• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    有限交換環(huán)上Ramanujan二次單位一-匹配雙凱萊圖

    2022-06-08 07:29:18茍小麗
    關鍵詞:凱萊重數子集

    茍小麗

    (蘭州交通大學 數理學院,甘肅 蘭州 730070)

    0 引言

    本文所考慮的圖均為簡單無向圖.設圖G的頂點集為V(G)={1,2,…,n},它的鄰接矩陣為A=(aij)n×n,其中當頂點i和j相鄰時,aij=1; 否則aij=0.圖G的特征值是其鄰接矩陣的特征值.

    設A(G)的互異特征值為λ1>λ2>…>λk,且它們的重數分別為m(λ1),m(λ2),…,m(λk),則圖G的譜記為

    一個有限k-正則圖G稱為Ramanujan圖[1],如果

    其中:λ(G)為G的不同于±k的特征值絕對值的最大值.關于Ramanujan圖及相關擴展圖的研究, 可參考文獻[2-8].

    1878年,A Cayley 為解釋群的生成元和定義關系首次提出凱萊圖的概念.1992年, Resmini 和 Jungnickel[9]定義了雙凱萊圖.

    設H是一個具有單位元1H的群,R,L,S是H的子集,且1H?R=R-1,1H?L=L-1,則H上的雙凱萊圖BC(H;R,L,S)是指以H×{0,1}為頂點集的無向圖,且(h,i)和(g,j)相鄰,當且僅當以下條件之一成立:

    (i)i=j=0且gh-1∈R;

    (ii)i=j=1且gh-1∈L;

    (iii)i=0,j=1且gh-1∈S.

    特別地,若S由H的單位元構成, Kovács 等[10]稱其為H上的一-匹配雙凱萊圖.

    關于(一-匹配)雙凱萊圖的一些組合性質和代數性質,其中包括弧傳遞性、強正則性、自同構和點傳遞性,可參考文獻[9-12].

    設R是有單位元1≠0的有限交換環(huán),R×表示其單位的集合.局部環(huán)是有唯一極大理想的交換環(huán)[13].由文獻[13-14]可知,若R是具有唯一極大理想M的局部環(huán),則R×=RM.每個有限交換環(huán)可表示為有限局部環(huán)的乘積,且這種分解在不計此類局部環(huán)的排列次序時是唯一的.因此,后續(xù)討論總是基于以下假設.

    假設1[4]R=R1×R2×…×Rs是具有單位元1≠0的有限交換環(huán),其中Ri是具有mi階極大理想Mi的局部環(huán).設

    |R1|/m1≤|R2|/m2≤…≤|Rs|/ms.

    顯然,

    (1)

    定義1[5]給定一個交換環(huán)R,R上的二次單位凱萊圖GR定義為R關于TR=QR∪(-QR)在加法群上的凱萊圖Cay(R,TR),其中QR={u2:u∈R×},即GR有頂點集R,使得x,y∈R相鄰,當且僅當x-y∈TR.

    這個概念是Zn上的二次單位凱萊圖GZn的推廣[15], 當n≡1(mod 4)且為素數時, GZn是n階Paley圖.隨著對GZn結構性質的進一步研究,de Beaudrap將GZn在n的素因子上分解為張量積, 還計算了GZn的直徑, 并給出GZn是完美的條件[15].

    文獻[16]基于單位凱萊圖的概念定義了單位一-匹配雙凱萊圖.本文類比單位一-匹配雙凱萊圖的概念, 在二次單位凱萊圖的基礎上定義了二次單位一-匹配雙凱萊圖的概念.

    定義2給定一個交換環(huán)R,R上的二次單位一-匹配雙凱萊圖GR定義為R加法群上的一-匹配雙凱萊圖BC(R;TR,TR,{0}),其中TR=QR∪(-QR),QR={u2:u∈R×}.

    2015年,劉曉剛等[5]給出了二次單位凱萊圖是 Ramanujan 圖的等價刻畫.受此啟發(fā),本文主要討論了二次單位一-匹配雙凱萊圖是 Ramanujan 圖的等價條件.

    1 二次單位一-匹配雙凱萊圖

    兩個圖G和H的笛卡爾積記作G□H,其頂點集為V(G)×V(H),頂點(u,v)和(x,y)相鄰當且僅當v=y且u和x在G中相鄰,或u=x且v和y在H中相鄰.

    引理1[17]設G和H是兩個圖,其特征值分別為λ1,λ2,…,λn和μ1,μ2,…,μm,則G和H的特征值為λi+μj,1≤i≤n,1≤j≤m.

    引理2[5]設R是具有m階極大理想M的局部環(huán),則

    (1)若|R|/m≡1(mod 4),則

    (2)若|R|/m≡3(mod 4),則

    Spec(GR)=

    根據二次單位一-匹配雙凱萊圖和笛卡爾積的定義,有GR?Cay(R,TR)□P2=GR□P2,其中P2為2長路.由引理1和2可得如下結論.

    定理1設R是具有m階唯一極大理想M的局部環(huán),則

    (1)若|R|/m≡1(mod 4),則

    (2)若|R|/m≡3(mod 4),則

    Spec(GR)=

    引理3[5]設R如假設1所示,則GR=GR1?GR2?…?GRs當且僅當至多存在一個Rj,使得-1?QRj.

    定理2設R如假設1所示,|Ri|/mi≡1(mod 4),1≤i≤s,則

    GR=(GR1?GR2?…?GRs)□P2.

    證明根據二次單位一-匹配雙凱萊圖和笛卡爾積的定義,有

    GR?Cay(R,TR)□P2=GR□P2,

    其中P2為2長路.因為|Ri|/mi≡1(mod 4),1≤i≤s,所以-1∈QRi/Mi,1≤i≤s,于是-1∈QRi,1≤i≤s,從而由引理3可知,

    GR=GR1?GR2?…?GRs,

    故GR=(GR1?GR2?…?GRs)□P2.

    λA,B=(-1)|B|·

    其中,A,B為{1,2,…,s}的不交子集[5].特別地,λ?,?=|R×|/2s.

    引理4[5]設R如假設1所示,|Ri|/mi≡1(mod 4),1≤i≤s,則GR的特征值為

    (1)λA,B,重數為

    其中,所有的(A,B)對均為{1,2,…,s}的子集,且A∩B=?;

    (2)0,重數為

    |R|-

    由引理1, 定理2和引理4可得:

    定理3設R如假設1所示,|Ri|/mi≡1(mod 4),1≤i≤s,則GR的特征值為

    (1)λA,B±1,重數為

    其中,所有的(A,B)對均為{1,2,…,s}的子集,且A∩B=?;

    (2)±1,重數為

    |R|-

    引理5[5]設R如假設1所示,|Ri|/mi≡1(mod 4),1≤i≤s,R0是具有m0階極大理想M0的局部環(huán),且|R0|/m0≡3(mod 4),則GR0×R的特征值為

    其中,所有的(A,B)對均為{1,2,…,s}的子集,且A∩B=?;

    其中,所有的(A,B)對均為{1,2,…,s}的子集,且A∩B=?;

    (3)0,重數為

    |R|-

    由引理1, 定理2和引理5可得:

    定理4設R如假設1所示,|Ri|/mi≡1(mod 4),1≤i≤s,R0是具有m0階極大理想M0的局部環(huán),且|R0|/m0≡3(mod 4),則GR0×R的特征值為

    其中,所有的(A,B)對均為{1,2,…,s}的子集,且A∩B=?;

    其中,所有的(A,B)對均為{1,2,…,s}的子集,且A∩B=?;

    (3)±1,重數為

    |R|-

    推論1(1)若p≡1(mod 4)為素數,且α≥1為整數,則

    Spec(GZpα)=

    (2)若p≡3(mod 4)為素數,且α≥1為整數,則

    Spec(GZpα)=

    (1)

    (2)±1,重數為

    (1)

    (2)

    (-1)|B|+1·

    重數為

    其中所有的(A,B)對均為{1,2,…,s}的子集,且A∩B=?;

    (3)±1,重數為

    2 Ramanujan二次單位一-匹配雙凱萊圖

    引理6[18]設R是具有m階唯一極大理想的有限局部環(huán),則存在素數p使得|R|,m和|R|/m都是p的冪次.

    定理5設R如假設1所示,|Ri|/mi≡1(mod 4),1≤i≤s,R0是具有m0階極大理想M0的局部環(huán),且|R0|/m0≡3(mod 4),則

    (1)GR0是Ramanujan圖,當且僅當

    (2)GR是Ramanujan圖,當且僅當R?Fq,其中q≡1(mod 4)為素數的冪;

    (3)GR0×R是Ramanujan圖,當且僅當

    R0×R?F3×F9.

    證明由文獻[5]可知,GR0的正則度為|R0×|=|R0|-m0,GR的正則度為|R×|/2s,GR0×R的正則度為|R0×||R×|/2s.則由引理1和定理2可知,GR0的正則度為|R0|-m0+1,GR的正則度為|R×|/2s+1,GR0×R的正則度為|R0×||R×|/2s+1.

    (1)根據定理1(2),當|R0|-m0-1≥m0+1,即|R0|≥2m0+2時,GR0是Ramanujan圖

    當|R0|-m0-1≤m0+1,即|R0|≤2m0+2時,GR0是Ramanujan圖

    (2)根據定理3,GR是Ramanujan圖

    λA,B±1≠±(|R×|/2s+1).

    因為|λA,B±1|≤|λA,B|+1≤|λ?,{1}|+1≠|R×|/2s+1,所以GR是Ramanujan圖

    (2)

    (3)

    又因為

    則當s≥4時,由式(1)可知,

    |R×|/2s≥

    即式(3)不成立,所以GR不是Ramanujan圖.

    下面考慮1≤s≤3的情況.

    情形1s=1.

    若m1≥8時,以上不等式不成立,所以GR不是Ramanujan圖.

    假設m1≤7,因為|R1|/m1≡1(mod 4),所以由引理6可知,m1=1,3,5或7.

    由文獻[19]可知, 具有素數階p的極大理想的有限交換局部環(huán)是Zp2和Zp[X]/(X2),它們的剩余域均為Zp,又由|R1|/m1≡1(mod 4)可知m1=1或5.

    當m1=1時,R1?Fq,q≡1(mod 4)為素數的冪.根據式(2),所以GFq是Ramanujan圖.

    當m1=5時,R1?Z25或Z5[X]/(X2).此時式(2)不成立,所以GR不是Ramanujan圖.

    情形2s=2.

    此時,式(3)等價于

    若m1m2≥4或|R2|/m2≥17,則以上不等式不成立,所以GR不是Ramanujan圖.

    假設m1m2≤3,|R2|/m2≤16.

    因為|Ri|/mi≡1(mod 4),i=1,2,所以由引理6可知m1m2=1或m1m2=3.注意到,Z9和Z3[X]/(X2)是恰有3個元素的唯一極大理想的局部環(huán),它們的剩余域均為Z3,這與|Ri|/mi≡1(mod 4),i=1,2矛盾,所以m1m2=3不可能出現,因此m1m2=1,且以下條件之一將會出現:

    (Ⅰ)R1?R2?F5;

    (Ⅱ)R1?R2?F9;

    (Ⅲ)R1?R2?F13;

    (Ⅳ)R1?F5,R2?F9;

    (Ⅴ)R1?F5,R2?F13;

    (Ⅵ)R1?F9,R2?F13.

    將其依次代入式(2),式(2)均不成立,所以GR不是Ramanujan圖.

    情形3s=3.

    此時,式(3)等價于

    因為|Ri|/mi≡1(mod 4).i=1,2,3,所以R1?R2?R3?F5,此時式(2)不成立,所以GR不是Ramanujan圖.

    (3)令

    |λ|=

    由定理4可知,GR0×R是Ramanujan圖

    μA,B=

    此時,GR0×R是Ramanujan圖

    (4)

    因為

    所以式(4)不成立,除非

    (5)

    又因為

    所以當s≥3時,由式(1)可知,

    即式(5)不成立,所以GR0×R不是Ramanujan圖.

    下面考慮1≤s≤2的情況.

    子情形1.1s=1.

    此時,式(5)等價于

    m0m1((|R0|/m0)-1)((|R1|/m1)-1)<

    若m0m1≥4或|R0|/m0≥9,則以上不等式不成立,所以GR0×R不是Ramanujan圖.

    假設m0m1≤3,|R0|/m0≤8.

    由引理6可知m0m1=1或m0m1=3.又因為|R0|/m0≡3(mod 4),|R1|/m1≡1(mod 4),所以m0=m1=1或m0=3,m1=1.

    當m0=m1=1時,R0?F3或R0?F7.

    R0×R1?F3×F5,F7×F5,

    F7×F9,F7×F13,F7×F17,

    F7×F25,F7×F29,F7×F37或F7×F41.

    將其依次代入式(4)中,式(4)均不成立,所以GR0×R不是Ramanujan圖.

    當m0=3,m1=1時,R0?Z9或Z3[X]/(X2).

    子情形1.2s=2.

    此時,式(5)等價于

    因為|R0|/m0≡3(mod 4),|Ri|/mi≡1(mod 4),i=1,2,則R0?F3,R1?R2?F5,此時式(4)不成立,所以GR0×R不是Ramanujan圖.

    此時,GR0×R是Ramanujan圖

    (6)

    因為

    所以式(6)不成立,除非

    (7)

    當s≥3時,由式(1)可知,

    即式(7)不成立,所以GR0×R不是Ramanujan圖.

    下面考慮1≤s≤2的情況.

    子情形2.1s=1.

    此時,式(7)等價于

    8((|R0|/m0)-1).

    若m0m1≥3或|R1|/m1>49,則以上不等式不成立,所以GR0×R不是Ramanujan圖.

    假設m0m1≤2,|R1|/m1≤49.

    因為|R0|/m0≡3(mod 4),|R1|/m1≡1(mod 4),則由引理6可知,m0=m1=1.于是

    R1?F5,F9,F13,F17,F25,F29,F37,F41或F49,

    R0×R1?F3×F9,F3×F13,F3×F17,

    F3×F25,F3×F29,F3×F37,F3×F41,

    F3×F49或F7×F49.

    將其依次代入式(6)中,得GF3×F9是Ramanujan圖.

    子情形2.2s=2.

    此時,式(7)等價于

    4((|R0|/m0)-1)2.

    猜你喜歡
    凱萊重數子集
    雙凱萊圖的完全完備碼
    由一道有關集合的子集個數題引發(fā)的思考
    C3型李代數的張量積分解
    微分在代數證明中的兩個應用
    大學數學(2022年1期)2022-03-21 12:59:52
    拓撲空間中緊致子集的性質研究
    百歲“體操女皇”從不照鏡子
    新傳奇(2021年30期)2021-08-23 05:55:17
    A3型李代數的張量積分解
    最年長奧運冠軍迎來百歲生日
    關于奇數階二元子集的分離序列
    以較低截斷重數分擔超平面的亞純映射的唯一性問題
    国产乱人伦免费视频| 看十八女毛片水多多多| 久久久久免费精品人妻一区二区| 亚洲成人久久性| 欧美激情国产日韩精品一区| ponron亚洲| 国产一区二区在线观看日韩| 亚洲精品粉嫩美女一区| 国产精品女同一区二区软件 | 免费黄网站久久成人精品| 亚洲av成人精品一区久久| 久久久久久久久久成人| 日本免费一区二区三区高清不卡| 成人国产麻豆网| 国产一区二区亚洲精品在线观看| 一夜夜www| 午夜福利视频1000在线观看| 精品日产1卡2卡| 国产色爽女视频免费观看| 亚洲,欧美,日韩| 亚洲一区二区三区色噜噜| av中文乱码字幕在线| 国产精品无大码| 91久久精品国产一区二区三区| 国模一区二区三区四区视频| 亚洲av不卡在线观看| 窝窝影院91人妻| 成人高潮视频无遮挡免费网站| 免费看a级黄色片| 丰满人妻一区二区三区视频av| 亚洲av一区综合| 久久久久国内视频| 日韩欧美在线二视频| 日韩一区二区视频免费看| 18禁在线播放成人免费| 高清毛片免费观看视频网站| 久久草成人影院| 美女被艹到高潮喷水动态| 国产精品一区二区三区四区免费观看 | 亚洲av不卡在线观看| 成人一区二区视频在线观看| 91狼人影院| 久久久久久久久久久丰满 | 成年女人看的毛片在线观看| 国产伦精品一区二区三区视频9| 亚洲精品国产成人久久av| 18禁裸乳无遮挡免费网站照片| 特大巨黑吊av在线直播| 少妇熟女aⅴ在线视频| 老熟妇仑乱视频hdxx| 国产高清视频在线播放一区| 国产激情偷乱视频一区二区| 精品人妻1区二区| 精品不卡国产一区二区三区| 欧美最新免费一区二区三区| 99精品在免费线老司机午夜| 欧美3d第一页| 午夜爱爱视频在线播放| 午夜激情欧美在线| 亚洲成a人片在线一区二区| aaaaa片日本免费| 淫妇啪啪啪对白视频| 免费无遮挡裸体视频| 一区福利在线观看| 成人午夜高清在线视频| 欧美高清性xxxxhd video| 欧美日本视频| 不卡一级毛片| 亚洲国产欧洲综合997久久,| 久久国内精品自在自线图片| 国产单亲对白刺激| 少妇熟女aⅴ在线视频| 嫩草影视91久久| 欧美一区二区国产精品久久精品| 国产麻豆成人av免费视频| 一本精品99久久精品77| 欧美绝顶高潮抽搐喷水| 久久99热这里只有精品18| 免费观看人在逋| 99热6这里只有精品| 精品一区二区三区av网在线观看| 精品一区二区三区人妻视频| 国产精品日韩av在线免费观看| 国产亚洲av嫩草精品影院| 别揉我奶头 嗯啊视频| 熟妇人妻久久中文字幕3abv| 亚洲成人精品中文字幕电影| 超碰av人人做人人爽久久| 美女 人体艺术 gogo| 99热这里只有是精品50| 伦理电影大哥的女人| 91久久精品电影网| or卡值多少钱| 麻豆精品久久久久久蜜桃| 九色国产91popny在线| 亚洲第一区二区三区不卡| 午夜免费成人在线视频| 高清日韩中文字幕在线| 日韩欧美免费精品| 麻豆精品久久久久久蜜桃| 亚洲av中文字字幕乱码综合| 神马国产精品三级电影在线观看| 男女之事视频高清在线观看| 91麻豆av在线| 国产精品国产高清国产av| 午夜影院日韩av| 九色成人免费人妻av| 国产精品久久久久久av不卡| 国产精品永久免费网站| 国产高清不卡午夜福利| 日韩欧美一区二区三区在线观看| 天天躁日日操中文字幕| 国内精品久久久久精免费| 婷婷精品国产亚洲av| 3wmmmm亚洲av在线观看| 欧美成人a在线观看| 99久久成人亚洲精品观看| 国产乱人伦免费视频| 日韩人妻高清精品专区| 精品国产三级普通话版| 好男人在线观看高清免费视频| 久久精品国产鲁丝片午夜精品 | 久久精品国产亚洲av涩爱 | 最近中文字幕高清免费大全6 | 国产精品永久免费网站| 最近最新中文字幕大全电影3| 国产精品永久免费网站| 国产色婷婷99| 亚洲午夜理论影院| 亚洲欧美日韩东京热| 免费看光身美女| 欧美精品啪啪一区二区三区| 永久网站在线| 欧美又色又爽又黄视频| 在线观看一区二区三区| 熟女人妻精品中文字幕| 大又大粗又爽又黄少妇毛片口| 亚洲中文字幕日韩| 哪里可以看免费的av片| 欧美色视频一区免费| 日韩一区二区视频免费看| 亚洲成人久久性| 精品久久国产蜜桃| 中文字幕精品亚洲无线码一区| 亚洲无线观看免费| av天堂在线播放| 有码 亚洲区| 午夜爱爱视频在线播放| 国内精品久久久久精免费| 日韩欧美国产一区二区入口| 亚洲精华国产精华精| 十八禁国产超污无遮挡网站| 欧美高清性xxxxhd video| 人妻制服诱惑在线中文字幕| 精品久久久久久电影网| av不卡在线播放| 亚洲精品乱码久久久v下载方式| 熟女电影av网| 我的女老师完整版在线观看| 日韩欧美精品免费久久| h视频一区二区三区| 日韩一本色道免费dvd| 又粗又硬又长又爽又黄的视频| 亚洲av免费高清在线观看| 一级爰片在线观看| 男人舔奶头视频| 国产精品一区二区在线不卡| 欧美日韩亚洲高清精品| 国产伦精品一区二区三区四那| 欧美一级a爱片免费观看看| 97超视频在线观看视频| 一区在线观看完整版| 一级二级三级毛片免费看| 精品少妇久久久久久888优播| 91久久精品国产一区二区成人| 插阴视频在线观看视频| 成人二区视频| 蜜桃在线观看..| 两个人的视频大全免费| 亚洲伊人久久精品综合| 一二三四中文在线观看免费高清| 欧美丝袜亚洲另类| 亚洲av成人精品一区久久| 亚洲经典国产精华液单| 精品久久久久久久久亚洲| 超碰av人人做人人爽久久| 一级黄片播放器| 日韩电影二区| 黄色配什么色好看| 国产真实伦视频高清在线观看| 亚洲婷婷狠狠爱综合网| 国产又色又爽无遮挡免| 一本—道久久a久久精品蜜桃钙片| 日本欧美国产在线视频| 99热全是精品| 老司机影院毛片| 日韩制服骚丝袜av| 韩国av在线不卡| 人妻 亚洲 视频| 欧美区成人在线视频| 欧美精品国产亚洲| 欧美xxxx性猛交bbbb| 欧美zozozo另类| 99久久综合免费| 极品少妇高潮喷水抽搐| 我的老师免费观看完整版| 日韩制服骚丝袜av| 亚洲欧美中文字幕日韩二区| 日韩欧美一区视频在线观看 | 国产伦理片在线播放av一区| 亚洲成人中文字幕在线播放| 一本一本综合久久| 精品视频人人做人人爽| 蜜臀久久99精品久久宅男| 国模一区二区三区四区视频| 中文字幕久久专区| av播播在线观看一区| 日本一二三区视频观看| 成年女人在线观看亚洲视频| 成人亚洲精品一区在线观看 | 夫妻午夜视频| 亚洲欧美一区二区三区国产| 少妇的逼水好多| 又大又黄又爽视频免费| 大片免费播放器 马上看| 国产乱人偷精品视频| 女人久久www免费人成看片| www.色视频.com| 久久99热这里只有精品18| 精品少妇久久久久久888优播| a级毛色黄片| 亚洲精品第二区| 男女啪啪激烈高潮av片| 99视频精品全部免费 在线| 国产精品一区二区在线观看99| 国产免费一级a男人的天堂| 国产一区二区在线观看日韩| 欧美精品国产亚洲| 亚洲aⅴ乱码一区二区在线播放| 99久国产av精品国产电影| 一级毛片我不卡| 人妻少妇偷人精品九色| 精品亚洲乱码少妇综合久久| 大陆偷拍与自拍| 久久久久久久久大av| 男女国产视频网站| 大香蕉97超碰在线| 一级毛片我不卡| 国产v大片淫在线免费观看| 97在线视频观看| 精品亚洲成国产av| a 毛片基地| 国产淫片久久久久久久久| av卡一久久| 春色校园在线视频观看| 国产 精品1| 亚洲图色成人| 亚洲久久久国产精品| 国产伦理片在线播放av一区| 老女人水多毛片| 欧美日本视频| 欧美最新免费一区二区三区| 99视频精品全部免费 在线| 99热网站在线观看| 欧美日韩视频高清一区二区三区二| 美女cb高潮喷水在线观看| 亚洲av综合色区一区| 久久国产精品男人的天堂亚洲 | 亚洲国产色片| 在线观看免费视频网站a站| 91午夜精品亚洲一区二区三区| 男女国产视频网站| 国产精品一二三区在线看| 久久av网站| 观看av在线不卡| 视频区图区小说| 精品一区在线观看国产| 大又大粗又爽又黄少妇毛片口| 午夜日本视频在线| 久久99热这里只频精品6学生| 中文字幕制服av| 最近中文字幕2019免费版| 日本猛色少妇xxxxx猛交久久| videossex国产| 麻豆成人av视频| 26uuu在线亚洲综合色| 精品久久久久久久末码| 成年av动漫网址| 国产极品天堂在线| 高清不卡的av网站| 老师上课跳d突然被开到最大视频| 少妇人妻一区二区三区视频| 亚洲欧美日韩卡通动漫| 观看免费一级毛片| 少妇被粗大猛烈的视频| 老司机影院成人| 在线观看免费视频网站a站| 色吧在线观看| 国产 精品1| 一个人看视频在线观看www免费| 激情五月婷婷亚洲| 老熟女久久久| 欧美精品人与动牲交sv欧美| 中文乱码字字幕精品一区二区三区| 亚洲人成网站在线观看播放| 精品国产乱码久久久久久小说| 日本一二三区视频观看| 久久久久网色| 91狼人影院| 亚洲怡红院男人天堂| 亚洲av综合色区一区| 全区人妻精品视频| 欧美性感艳星| 精品一品国产午夜福利视频| 成人国产麻豆网| 久久久久网色| 亚洲电影在线观看av| a级毛片免费高清观看在线播放| 欧美成人精品欧美一级黄| 精品人妻偷拍中文字幕| 在线观看免费高清a一片| 男人添女人高潮全过程视频| 国产精品一及| 在线免费观看不下载黄p国产| 久久久久国产网址| 久久青草综合色| 精品一区二区三卡| 亚洲欧美日韩无卡精品| 国产美女午夜福利| 亚洲成色77777| 日本猛色少妇xxxxx猛交久久| 亚洲人成网站高清观看| av播播在线观看一区| 亚洲精品国产色婷婷电影| 美女中出高潮动态图| 成人黄色视频免费在线看| 美女内射精品一级片tv| 日韩,欧美,国产一区二区三区| 99久久中文字幕三级久久日本| 国产 精品1| 亚洲精华国产精华液的使用体验| 亚洲一级一片aⅴ在线观看| 日韩一区二区三区影片| 国产精品国产三级专区第一集| 丰满少妇做爰视频| 国产精品99久久久久久久久| 成人影院久久| 国产日韩欧美亚洲二区| 国产精品久久久久久久电影| 欧美日韩国产mv在线观看视频 | 丰满迷人的少妇在线观看| 在线亚洲精品国产二区图片欧美 | 最近最新中文字幕大全电影3| 九草在线视频观看| www.色视频.com| 国语对白做爰xxxⅹ性视频网站| 亚洲三级黄色毛片| 波野结衣二区三区在线| 午夜老司机福利剧场| 能在线免费看毛片的网站| 亚洲欧美中文字幕日韩二区| 亚洲美女搞黄在线观看| 国产伦精品一区二区三区四那| 亚洲av日韩在线播放| 精品午夜福利在线看| 中文乱码字字幕精品一区二区三区| 国产精品99久久久久久久久| 中国三级夫妇交换| 久久久久国产精品人妻一区二区| 黄色一级大片看看| 又粗又硬又长又爽又黄的视频| 婷婷色av中文字幕| 99视频精品全部免费 在线| 日韩av免费高清视频| 久久精品国产亚洲网站| 日韩,欧美,国产一区二区三区| 亚洲自偷自拍三级| 极品教师在线视频| 91久久精品电影网| 好男人视频免费观看在线| 91狼人影院| 大片电影免费在线观看免费| 18禁动态无遮挡网站| av播播在线观看一区| 好男人视频免费观看在线| 日韩一区二区视频免费看| 在线天堂最新版资源| 亚洲伊人久久精品综合| 亚洲成人一二三区av| 亚洲精品日韩av片在线观看| 麻豆成人午夜福利视频| 91久久精品电影网| 18禁裸乳无遮挡免费网站照片| 色5月婷婷丁香| 成人影院久久| 久久婷婷青草| 国产亚洲午夜精品一区二区久久| 极品少妇高潮喷水抽搐| 这个男人来自地球电影免费观看 | 久久久欧美国产精品| 久久99热这里只有精品18| 亚洲精品成人av观看孕妇| 人人妻人人澡人人爽人人夜夜| 18禁在线无遮挡免费观看视频| 久久亚洲国产成人精品v| 搡女人真爽免费视频火全软件| 久久精品国产鲁丝片午夜精品| 亚洲精品,欧美精品| 国语对白做爰xxxⅹ性视频网站| 夜夜看夜夜爽夜夜摸| 亚洲精品久久午夜乱码| 少妇的逼水好多| 18禁在线播放成人免费| 人妻 亚洲 视频| 五月伊人婷婷丁香| 亚洲精品一区蜜桃| 日本av免费视频播放| 精品久久久久久久末码| 性高湖久久久久久久久免费观看| 九色成人免费人妻av| 插阴视频在线观看视频| 寂寞人妻少妇视频99o| 在线观看免费高清a一片| 免费人成在线观看视频色| 97在线视频观看| 观看免费一级毛片| 久久热精品热| 三级国产精品片| 人妻夜夜爽99麻豆av| 最近手机中文字幕大全| 久久精品国产亚洲av涩爱| 亚洲国产欧美人成| 久久ye,这里只有精品| 97超碰精品成人国产| 久久精品国产自在天天线| 亚洲欧美日韩另类电影网站 | 麻豆成人av视频| 色视频在线一区二区三区| 日韩一区二区视频免费看| 午夜视频国产福利| 一区二区三区精品91| 99久久人妻综合| 伊人久久精品亚洲午夜| 少妇人妻一区二区三区视频| 久久国产亚洲av麻豆专区| 久久久久久人妻| 中文资源天堂在线| 中文天堂在线官网| www.色视频.com| 美女福利国产在线 | 亚洲国产精品专区欧美| 91精品国产国语对白视频| 尾随美女入室| 亚洲色图av天堂| 日本午夜av视频| 自拍欧美九色日韩亚洲蝌蚪91 | 久久精品国产亚洲网站| 丝袜喷水一区| 99re6热这里在线精品视频| av在线观看视频网站免费| 爱豆传媒免费全集在线观看| 久久ye,这里只有精品| 国产精品嫩草影院av在线观看| 91精品一卡2卡3卡4卡| 国产一区二区在线观看日韩| 好男人视频免费观看在线| 免费少妇av软件| 国产亚洲5aaaaa淫片| 日日撸夜夜添| 香蕉精品网在线| 日本与韩国留学比较| 人妻少妇偷人精品九色| 91久久精品电影网| 亚洲av.av天堂| 久热久热在线精品观看| 黄片wwwwww| a 毛片基地| 两个人的视频大全免费| 日韩中文字幕视频在线看片 | 成人毛片a级毛片在线播放| 激情五月婷婷亚洲| 国产精品蜜桃在线观看| .国产精品久久| 观看av在线不卡| 91久久精品国产一区二区成人| 久久久久久久久久久丰满| 国产男女超爽视频在线观看| 国产精品人妻久久久影院| 妹子高潮喷水视频| 成人高潮视频无遮挡免费网站| 成人国产av品久久久| 亚洲图色成人| av.在线天堂| 亚洲熟女精品中文字幕| 一级毛片久久久久久久久女| 欧美成人精品欧美一级黄| 18+在线观看网站| 又爽又黄a免费视频| 美女脱内裤让男人舔精品视频| 国产高清不卡午夜福利| 观看av在线不卡| av一本久久久久| 欧美成人午夜免费资源| 永久网站在线| 欧美日韩视频高清一区二区三区二| 久久久久久久久久久丰满| 一个人看的www免费观看视频| 啦啦啦在线观看免费高清www| 欧美丝袜亚洲另类| 国产午夜精品一二区理论片| 国产精品偷伦视频观看了| 国产精品久久久久久av不卡| 精品亚洲成a人片在线观看 | 网址你懂的国产日韩在线| 色吧在线观看| 最近手机中文字幕大全| 久久久久久久亚洲中文字幕| 纵有疾风起免费观看全集完整版| 亚洲精品国产色婷婷电影| 欧美 日韩 精品 国产| 黑丝袜美女国产一区| 亚洲内射少妇av| av不卡在线播放| 日本黄色日本黄色录像| 欧美少妇被猛烈插入视频| 久久av网站| 一级毛片久久久久久久久女| 亚洲av中文字字幕乱码综合| 久久人人爽av亚洲精品天堂 | 91狼人影院| 国产亚洲午夜精品一区二区久久| 女人久久www免费人成看片| 国产高清有码在线观看视频| 欧美人与善性xxx| 我要看日韩黄色一级片| 全区人妻精品视频| 毛片女人毛片| 永久网站在线| 欧美成人精品欧美一级黄| 精品久久久久久久久亚洲| 干丝袜人妻中文字幕| 18禁裸乳无遮挡动漫免费视频| 夜夜爽夜夜爽视频| 五月玫瑰六月丁香| 中文字幕人妻熟人妻熟丝袜美| 久久影院123| 麻豆成人av视频| 天美传媒精品一区二区| av天堂中文字幕网| 最近手机中文字幕大全| .国产精品久久| 97热精品久久久久久| 大陆偷拍与自拍| 亚洲精品日本国产第一区| 久久久亚洲精品成人影院| 亚洲欧美一区二区三区国产| 精品久久久久久电影网| 一个人免费看片子| 亚洲伊人久久精品综合| av在线app专区| 国产一区二区在线观看日韩| 一级黄片播放器| 中国三级夫妇交换| 少妇精品久久久久久久| 日韩不卡一区二区三区视频在线| 亚洲美女搞黄在线观看| 一级毛片 在线播放| 老女人水多毛片| 天美传媒精品一区二区| 国产探花极品一区二区| 国产高清有码在线观看视频| 男女啪啪激烈高潮av片| 成年免费大片在线观看| 国产欧美另类精品又又久久亚洲欧美| 久热这里只有精品99| 中文精品一卡2卡3卡4更新| 亚洲中文av在线| 男男h啪啪无遮挡| 亚洲色图av天堂| a 毛片基地| 亚洲精品乱码久久久久久按摩| 乱码一卡2卡4卡精品| 国产成人精品婷婷| 成人一区二区视频在线观看| 王馨瑶露胸无遮挡在线观看| 欧美区成人在线视频| 男人狂女人下面高潮的视频| 高清av免费在线| 久久国产精品大桥未久av | 下体分泌物呈黄色| 日韩国内少妇激情av| 亚洲欧美日韩东京热| av国产久精品久网站免费入址| 亚洲欧美一区二区三区黑人 | 国产成人91sexporn| 亚洲av成人精品一区久久| 久久人人爽av亚洲精品天堂 | 成年人午夜在线观看视频| 国产精品国产三级专区第一集| 直男gayav资源| 色吧在线观看| 日日啪夜夜爽| 爱豆传媒免费全集在线观看| 乱码一卡2卡4卡精品| 久久久国产一区二区| 色5月婷婷丁香| av卡一久久| av网站免费在线观看视频| 欧美3d第一页| 精品一区二区免费观看| av专区在线播放| 免费观看性生交大片5| 日本免费在线观看一区| 免费黄色在线免费观看| 少妇丰满av|