的鈣信號(hào)通路和過(guò)氧化氫代謝等途徑的差異基因上調(diào)?!窘Y(jié)論】在鹽脅迫下海馬齒差異表達(dá)基因如小分子量熱激蛋白基因、抗氧化酶相關(guān)基因及與離子交換相關(guān)基因發(fā)揮了重要調(diào)控作用。
關(guān)鍵詞: 海馬齒;根;鹽脅迫;轉(zhuǎn)錄組;耐鹽基因
中圖分類號(hào): S156.4? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2022)03-0693-11
Analysis of the root transcriptomes in Sesuvium portulacastrum respond to salt stress
LI Wei-jin ZHONG Cai-rong ZHANG Ying YUAN Chang-chun LI Ren-mao
(1 School of Life Science and Technology, Lingnan Normal University, Zhanjiang,Guangdong? 524048, China;
2 Hainan Academy of Forestry, Haikou, Hainan? 571100, China)
Abstract:【Objective】To conduct transcriptome sequencing analysis on Sesuvium portulacastrum under salt tole-rance, and to find out genes related to salt tolerance in the root of S. portulacastrum, so as to provide reference for studying molecular mechanism of S. portulacastrum. 【Method】Illumina sequencing technology was applied to compare and analyze the transcriptomesand the differentially expressed genes (DEGs) related to salt tolerance inroots of S. portulacastrum under 0 mmol/L NaCl (control group) and 400 mmol/L NaCl salt stress (salt stress treatment group),respectively. Thirteen DEGs were selected to verify the reliability of transcriptome data by using quantitative real-time PCR(qRT-PCR) analysis. 【Result】 A total of 305145 transcripts with an average length of 622 bp were identified in the roots of S. portulacastrum transcriptome. In the control group, 146177 transcripts were greater than 300 bp; in the salt treatment group,72173 transcripts were greater than 300 bp. A total of 65535 unigenes were successfully annotated in the five databases of Nr, GO, Swiss-Prot, COG and KEGG, accounting for 52.36% of the total unigenes and including 182 heat shock protein genes. A number of 24042 DEGs between the control group and the salt stress treatment group were identified. Thirteen candidate genes were selected for qRT-PCR analysis, and the result showed that 9 genes were up-regulated and 4 genes were down-regulated, which was consistent with transcriptome sequencing analysis. Among the 24042 DEGs,10106 significant DEGs were enriched in 129 metabolic pathways. The top 10 enriched metabolic pathways were ribosome, biosynthesis of secondary metabolites, RNA transport, endocytosis, spliceosome, glycerophospholipid metabolism, protein processing in endoplasmic reticulum, phagocytosis, ether lipid metabolism and plant-pathogen interaction path. Differential genes in sulfur metabolism, proline accumulation, eactive oxygen species(ROS) metabolism, calcium signaling pathway and hydrogen peroxide metabolism related to salt stress were up-regulated. 【Conclusion】Under salt stress,DEGs in S. portulacastrum, such as small molecular heat shock protein genes, genes related to anti-oxidation and genes related to ion exchange, play an important role in regulation.1D9152E6-FF06-4DC8-B029-2C5CAEBFEE6C
Key words: Sesuvium portulacastrum; root; salt stress; transcriptome; genes related to salt tolerance
Foundation items:Special Basic Scientific Research Project of HainanTechnological Innovation in Scientific Research Institutes(KYYS-021-13); Zhanjiang Science and Technology Plan Project (2018A03024); Talent Project of Lingnan Normal University (ZL2003); University-level Project of Lingnan Normal University (1170918174)
0 引言
【研究的意義】海馬齒(Sesuvium portulacastrum)為番杏科(Aizoaceae)海馬齒屬(Sesuvium L.)多年生雙子葉鹽生植物,其作為紅樹(shù)林伴生植物,通常生長(zhǎng)在世界各地沿海和內(nèi)陸的沙灘上(Yi et al.,2014;Chang et al.,2016),具有耐鹽霧、砂洗、貧瘠和耐高溫的特性(Rabhi et al.,2010a)。海馬齒屬于兩性生殖的鹽生植物,具有獨(dú)特的耐鹽特性,不僅能產(chǎn)生大量的生物量,可通過(guò)細(xì)胞和組織積累大量的Na+,可達(dá)872 mg/株,且在濃度高達(dá)800 mmol/L的NaCl溶液中正常生長(zhǎng),利用該特性可實(shí)現(xiàn)鹽漬土壤的改良(Rabhi et al.,2010b;Chang et al.,2016)。目前全球約20%的可耕地和7%的土地受到鹽漬化危害(Rizwan et al.,2015)。因此,海馬齒不僅對(duì)鹽堿地有修復(fù)功能,還能固定沙丘、修復(fù)污染海島和海岸帶生態(tài)環(huán)境(范偉等,2010;Lokhande et al.,2013;丁國(guó)華等,2020)。因此,開(kāi)展在鹽脅迫下海馬齒根系的轉(zhuǎn)錄組測(cè)序分析,挖掘響應(yīng)鹽脅迫的功能基因,對(duì)探究海馬齒對(duì)鹽響應(yīng)的分子機(jī)制、改良農(nóng)作物耐鹽性及解決土壤鹽漬化具有重要的意義?!厩叭搜芯窟M(jìn)展】鹽脅迫對(duì)海馬齒的影響研究主要集中在海馬齒的形態(tài)結(jié)構(gòu)基礎(chǔ)(Yi et al.,2014;Chang et al.,2016)、生理特性(Rabhi et al.,2010a;Kannan et al.,2013)及分子調(diào)控機(jī)制等方面(Ghnaya et al.,2013)。研究發(fā)現(xiàn),在鹽脅迫下,海馬齒葉片能保持足夠的氣體交換和色素組成(Rabhi et al.,2010b),且葉中參與離子結(jié)合、質(zhì)子轉(zhuǎn)運(yùn)、光合作用和ATP合成的相關(guān)基因差異表達(dá)(Kannan et al.,2013;Yi et al.,2014)。目前耐鹽相關(guān)基因已有較多報(bào)道,如海馬齒的果糖-1,6-二磷酸醛縮酶基因(SpFBA)表達(dá)可提高海馬齒對(duì)鹽的耐受性(Fan et al.,2009)。甜菜的堿醛脫氫酶基因(SpBADH)表達(dá)產(chǎn)物可減少H2O2、增加脯氨酸和激活抗氧化酶,以改善活性氧(ROS)清除,提高植物對(duì)干旱或者滲透脅迫的耐受性(Yang et al.,2015)。水通道蛋白基因(SpAQP1)可通過(guò)增強(qiáng)植物的抗氧化性來(lái)提高其耐鹽性(Chang et al.,2016)。Na+/H+逆向轉(zhuǎn)運(yùn)基因(SpNHX1)是響應(yīng)鹽脅迫的關(guān)鍵基因(Zhou et al.,2018)。鹽超敏感基因1(SpSOS1)和H+-ATP基因(SpAHA1)共表達(dá)可提高擬南芥的耐鹽性(Ji et al.,2013;Fan et al.,2019)。隨著測(cè)序技術(shù)的快速發(fā)展,高通量轉(zhuǎn)錄組測(cè)序已成為一種快速、高效的基因表達(dá)研究方法(Bazakos et al.,2015)。至今,已對(duì)大量植物的鹽敏感品種和耐鹽品種進(jìn)行轉(zhuǎn)錄組測(cè)序分析的研究報(bào)道,例如Taji等(2004)利用比較基因組學(xué)研究擬南芥和鹽芥的耐鹽基因,結(jié)果發(fā)現(xiàn)鹽芥耐鹽的原因可能是Fe-SOD、P5CS、PDF1.2、AtNCED、P-protein、β-葡萄糖苷酶基因和SOS1基因共表達(dá)的結(jié)果;Rabello等(2008)從旱稻中鑒定出22種可能與耐旱相關(guān)的蛋白;Qiu等(2011)從楊樹(shù)中鑒定出與鹽脅迫相關(guān)的脫落酸(ABA)合成基因;且Sun等(2010)研究發(fā)現(xiàn),番茄耐鹽品種的SOS途徑更活躍,水楊酸結(jié)合蛋白2基因(SABP2)在其耐鹽機(jī)制中可能發(fā)揮重要調(diào)控作用;Zahaf等(2012)研究發(fā)現(xiàn),苜蓿bHLH轉(zhuǎn)錄因子可能在鹽脅迫中發(fā)揮重要作用;Ma等(2013)從鹽角草中鑒定出大量參與離子穩(wěn)態(tài)和滲透調(diào)節(jié)相關(guān)基因;Zhang等(2014)研究發(fā)現(xiàn),SnRK2、PYL、PP2C等差異表達(dá)基因與ABA的信號(hào)轉(zhuǎn)導(dǎo)途徑相關(guān);Bazakos等(2015)研究發(fā)現(xiàn),橄欖根系中有24個(gè)差異表達(dá)基因,其中9個(gè)上調(diào)基因,15個(gè)下調(diào)基因;在葉中有70個(gè)差異表達(dá)基因,其中14個(gè)下調(diào)基因,56個(gè)上調(diào)基因;Tian等(2018)研究發(fā)現(xiàn),SnRK2、ABF、HST、GSTs和GSH1基因在鹽脅迫中表現(xiàn)出高活性;Pan等(2019)研究發(fā)現(xiàn),Unigenes有15321個(gè)微衛(wèi)星標(biāo)記基因,其中,有17個(gè)單核苷酸多肽(SNP)與6個(gè)鹽脅迫相關(guān)的差異表達(dá)基因(DEGs);Wang等(2020a)研究發(fā)現(xiàn),大穗結(jié)縷草中TaHSP23.9可能作為一種蛋白質(zhì)伴侶來(lái)正向調(diào)節(jié)植株對(duì)鹽脅迫的響應(yīng)?!颈狙芯壳腥朦c(diǎn)】目前鮮見(jiàn)有關(guān)海馬齒根系響應(yīng)鹽脅迫轉(zhuǎn)錄組分析的研究報(bào)道?!緮M解決的關(guān)鍵問(wèn)題】利用Illumina測(cè)序技術(shù)對(duì)不同濃度NaCl脅迫處理的海馬齒根系進(jìn)行轉(zhuǎn)錄組測(cè)序分析,并挖掘響應(yīng)鹽脅迫的功能基因,為培育耐鹽的農(nóng)作物新品種及有效解決土壤鹽漬化提供理論依據(jù)。1D9152E6-FF06-4DC8-B029-2C5CAEBFEE6C
1 材料與方法
1. 1 試驗(yàn)材料
供試材料海馬齒采自海南省??谑袞|寨港口(東經(jīng)110°33′59″,北緯19°57′12″)。選自同一植株的莖,每個(gè)分枝保留3個(gè)節(jié)和4片葉,并用1/2改良型Hoagland營(yíng)養(yǎng)液進(jìn)行培養(yǎng)。經(jīng)過(guò)3周扦插生根后用400 mmol/L NaCl(鹽脅迫組)和0 mmol/L NaCl(對(duì)照,CK)連續(xù)處理5周,每處理重復(fù)3次。RNAplant Plus試劑盒購(gòu)自天根生化科技(北京)有限公司,SYBR Premix Ex Taq Kit購(gòu)自寶日醫(yī)生物技術(shù)(北京)有限公司。主要儀器設(shè)備:Agilent2100分析儀(Agilent,美國(guó))、Nanodrop分光光度計(jì)(Thermo,美國(guó))、ABI 7500熒光定量PCR儀(ABI,美國(guó))等。
1. 2 RNA提取、文庫(kù)制備及測(cè)序
按照RNAplant Plus試劑盒說(shuō)明提取海馬齒根系總RNA。用Agilent2100分析儀檢測(cè)RNA的純度。cDNA文庫(kù)的制備參照Sharma(2015)的方法。對(duì)制備的cDNA文庫(kù)進(jìn)行PCR擴(kuò)增以獲得大量的連接片段,用NanoDrop分光光度計(jì)進(jìn)行定量,并用Bioanalyzer檢測(cè)其純度。最后使用Illumina HiSeq 2000平臺(tái)進(jìn)行測(cè)序。
1. 3 組裝、注釋和差異表達(dá)基因分析
利用SolexaQA對(duì)Raw reads進(jìn)行過(guò)濾處理后得到Clean reads。為得到高質(zhì)量的測(cè)序數(shù)據(jù)方便后續(xù)分析,從中去除由于接頭自連等原因?qū)е聸](méi)有插入片段的reads,以及舍棄adapter及質(zhì)量修剪后長(zhǎng)度小于20 bp的序列。利用Trinity(http://trinitynaseq.scourceforge.net)將Clean reads進(jìn)行從頭組接,設(shè)置參數(shù)K-mer graph(K=25),從而獲得Unigenes。經(jīng)組裝后的轉(zhuǎn)錄本以差異倍數(shù)(Fold change)≥2,錯(cuò)誤發(fā)現(xiàn)率(False dicovery rate)<0.05作為篩選標(biāo)準(zhǔn)篩選出差異表達(dá)基因。將差異表達(dá)基因在Nr(http://www.ncbi.nlm.nih.gov)、GO(http://www.geneontology.org)、Swiss-Prot(http://www.expasy.ch/sprot)、KEGG(http://www.genome.jp/kegg)和COG(http://www.ncbi.nlm.nih.gov/COG)五大數(shù)據(jù)庫(kù)進(jìn)行功能注釋。采用KEGG數(shù)據(jù)庫(kù)對(duì)差異表達(dá)基因進(jìn)行功能分類和代謝途徑富集分析。
1. 4 實(shí)時(shí)熒光定量PCR(qRT-PCR)檢測(cè)
以第一鏈cDNA為模板,利用SYBR Premix Ex Taq Kit對(duì)隨機(jī)選取13個(gè)差異表達(dá)基因進(jìn)行qRT-PCR檢測(cè),以β-actin基因?yàn)閮?nèi)參。所有反應(yīng)均設(shè)3次重復(fù)。qRT-PCR所用引物(表1)均使用Primer Express(Applied Bio systems)設(shè)計(jì),并利用NCBI數(shù)據(jù)庫(kù)的BLAST程序?qū)λO(shè)計(jì)引物進(jìn)行驗(yàn)證。最后用相對(duì)定量法(2-△△Ct)計(jì)算目的基因表達(dá)水平。
2 結(jié)果與分析
2. 1 海馬齒轉(zhuǎn)錄組數(shù)據(jù)分析結(jié)果
利用Illumina配對(duì)末端測(cè)序法對(duì)海馬齒根系的2個(gè)cDNA文庫(kù)(CK和鹽脅迫處理組)進(jìn)行轉(zhuǎn)錄組測(cè)序,共獲得138133008條Raw reads。經(jīng)過(guò)對(duì)Clean reads進(jìn)行拼接后,在海馬齒根系轉(zhuǎn)錄組中共鑒定出305145個(gè)轉(zhuǎn)錄本,平均長(zhǎng)度為622 bp,其中,對(duì)照組有146177個(gè)長(zhǎng)度>300 bp的轉(zhuǎn)錄本,鹽脅迫處理組有72173個(gè)長(zhǎng)度>300 bp的轉(zhuǎn)錄本。差異表達(dá)的125173個(gè)轉(zhuǎn)錄本中,長(zhǎng)度為300~500 bp的轉(zhuǎn)錄本占差異表達(dá)基因總數(shù)的64.4%,長(zhǎng)度為501~1000 bp的轉(zhuǎn)錄本占18.9%,長(zhǎng)度為1000~3000 bp的轉(zhuǎn)錄本占16.6%,不含長(zhǎng)度>3000 bp的轉(zhuǎn)錄本。
2. 2 Unigenes功能注釋結(jié)果
將Unigenes在Nr、GO、Swiss-Prot、COG和KEGG五大數(shù)據(jù)庫(kù)中進(jìn)行注釋,結(jié)果(表2)發(fā)現(xiàn),共有65535條Unigenes注釋成功,占Unigenes總數(shù)的52.36%,剩下的59638條Unigenes均未獲得注釋占Unigenes總數(shù)的47.64%。在Nr數(shù)據(jù)庫(kù)中被成功注釋的Unigenes最多,比對(duì)上的同源物種有擬南芥、水稻、蒺藜苜蓿、大麥、海金藻等。在GO數(shù)據(jù)庫(kù)中注釋成功的Unigenes如圖1所示。Unigenes被注釋為生物學(xué)過(guò)程和細(xì)胞組分兩大類別的數(shù)量較分子功能類別多。生物學(xué)過(guò)程類別中,富集程度最高的是細(xì)胞過(guò)程,其次是單一生物細(xì)胞過(guò)程和代謝過(guò)程;細(xì)胞組分類別中,富集程度較高的是細(xì)胞和細(xì)胞部分,其次是細(xì)胞器部分;分子功能類別中,富集程度最高的是催化活性和結(jié)合活性。
2. 3 Unigenes功能分析結(jié)果
對(duì)照組和鹽脅迫處理組共有65535個(gè)差異Unigenes。與對(duì)照相比,鹽脅迫處理組的上調(diào)Unigenes有14609個(gè),下調(diào)Unigenes有50926個(gè)。在Unigenes中發(fā)現(xiàn)有182個(gè)熱休克蛋白基因,如表3所示。這些蛋白質(zhì)包括高分子量的Hsps(70 kD Hsp70和90 kD Hsp90)、低分子量的Hsps(18.2 kD class I、15.4 kD class V、22.7 kD class IV、26.5 kD Hsps,10 kD類伴侶蛋白,19 kD Hsps和23.5 kD ACD-sHsps)和分子伴侶(20 kD葉綠體分子伴侶、分子伴侶ClpB1及分子伴侶dnaJ 1,dnaj 2、dnaj 6、dnaj 10、dnaj 13、dnaj 16、含t-復(fù)合蛋白的分子伴侶、分子伴侶CPN60、分子伴侶GroEL、分子伴侶-60 kD和ch60),其中低分子量的HSPs表達(dá)上調(diào)。1D9152E6-FF06-4DC8-B029-2C5CAEBFEE6C
2. 4 差異表達(dá)基因的qRT-PCR檢測(cè)結(jié)果
對(duì)照組和鹽脅迫處理組共有24042個(gè)差異表達(dá)基因。為驗(yàn)證測(cè)序結(jié)果的可信度,從中隨機(jī)選擇13個(gè)差異表達(dá)基因進(jìn)行qRT-PCR檢測(cè),結(jié)果(圖2)發(fā)現(xiàn),其中6個(gè)耐鹽蛋白基因(STO1~STO6),吡咯啉-5-羧酸還原酶基因(ProC),亞硫酸還原酶基因(SIR)和鹽超敏感基因(SOS1)上調(diào)表達(dá),其余4個(gè)基因下調(diào)表達(dá)。差異表達(dá)基因的qRT-PCR檢測(cè)結(jié)果與轉(zhuǎn)錄組測(cè)序結(jié)果表達(dá)趨勢(shì)一致。說(shuō)明測(cè)序文庫(kù)較真實(shí)地反映鹽脅迫下差異表達(dá)基因的表達(dá)情況。
2. 5 差異表達(dá)基因的KEGG代謝通路富集分析結(jié)果
將獲得的24042個(gè)差異表達(dá)基因與KEGG數(shù)據(jù)庫(kù)進(jìn)行比對(duì),結(jié)果發(fā)現(xiàn)有10106個(gè)顯著差異基因富集到129條代謝通路,其中富集程度排名前10的代謝途徑為核糖體、次級(jí)代謝生物合成、RNA轉(zhuǎn)運(yùn)、內(nèi)吞作用、剪接體、甘油磷脂代謝、內(nèi)質(zhì)網(wǎng)加工、吞噬、醚脂類代謝和植物—病原體相互作用(圖3)。由圖4可知,富集差異表達(dá)基因最多的通路為內(nèi)質(zhì)網(wǎng)加工蛋白通路,為948個(gè)基因,其中上調(diào)基因145個(gè),下調(diào)基因803個(gè),其次是吞噬體通路,為946個(gè),其中上調(diào)基因120個(gè),下調(diào)基因826個(gè)。此外,差異表達(dá)基因參與鹽脅迫密切相關(guān)的途徑包括硫代謝、脯氨酸積累、活性氧(ROS)代謝、與鹽脅迫相關(guān)的鈣信號(hào)通路和過(guò)氧化氫代謝(圖5)。在硫代謝中上調(diào)基因?yàn)镾OS1和Na+/H+轉(zhuǎn)運(yùn)蛋白基因(NHX1);脯氨酸累積中,proC基因上調(diào),而谷胱甘肽水解酶基因(GGT)和5-氧脯氨酸酶基因(OPLAH)下調(diào);ROS代謝中,脫氫抗壞血酸還原酶基因(DHAR)表達(dá)下調(diào),而過(guò)氧化物酶體膜蛋白基因2(Pxmp2)和線粒體內(nèi)膜蛋白基因17(Mpv17)基因表達(dá)上調(diào)。
3 討論
高度保守的熱激蛋白是一種組成型表達(dá)蛋白,并具有分子伴侶的功能,參與多種生物學(xué)過(guò)程,如轉(zhuǎn)錄、翻譯和翻譯后修飾、蛋白質(zhì)折疊及蛋白質(zhì)的聚集和解聚(Tiwari et al.,2015)。5個(gè)保守的Hsps家族(Hsp100、Hsp90、Hsp70、Hsp60和sHsp)和小熱休克蛋白(sHsp)在植物中普遍存在,在生物或非生物脅迫下其基因表達(dá)上調(diào),可作為分子伴侶保護(hù)其他蛋白免受非生物脅迫的破壞(Elizabeth et al.,2020)。本研究發(fā)現(xiàn),有7種以上的sHsps基因表達(dá)上調(diào),推測(cè)其參與耐鹽機(jī)制。前人研究發(fā)現(xiàn),TaHsp23.9、PfHsp17.2等sHsp基因的表達(dá)均提高了轉(zhuǎn)基因擬南芥的耐鹽性,推測(cè)sHsp保護(hù)了某些酶和蛋白質(zhì)在鹽脅迫下免于破壞和降解(Zhang et al.,2018;Wang et al.,2020b)。但Sun(2016)研究表明,轉(zhuǎn)基因擬南芥中AsHsp17基因表達(dá)降低植株對(duì)鹽的耐受性,其原因可能是不同種類sHsp對(duì)鹽脅迫的響應(yīng)機(jī)制不同。本研究還發(fā)現(xiàn),與ROS代謝相關(guān)的2個(gè)膜蛋白基因Pxmp2和Mpv17表達(dá)上調(diào),表明鹽脅迫下海馬齒根系的ROS合成代謝加強(qiáng),其原因可能是鹽脅迫刺激下產(chǎn)生大量ROS(Mittler,2017),導(dǎo)致與ROS代謝相關(guān)基因表達(dá)上調(diào)。此外,ROS作為信號(hào)分子,將鹽脅迫信號(hào)傳遞給sHsp基因,從而導(dǎo)致sHsp基因表達(dá)上調(diào)(Wrzaczek et al.,2013)。鹽脅迫會(huì)引起蛋白質(zhì)錯(cuò)誤折疊或未折疊蛋白質(zhì)的累積,使內(nèi)質(zhì)網(wǎng)中編碼分子伴侶基因及其他提高蛋白質(zhì)折疊能力基因的表達(dá),有助于內(nèi)質(zhì)網(wǎng)恢復(fù)其穩(wěn)態(tài)(Walter and Ron,2011)。海馬齒在鹽脅迫下,差異表達(dá)基因中多種分子伴侶基因互作參與海馬齒的鹽脅迫響應(yīng),該結(jié)論在大穗結(jié)縷草(Zhang et al.,2018)亦得到證實(shí)。
在鹽脅迫下,海馬齒中參與到抗壞血酸-谷胱甘肽循環(huán)(AsA-GSH)代謝途徑中的脫氫抗壞血酸還原酶基因(DHAR)顯著下調(diào),與燕麥在鹽脅迫下的研究結(jié)果(劉建新等,2021)一致,但水稻DHAR在擬南芥中過(guò)表達(dá)可提高植株耐鹽能力(Ushimaru et al.,2006)。海馬齒的單脫氫抗壞血酸還原酶基因(MDHAR)和抗壞血酸過(guò)氧化物酶基因(APX)基因均顯著上調(diào)。該結(jié)論與鹽脅迫下大豆MDHAR基因表達(dá)受到抑制,但APX基因表達(dá)量升高的結(jié)論存在差異(Rahman et al.,2021)。此外,脯氨酸作為應(yīng)激反應(yīng)的銜接分子,在自然界中作用廣泛,在植物逆境脅迫的抗氧化反應(yīng)中發(fā)揮重要作用。脯氨酸處理過(guò)的煙草幼苗中APX和谷胱甘肽過(guò)氧化物酶(GPX)活性增強(qiáng),說(shuō)明脯氨酸參與提高煙草幼苗的抗氧化能力(Boudmyxay et al.,2019),推測(cè)脯氨酸在海馬齒鹽脅迫響應(yīng)中間接發(fā)揮作用。今后將通過(guò)轉(zhuǎn)基因技術(shù)進(jìn)一步深入研究海馬齒中鹽脅迫響應(yīng)基因的分子調(diào)控機(jī)制。
4 結(jié)論
鹽脅迫下海馬齒差異表達(dá)基因如小分子量熱激蛋白基因、抗氧化酶相關(guān)基因及與離子交換相關(guān)基因發(fā)揮了重要調(diào)控作用。
參考文獻(xiàn):
丁國(guó)華,阮雪玉,張雪妍,王旭初. 2020. 濱海鹽生植物海馬齒耐鹽機(jī)制解析及其在生態(tài)環(huán)保中應(yīng)用研究[J]. 中國(guó)科技成果,21(7):18-23. [Ding G H,Ruan X Y,Zhang X Y,Wang X C. 2020. Study on salt-tolerance mechanism of marine halophytes Sesuvium portulacastrum L. and its application in ecological and environmental protection[J]. China Science and Technology Achievements,21(7):18-23.] doi:10.3772/j.issn.1009-5659.2020.07.006.
范偉,李文靜,付桂,張治禮. 2010. 一種兼具研究與應(yīng)用開(kāi)發(fā)價(jià)值的鹽生植物-海馬齒[J]. 熱帶亞熱帶植物學(xué)報(bào),18(6):689-695. [Fan W,Li W J,F(xiàn)u G,Zhang Z L. 2010. Sesuvium portulacastrum L.,a promising halophyte in research and application[J]. Journal of Tropical and Subtro-pical Botany,18(6):689-695.] doi:10.3969/j.issn.1005-3395.2010.06.017.1D9152E6-FF06-4DC8-B029-2C5CAEBFEE6C
劉建新,劉瑞瑞,賈海燕,劉秀麗,卜婷,李娜. 2021. 硫化氫對(duì)鹽堿脅迫下裸燕麥葉片抗壞血酸—胱甘肽循環(huán)的調(diào)控效應(yīng)[J]. 應(yīng)用生態(tài)學(xué)報(bào),32(12):3988-3996. [Liu J X,Liu R R,Jia H Y,Liu X L,Bu T,Li N. 2021. Regulation effects of hydrogen sulfide on ascorbate-glutathione cycle in naked oat leaves under saline-alkali stress[J]. Chinese Journal of Applied Ecology,32(11):3988-3996.] doi:10.13287/j.1001-9332.202111.023.
Bazakos C,Manioudaki M E,Sarropoulou E,Spano T,Kalaitzis P. 2015. 454 pyrosequencing of olive (Olea europaea L.) transcriptome in response to salinity[J]. PLoS One,10(11):e0143000. doi:10.1371/journal.pone.0143 000.
Boudmyxay K,沈鐳,鐘帥,孫艷芝,楊慧芹. 2019. 脯氨酸引發(fā)提高煙草種子和幼苗抗逆性及其與抗氧化系統(tǒng)的關(guān)系[J]. 山西農(nóng)業(yè)科學(xué),47(1):39-48. [Boudmyxay K,Shen L,Zhong S,Sun Y Z,Yang HQ. 2019. Improving the antioxidant system and its stress resistance to tobacco seeds and seedling by proline priming[J]. Journal of Shanxi Agri-cultural Sciences,47(1):39-48.] doi:10.3969/j.issn.1002- 2481.2019.01.11.
Chang W J,Liu X W,Zhu J H,F(xiàn)an W,Zhang Z L. 2016. An aquaporin gene from halophyte Sesuvium portulacastrum,SpAQP1,increases salt tolerance in transgenic tobacco[J]. Plant Cell Reports,35(2):385-395. doi:10.1007/s00299-015-1891-9.
Elizabeth R,Waters,Elizabeth V. 2020. Plant small heat shock proteins–evolutionary and functional diversity[J]. New Phytologist Trust,227(1):24-37. doi:10.1111/nph.16536.
Fan W,Chang W J,Liu X W,Xiao C,Yang J L,Zhang Z L. 2017. Identification of up-regulated genes provides integrated insight into salt-induced tolerance mechanisms in Sesuvium portulacastrum roots[J]. Acta Physiologiae Plan-tarum,39(3):1-11. doi:10.1007/s11738-017-2383-z.
Fan W,Zhang Z L,Zhang Y L. 2009. Cloning and molecular characterization of fructose-1,6-bisphosphate aldolase gene regulated by high-salinity and drought in Sesuvium portulacastrum[J]. Plant Cell Reports,28(6):975-984. doi:10.1007/s00299-009-0702-6.
Fan Y F,Yin X? C,Xie Q,Xia Y Q,Wang Z Y,Song J,Zhou Y,Jiang X Y. 2019. Co-expression of SpSOS1 and SpAHA1 intransgenic Arabidopsis plants improves salinity tolerance[J]. BMC Plant Biology,19(1):74. doi:10.1186/s12870-019-1680-7.
Ghnaya T,Zaier H,Baioui R,Sghaier S,Lucchini G,Sacchi GA,Lutts S,Abdelly C. 2013. Implication of organic acids in the long-distance transport and the accumulation of lead in Sesuvium portulacastrum and Brassica juncea[J]. Chemosphere,90(4):1449-1454. doi:10.1016/j.chemosphere.2012.08.061.
Ji H T,Pardo J M,Batelli G,Van O M J,Bressan R A,Li X. 2013. The salt overly sensitive(SOS) pathway:Established and emerging roles[J]. Molecular Plant,6(2):275-286. doi:10.1093/mp/sst017.1D9152E6-FF06-4DC8-B029-2C5CAEBFEE6C
Kannan P R,Deepa S,Kanth S V,Rengasamy R. 2013. Growth,osmolyte concentration and antioxidant enzymes in the leaves of Sesuvium portulacastrum L. under salinity stress[J]. Applied Biochemistry and Biotechnology,171(8):1925-1932. doi:10.1007/s12010-013-0475-9.
Lokhande V H,Gor B K,Desai N S,Nikam T D,Suprasanna P. 2013. Sesuvium portulacastrum,a plant for drought,salt stress,and fixation,food andphytoremediation. A review[J]. Agronomy for Sustainable Development,33(2):329-348. doi:10.1007/s13593-012-0113-x.
Ma J B,Zhang M R,Xiao X L,You J J,Wang J R,Wang T,Yao Y N,Tian C Y. 2013. Global transcriptome profiling of Salicornia europaea L. shoots under NaCl treatment[J]. PLoS One,8(6):e65877. doi:10.1371/journal.pone. 0065877.
Mittler R. 2017. ROS are good[J]. Trends in Plant Science,22(1):11-19. doi:10.1016/j.tplants.2016.08.002.
Pan L,Yu X L,Shao J J,Liu Z C,Gao T,Zheng Y,Zeng C,Liang C Z,Chen C Y. 2019. Transcriptomic profiling and analysis of differentially expressed genes in asparagus bean(Vigna unguiculata ssp. sesquipedalis)under salt stress[J]. PLoS One,14(7):e0219799. doi:10.1371/journal.pone.0219799.
Qiu Q,Ma T,Hu Q J,Liu B B,Wu Y X,Zhou H H,Wang Q,Wang J,Liu J Q. 2011. Genome-scale transcriptome ana-lysis of the desert poplar,Populus euphratica[J]. Tree Physiology,31(4):452-461. doi:10.1093/treephys/tpr015.
Rabello A R,Guimar?es C M,Rangel P H N,da Silva F R,Seixas D,de Souza E,Brasileiro A C M,Spehar C R,F(xiàn)erreira M E,Mehta A. 2008. Identification of drought-responsive genes in roots of upland rice(Oryza sativa L.)[J]. BMC Genomics,9(1):485. doi:10.1186/1471-2164-9-485.
Rabhi M,F(xiàn)erchichi S,Jouini J,Hamrouni M H,Koyro H W,Ranieri A,Abdelly C,Smaoui A. 2010a. Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop[J]. Bioresource Technology,101(17):1336-1341. doi:10.1016/j.biortech.2010.03.097.
Rabhi M,Giuntini D,Castagna A,Renorini D,Baldan B. Smaoui A,Abdelly C,Ranieri A. 2010b. Sesuvium portulacastrum maintains adequate gas exchange,pigment composition,and thylakoid proteins under moderate and high salinity[J]. Journal of Plant Physiology,167(16):1336-1341. doi:10.1016/j.jplph.2010.05.009.
Rahman M,Rahman K,Sathi K S,Alam M M,Nahar K,F(xiàn)ujita M,Hasanuzzaman M. 2021. Supplemental selenium and boron mitigate salt-induced oxidative damages in Glycine max L.[J]. Plants(Basel),10(10):2224. doi:10.3390/plants10102224.1D9152E6-FF06-4DC8-B029-2C5CAEBFEE6C
Rizwan M,Ali S,Ibrahim M,F(xiàn)arid M,Adrees M,Bharwana S A,Zia-Ur-Rehman M,Qayyum M F,Abbas F. 2015. Mechanisms of silicon-mediated alleviation of drought and saltstress in plants:A review[J]. Environmental Science and Pollution Research,22(20):15416-15431. doi:10.1007/ s11356-015-5305-x.
Sharma R,Mishra M,Gupta B,Parsania C,SinglaPareek SL,Pareek A. 2015. De novo assembly and characterization of stress transcriptome in a salinity-tolerant variety CS52 of Brassica juncea[J]. PLoS One,10(5):e0126783. doi:10.1371/journal.pone.0126783.
Sun W,Xu X N,Zhu H S,Liu A H,Liu L,Li J M,Hua X J. 2010. Comparative transcriptomic profiling of a salt-tole-rant wild tomato species and a salt-sensitive tomato cultivar[J]. Plant & Cell Physiology,51(6):997-1006. doi:10.1093/pcp/pcq056.
Sun X B,Sun C Y,Li Z G,Hu Q,Han L B,Luo H. 2016. AsHSP17,a creeping bentgrass small heat shock protein modulates plant photosynthesis and ABA-dependent and independent signalling to attenuate plant response to abio-tic stress[J]. Plant,Cell & Environment,39(6):1320-1337. doi:10.1111/pce.12683.
Taji T,Seki M,Satou M,Sakurai T,Kobayashi M,Ishiyama K,Narusaka Y,Narusaka M,Zhu J K,Shinozaki K. 2004. Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray[J]. Plant Physiology,135(3):1697-1709. doi:10.1104/pp.104.039909.
Tian X M,Wang Z Y,Zhang Q,Ci H C,Wang P S,Yu L,Jia G X. 2018. Genome-wide transcriptome analysis of thesalt stress tolerance mechanism in Rosa chinensis[J]. PLoS One,13(7):e0200938. doi:10.1371/journal.pone.0200938.
Tiwari S,Thakur R,Shankar J. 2015. Role of heat-shock proteins in cellular function and in the biology of fungi[J]. Biotechnology Research International,(2):1-11. doi:10.1155/2015/132635.
Ushimaru T,Nakagawa T,F(xiàn)ujioka Y,Daicho K,Naito M,Yamauchi Y,Nonaka H,Amako K,Yamawaki K,Murata N. 2006. Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress[J]. Journal Plant Physiology,163(11):1179-84. doi:10.1016/j.jplph.2005.10.002.
Walter P,Ron D. 2011. The unfolded protein response:From stress pathway to homeostatic regulation[J]. Science,334:1081-1086. doi:10.1126/science.1209038.
Wang J,Gao X ,Dong J,Tian X Y,Wang J Z,Palta JA,Xu S B,F(xiàn)ang Y,Wang Z H. 2020a. Over-expression of the heat-responsive wheat geneTaHSP23.9 in transgenic arabidopsis conferred tolerance to heat and saltstress[J]. Frontiers in Plant Science,11:243. doi:10.3389/fpls.2020.00243.1D9152E6-FF06-4DC8-B029-2C5CAEBFEE6C
Wang R,Wang X,Liu K,Zhang X J,Zhang L Y,F(xiàn)an S J. 2020b. Comparative transcriptome analysis of halophyte Zoysia macrostachya in response to salinity stress[J]. Plants,9(4):458. doi:10.3390/plants9040458.
Wrzaczek M,Brosché M,Kangasj?rvi J. 2013. ROS signaling loops—Production,perception,regulation[J]. Current Opi-nion in Plant Biology,16(5):575-582. doi:10.1016/j.pbi. 2013.07.002.
Yang C L,Zhou Y,F(xiàn)an J,F(xiàn)u Y H,Shen L B,Yao Y,Li R M,F(xiàn)u S P,Duan R J,Hu X W,Guo J C. 2015. SpBADH of the halophyte Sesuvium portulacastrum strongly confers drought tolerance through ROS scavenging in transgenic Arabidopsis[J]. Plant Physiology and Biochemistry,96:377-387. doi:10.1016/j.plaphy.2015.08.010.
Yi X P,Sun Y,Yang Q,Guo A P,Chang L L,Wang D,Tong Z,Jin X,Wang L M,Yu J L,Jin W H,Xie Y M,Wang X C. 2014. Quantitative proteomics of Sesuvium portulacastrum leaves revealed that ion transportation by V-ATPase and sugar accumulation in chloroplast played crucial roles in halophyte salt tolerance[J]. Journal of Proteomics,99:84-100. doi:10.1016/j.jprot.2014.01.017.
Zahaf O,Blanchet S,de Zélicourt A,Alunni B,Plet J,Laffont Carole,de Lorenzo L,Imbeaud S,Ichanté JL,Diet A,Badri M,Zabalza A,González E M,Delacroix H,Gruber V,F(xiàn)rugier F,Crespi M. 2012. Comparative transcriptomic analysis of salt adaptation in roots of contrasting Medicago truncatula genotypes[J]. Molecular Plant,5(5):1068-1081. doi:10.1093/mp/sss009.
Zhang L,Hu W J,Gao Y K,Pan H T,Zhang Q X. 2018. A cytosolic class II small heat shock protein,PfHSP17.2,confers resistanceto heat,cold,and salt stresses in transgenic Arabidopsis[J]. Genetics and Molecular Biology,41(3):649-660. doi:10.1590/1678-4685-GMB-2017-0206.
Zhang X,Liao M S,Chang D,Zhang F C. 2014. Comparative transcriptome analysis of the Asteraceae halophyte Kareli-nia caspica under salt stress[J]. BMC Research Notes,7:927. doi:10.1186/1756-0500-7-927.
Zhou Y,Yang C L,Hu Y P,Yin X C,Li R M,F(xiàn)u S P,Zhu B B,Guo J C,Jiang X Y. 2018. The novel Na+/H+ antipor-ter gene SpNHX1 from Sesuvium portulacastrum confers enhanced salt tolerance to transgenic yeast[J]. Acta Phy-siologiae Plantarum,40(3):61. doi:10.1007/s11738-018-2631-x.
(責(zé)任編輯 陳 燕)1D9152E6-FF06-4DC8-B029-2C5CAEBFEE6C