趙一淳,劉亞雷,李亦舒,方媛媛,王博涵,李佳瑞,吳 懂,暢犇澤,陽(yáng)廣鳳*
強(qiáng)污泥流失對(duì)anammox工藝脫氮性能及菌群的影響
趙一淳1,2,3,劉亞雷2,3,李亦舒2,3,方媛媛2,3,王博涵2,李佳瑞2,吳 懂2,暢犇澤2,陽(yáng)廣鳳2,3*
(1.浙江海洋大學(xué)國(guó)家海洋設(shè)施養(yǎng)殖工程技術(shù)研究中心,浙江 舟山 316022;2.浙江海洋大學(xué)環(huán)境科學(xué)與工程系,浙江 舟山 316022;3.浙江省石油化工環(huán)境污染控制重點(diǎn)實(shí)驗(yàn)室,浙江 舟山 316022)
為探究強(qiáng)污泥流失對(duì)厭氧氨氧化(anammox)反應(yīng)器系統(tǒng)脫氮性能、顆粒污泥特性及功能菌群的影響,試驗(yàn)以模擬廢水為處理對(duì)象構(gòu)建了上流式厭氧污泥床(UASB)反應(yīng)器.試驗(yàn)結(jié)果表明,損失近一半反應(yīng)器有效體積的污泥未明顯破壞anammox工藝脫氮性能.反應(yīng)器在4d后總氮(TN)的去除率(RE)達(dá)到89.18%污泥EPS含量較高且其PN/PS值(0.12)較低有利于anammox顆粒污泥的形成和集聚.Anammox顆粒污泥粒徑>2mm的污泥占到系統(tǒng)總污泥的44.9%,粒徑大于0.5mm的污泥占總污泥的84.3%,能夠有效持留污泥.厭氧氨氧化菌的優(yōu)勢(shì)門(mén)為變形菌門(mén)(28.03%)、浮霉菌門(mén)(15.57%)和綠彎菌門(mén)(8.63%),優(yōu)勢(shì)屬為anammox菌屬(9.63%)和(3.54%),參與anammox反應(yīng)的功能基因包括S(1.27%)、(1.28%)、(1.29%)、(7.04%)和(0.81%),但反硝化菌及其功能基因的存在使得化學(xué)計(jì)量比Rs(ΔNO2--N/ΔNH4+-N)和Rp(ΔNO3--N/ΔNH4+-N)低于理論值.
厭氧氨氧化;污泥流失;污泥特性;菌群;功能基因
廢水脫氮重在將NH4+、NO2-和NO3-等轉(zhuǎn)化為N2[1-2].物理和化學(xué)脫氮法成本高且有可能會(huì)造成二次污染[3].生物脫氮主要通過(guò)微生物作用而達(dá)到脫氮目的,運(yùn)行成本低且二次污染少.傳統(tǒng)的生物脫氮包括硝化和反硝化兩個(gè)過(guò)程[4],但是由于硝化作用好氧,反硝化作用需要有機(jī)物[5],運(yùn)行成本較高.厭氧氨氧化工藝(anammox)是一種更為高效低耗的新型脫氮技術(shù),被廣泛用于高氨氮、低C/N比廢水處理[6-7].
厭氧氨氧化菌(AnAOB)是anammox工藝的主要功能菌群,能夠在缺氧或者厭氧的條件下以NO2-作為電子受體直接將NH4+轉(zhuǎn)化為N2[7-10].與傳統(tǒng)生物脫氮工藝相比,anammox工藝具有不需要添加外源有機(jī)碳源、不需要曝氣、占地面積少、運(yùn)行成本低和剩余污泥量少等優(yōu)點(diǎn)[6,9,11].Anammox工藝的啟動(dòng)及運(yùn)行本質(zhì)是反應(yīng)器內(nèi)AnAOB的激活、富集和增長(zhǎng),但由于AnAOB生長(zhǎng)遲緩、倍增時(shí)間長(zhǎng)、細(xì)胞產(chǎn)率低,對(duì)環(huán)境條件極為敏感[8,10-12],要實(shí)現(xiàn)anammox工藝穩(wěn)定運(yùn)行、提高脫氮性能具有一定的難度[13].
Anammox工藝的脫氮性能與污泥特性,包括生物量、污泥的粒徑、沉降性能、胞外聚合物(EPS)、AnAOB活性、功能基因等有關(guān)[9-12].高濃度anammox污泥可快速啟動(dòng)anammox工藝并保持系統(tǒng)高效脫氮性能,而系統(tǒng)污泥流失不但會(huì)降低系統(tǒng)污泥濃度.而且會(huì)導(dǎo)致部分污泥上浮,進(jìn)一步流失污泥,降低生物量,從而降低系統(tǒng)脫氮性能[14].顯然,污泥流失對(duì)anammox工藝脫氮性能及污泥顆粒特性的影響研究十分重要.本研究構(gòu)建并運(yùn)行實(shí)驗(yàn)室規(guī)模的上流式厭氧污泥反應(yīng)器(UASB),探究強(qiáng)污泥流失條件下對(duì)anammox系統(tǒng)脫氮性能的影響,以及在此基礎(chǔ)上解析anammox顆粒污泥特性,探究顆粒污泥特性和功能菌群構(gòu)成,闡明anammox工藝系統(tǒng)高效脫氮機(jī)理.
試驗(yàn)進(jìn)水為模擬廢水,含有基質(zhì)、無(wú)機(jī)鹽和營(yíng)養(yǎng)元素等物質(zhì).具體進(jìn)水成分包括基質(zhì):(NH4)2SO4和NaNO2各98mg/L;無(wú)機(jī)鹽:KH2PO410mg/L、KHCO31000mg/L、MgSO4?7H2O 200mg/L和CaCl2?2H2O 100mg/L;營(yíng)養(yǎng)元素Ⅰ:EDTA二鈉6.25mg/L和FeSO4?7H2O 11.43mg/L;營(yíng)養(yǎng)元素Ⅱ:EDTA二鈉6.25mg/L、ZnSO4?7H2O 0.54mg/L、CoCl2?6H2O 0.30mg/L、MnCl2?4H2O 1.24mg/L、CuSO4?5H2O 0.31mg/L、H3BO30.02mg/L、NaMoO4?2H2O 0.28mg/L和NiCl2?2H2O 0.26mg/L.
試驗(yàn)構(gòu)建了實(shí)驗(yàn)室規(guī)模的UASB,總?cè)莘e和有效容積分別為4.0和3.4L.反應(yīng)器置于避光恒溫室內(nèi),室內(nèi)溫度為(33±2)℃.模擬廢水由蠕動(dòng)泵泵入反應(yīng)器.
反應(yīng)器共分為3個(gè)運(yùn)行階段.階段Ⅰ(1~96d),反應(yīng)器水力停留時(shí)間(HRT)為3.12h,平均氮容積負(fù)荷(NLR)為1.55kg N/(m3?d).階段Ⅱ(97~149d),HRT降至1.92h,平均氮容積負(fù)荷(NLR)提高至2.55kg N/(m3?d).階段III(150~172d)初期,反應(yīng)器取出anammox污泥1.6L,模擬系統(tǒng)污泥流失.取出的顆粒污泥近乎占反應(yīng)器有效體積的1/2,屬于較高的污泥流失,本研究將其界定為強(qiáng)污泥流失.取泥之后,HRT提升至4.08h,NLR降至1.21kg N/(m3?d).在150和152d時(shí),HRT分別降低至3.36和2.16h,平均NLR提升至2.25kg N/(m3?d).
定期取反應(yīng)器進(jìn)出水進(jìn)行水質(zhì)分析.NH4+-N、NO2--N和NO3--N分別采用苯酚-次氯酸鹽比色法、N-(1-萘基)-乙二胺光度法和紫外分光光度法測(cè)定[15].混合液懸浮固體(SS)、混合液揮發(fā)性懸浮固體(VSS)采用重量法測(cè)定[15].
1.4.1 EPS組分測(cè)定方法 試驗(yàn)結(jié)束取反應(yīng)器污泥分析溶解型EPS(S-EPS)、松散型EPS(LB-EPS)和緊密型EPS(TB-EPS)[16]. EPS提取方法參照文獻(xiàn)[16],EPS主要成分蛋白質(zhì)(PN)和多糖(PS)分別采用Lowry法[17]和改進(jìn)苯酚-硫酸法[18]測(cè)定.
1.4.2 3D熒光光譜圖分析方法 本試驗(yàn)采用熒光光度計(jì)檢測(cè)不同EPS的三維熒光光譜(3D-EEM).發(fā)射波長(zhǎng)EM范圍為200~550nm,掃描增量為1nm;激發(fā)波長(zhǎng)EX范圍為200~450nm,掃描增量為5nm.EM和EX的狹縫寬度均為10nm,掃描速度為1200nm/ min.
試驗(yàn)結(jié)束取混合均勻的anammox污泥用于測(cè)定污泥比厭氧氨氧化活性(SAA).污泥用純凈水清洗2~3次后取約20mL加入100mL的血清瓶中,加入部分提前預(yù)熱35℃的蒸餾水,再添加NH4+-N和NO2--N儲(chǔ)備溶液定容至100mL,使血清瓶NH4+-N和NO2--N濃度均為98mg/L.立即對(duì)血清瓶充高純氮?dú)?min以排除血清瓶中的溶解氧(DO),塞緊瓶塞放入搖床.搖床溫度設(shè)置為35℃,轉(zhuǎn)速為180r/min.試驗(yàn)開(kāi)始時(shí)取第一個(gè)水樣作為0h樣品.之后1~2h定時(shí)取水樣用于測(cè)量NH4+-N、NO2--N和NO3--N的濃度.通過(guò)濃度-時(shí)間曲線及血清瓶中VSS水平計(jì)算SAA值.
采用篩分法測(cè)量粒徑,采用標(biāo)準(zhǔn)篩篩分分析不同粒級(jí)的顆粒污泥組成.設(shè)置5個(gè)粒級(jí)范圍分別為0.075~0.25,0.25~0.5,0.5~1,1~2和>2mm.分析每個(gè)粒級(jí)范圍污泥的SS和VSS得出不同粒級(jí)anammox顆粒污泥分布特征.
試驗(yàn)結(jié)束時(shí)取反應(yīng)器污泥用于宏基因分析.測(cè)序由生工生物工程(上海)股份有限公司進(jìn)行.采用NEB Next?Ultra? DNA Library Prep Kit for Illumina? 試劑盒提取樣品DNA.經(jīng)Illumina Hiseq?得到的原始圖像數(shù)據(jù)文件由CASAVA堿基識(shí)別(Base Calling)分析轉(zhuǎn)化為原始測(cè)序序列(Sequenced Reads).分別采用FastQC和Trimmomatic對(duì)原始數(shù)據(jù)進(jìn)行質(zhì)量評(píng)估和過(guò)濾處理.使用IDBA_UD拼接組裝Clean reads,獲得長(zhǎng)序列contig,并根據(jù)reads間的overlap關(guān)系獲得contigs,綜合評(píng)定多個(gè)Kmer的組裝結(jié)果,選擇最佳組裝結(jié)果.之后采用Prodigal對(duì)拼接的contigs進(jìn)行ORF預(yù)測(cè),選擇長(zhǎng)度不小于100bp的基因并翻譯成蛋白序列.采用CD-HIT去冗余獲得非冗余基因集.采用Bowtie2將樣本Clean reads比對(duì)到非冗余基因集序列上,利用SAMtools獲得比對(duì)成功的reads,再結(jié)合基因長(zhǎng)度計(jì)算基因的豐度.將基因集與NR、KEGG、eggNOG、ARDB、CAZy和SEED進(jìn)行比對(duì),獲得物種和功能注釋信息以及功能豐度和物種豐度.
2.1.1 運(yùn)行性能分析 本試驗(yàn)歷時(shí)172d,試驗(yàn)期間反應(yīng)器運(yùn)行性能如圖1所示.階段Ⅰ,反應(yīng)器NH4+-N、NO2--N和NO3--N的平均出水濃度分別為4.24,0.4和14.40mg/L,NH4+-N、NO2--N和TN的平均去除率分別高達(dá)95.60%、99.20%和90.52%.在anammox工藝中,可通過(guò)縮短HRT提高NLR.階段II,反應(yīng)NLR由1.55kg N/(m3?d) 提高至2.55kg N/(m3?d).在整個(gè)階段Ⅱ,NH4+-N、NO2--N和NO3--N的平均出水濃度略有升高分別為6.88,0.77和14.14mg/L,NH4+-N、NO2--N和TN的平均去除率分別為93.20%、99.24%和89.33%.此階段的平均去除速率(NRR)由1.40kg N/(m3?d)提升至2.27kg N/ (m3?d).
階段III,反應(yīng)器取泥1.6L后HRT提升至4.08h,NLR降至1.21kg N/(m3?d).在150d時(shí)測(cè)得出水NH4+-N、NO2--N和NO3--N濃度分別為5.15,0.47和11.63mg/L.第153d,HRT進(jìn)一步降低縮短至2.16h,與取泥前的HRT接近,平均NLR提升至2.25kg N/(m3?d).在取泥4d后,出水NH4+-N、NO2--N和NO3--N濃度分別為7.87,0.24和15.04mg/L,TN去除率達(dá)89.18%.經(jīng)運(yùn)行20d后,反應(yīng)器測(cè)得在153~172d內(nèi)平均出水NH4+-N、NO2--N和NO3--N濃度分別為8.35,0.43和14.16mg/L,對(duì)應(yīng)NH4+-N和NO2--N的平均去除率均在90%以上,平均TN去除率達(dá)88.69%,對(duì)應(yīng)NRR為2.00kg N/(m3?d).
Anammox工藝污泥流失在反應(yīng)器中會(huì)經(jīng)常遇到,一般而言,當(dāng)進(jìn)水的上升流速大于顆粒污泥的沉降速度便會(huì)造成污泥流失.本試驗(yàn)污泥流失的量接近有效容積的1/2,但經(jīng)過(guò)4d的恢復(fù),反應(yīng)器脫氮性能便接近污泥流失前,說(shuō)明強(qiáng)污泥流失并未對(duì)脫氮性能造成較大的影響.可能是污泥流失后,下層被擠壓的污泥開(kāi)始上浮,污泥與水接觸的表面積增大,加之AnAOB位于顆粒污泥外部[14],系統(tǒng)脫氮潛力得到了充分開(kāi)發(fā).
2.1.2 化學(xué)計(jì)量比分析 在anammox工藝中, NO2--N與NH4+-N的消耗量之比(s:ΔNO2--N/ ΔNH4+-N)及NO3--N生成量與NH4+-N的消耗量之比(p:ΔNO3--N/ΔNH4+-N)可以有效表征系統(tǒng)anammox脫氮性能[19].據(jù)報(bào)道,anammox反應(yīng)中s和p最佳理論值分別為1.32和0.26[6].本試驗(yàn)中,階段Ⅰ和Ⅱ的s和p值分別為0.99~1.17和0.10~ 0.17,均值分別為1.10和0.13.階段Ⅲs值略有下降,為0.92~1.08,均值為1.03.p變化不大,范圍和均值分別為0.11~0.18和0.13.顯然,取泥前后的s和p值均低于理論值.現(xiàn)有研究表明,anammox系統(tǒng)中s和p的值受進(jìn)水組分、環(huán)境條件、反應(yīng)器構(gòu)造和AnAOB等因素影響,導(dǎo)致與理論值產(chǎn)生一定的差異.Wang等[20]研究得出在提高氮負(fù)荷的條件下,p高于2.2.唐崇儉等[21]研究得出s和p的實(shí)際值分別為0.5~1.1和0.04~0.41.本試驗(yàn)p值低于理論值,但均在報(bào)道的范圍之內(nèi),可能存在一部分NO3--N發(fā)生了內(nèi)源反硝化反應(yīng)造成(2.4功能菌群和功能基因分析證實(shí)了這一點(diǎn)).
表1 不同顆粒粒徑anammox污泥生物量水平
試驗(yàn)結(jié)束時(shí),試驗(yàn)測(cè)得5和30min的污泥沉降比(SV)SV5和SV30分別為40%和37%.SV值越低,沉降性能越好.污泥沉降的越快,代表污泥顆粒密實(shí)、緊湊,污泥處理效果越好.本試驗(yàn)的SV值表明污泥沉降性能較好.不同顆粒粒徑anammox污泥生物量水平如表1所示.試驗(yàn)結(jié)果表明,粒徑小于0.5mm污泥顆粒的VSS/SS為9.6%,大于0.5mm污泥顆粒的VSS/SS為77.2%.粒徑大于0.5mm的污泥占總污泥的84.3%,大于2mm的顆粒占比44.9%.據(jù)Wang等[22]研究,anammox污泥最佳粒徑處于2.00~4.75mm,表明系統(tǒng)污泥顆?;闆r非常好,且大顆粒污泥中含有較高的揮發(fā)性有機(jī)質(zhì).本研究中,以NH4+-N、NO2--N和TN表征的比厭氧氨氧化活性(SAA)分別為0.06kg NH4+-N/(kgVSS?d)、0.11kg NO2—N/(kgVSS?d)和0.24kg TN/(kgVSS?d).
2.3.1 EPS含量 試驗(yàn)提取到的S-EPS、LB-EPS和TB-EPS的DNA含量分別為0.0269、0.0122和0.3252mg/L.EPS中DNA含量是衡量EPS提取過(guò)程中細(xì)胞破損程度的重要指標(biāo)[22],如果提取物中DNA含量異常高則表明提取時(shí)有較多的微生物細(xì)胞發(fā)生破裂,提取效果不佳.本文得到的提取物中DNA含量均比較低,說(shuō)明試驗(yàn)EPS的提取有效.
EPS主要由PN和PS構(gòu)成[16],污泥中不同EPS的PN、PS和總EPS含量如表2所示.試驗(yàn)結(jié)果表明,TB-EPS的含量最高,占總EPS的64.89%,S-EPS和LB-EPS各占21.07%和14.04%.TB-EPS在污泥顆?;惺侵匾M成部分,對(duì)污泥的凝聚和沉降性能起著關(guān)鍵作用[16,23].
PN/PS是表征污泥凝聚性和沉降性的關(guān)鍵因子.PN與PS分別表現(xiàn)為疏水性和親水性,且分別存在于細(xì)胞的內(nèi)部與外部,極大地影響著細(xì)菌表面電荷、疏水性及聚集體空間結(jié)構(gòu)[24].試驗(yàn)中S-EPS、LB-EPS、TB-EPS和總EPS的PN/PS分別為0、0、0.27和0.16,表明PN值均低于PS.Wang等[25]發(fā)現(xiàn)PS存在大量氫鍵,且具有高粘度、高機(jī)械強(qiáng)度和高度支化的結(jié)構(gòu),促進(jìn)了anammox污泥的高聚集.唐崇儉等[26]的研究表明PN/PS越小顆粒越穩(wěn)定.本試驗(yàn)中污泥顆粒化程度高,有可能跟較高的PS含量有關(guān).本試驗(yàn)中,S-EPS和LB-EPS未檢測(cè)到PN含量,可能是因?yàn)轭w粒污泥較為密實(shí)造成的結(jié)果.
表2 不同EPS的PN和PS含量(mg/L)
注:-表示未檢出.
然而,顧澄偉[16]觀察到厭氧氨氧化系統(tǒng)污泥顆?;^(guò)程中PN/PS值在不斷增大,在高負(fù)荷運(yùn)行條件下可達(dá)4.87;陳方敏等[27]觀察到PN/PS為1~5,值越大污泥顆粒越趨于穩(wěn)定;由于PN獨(dú)特的疏水性及表面帶負(fù)電荷,可作用于大量離子相互凝聚.PN/PS值的大小與厭氧氨氧化污泥顆?;邦w粒穩(wěn)定性的關(guān)系仍需進(jìn)一步研究.
2.3.2 3D-EMM分析 顆粒污泥S-EPS、LB-EPS和TB-EPS(10倍稀釋樣)的3D-EMM如圖2所示. S-EPS和LB-EPS沒(méi)有掃描出明顯的特征峰,而TB- EPS共檢測(cè)到2個(gè)峰A和B.峰A(x/m=275~ 300/ 320~360)為類(lèi)色氨酸蛋白物質(zhì),峰B(x/m=225~ 250-300~325)為類(lèi)酪氨酸蛋白物質(zhì).顯然,不同類(lèi)型的EPS含有蛋白類(lèi)型存在差異.由于峰A熒光強(qiáng)度高于峰B,所以TB-EPS中類(lèi)色氨酸蛋白物質(zhì)較高,這與Liu等[28]報(bào)道的結(jié)果一致.類(lèi)蛋白物質(zhì)的存在可提高顆粒污泥的凝聚性和穩(wěn)定性.
2.4.1 菌群在門(mén)水平的種類(lèi)及豐度分析 試驗(yàn)共檢測(cè)到12個(gè)相對(duì)豐度(RA)大于1%的門(mén),包括裝甲菌門(mén)(Armatimonadetes)、綠菌門(mén)(Chlorobi)、藍(lán)細(xì)菌門(mén)(Cyanobacteria)、Ignavibacteriae菌門(mén)、厚壁菌門(mén)(Firmicutes)、擬桿菌門(mén)(Bacteroidetes)、Bacteria_ noname菌門(mén)、放線菌門(mén)(Actinobacteria)、酸桿菌門(mén)(Acidobacteria)、綠彎菌門(mén)(Chloroflexi)、浮霉菌門(mén)(Planctomycetes)和變形菌門(mén)(Proteobacteria)(圖3a).顯然,RA排列前三的門(mén)分別為變形菌門(mén)、浮霉菌門(mén)和綠彎菌門(mén),RA分別為28.03%、15.57%和8.63%,Liu等[29]也在anammox系統(tǒng)中觀察到了這3種優(yōu)勢(shì)菌門(mén).在annmmox反應(yīng)系統(tǒng)中,浮霉菌門(mén)和變形菌門(mén)的很多細(xì)菌與脫氮作用相關(guān).AnAOB屬于浮霉菌門(mén),是anammox反應(yīng)的主要承擔(dān)者.本研究中變形菌門(mén)的RA高于浮霉菌門(mén).研究表明,變形菌門(mén)某些細(xì)菌也會(huì)促進(jìn)反硝化反應(yīng)[30],這可能是本試驗(yàn)Rp值偏低的原因之一.綠彎菌門(mén)也是ananmmox反應(yīng)中常見(jiàn)的菌門(mén),雖然沒(méi)有直接脫氮的作用,但不可缺少.Ismail等[31]研究得出,當(dāng)anammox菌處于高濃度有機(jī)環(huán)境時(shí),綠彎菌門(mén)的豐度會(huì)大幅增加,以利用和降解已腐爛的anammox菌體,降低有機(jī)物對(duì)anammox系統(tǒng)的抑制作用.本試驗(yàn)還檢測(cè)anammox系統(tǒng)中常見(jiàn)的影響脫氮的門(mén),如厚壁菌門(mén).厚壁菌門(mén)某些細(xì)菌會(huì)參與反硝化作用,且對(duì)一些不利的環(huán)境因子具有一定的耐受作用[3,30].Anammox系統(tǒng)中的裝甲菌門(mén)和酸桿菌門(mén)會(huì)使氨被過(guò)度消耗[32-33],這可能是本試驗(yàn)中Rs值低于理論值的原因之一.
2.4.2 菌群在屬水平的種類(lèi)及豐度分析 顆粒污泥菌群在屬水平的組成及相對(duì)豐度如圖3(b)所示.RA大于0.5%的屬共有22個(gè),其中、和_的相對(duì)豐度為前3位.據(jù)報(bào)道,共有7個(gè)屬[34],分別為、、、、、和.本試驗(yàn)檢測(cè)到的優(yōu)勢(shì)AnAOB屬為和, RA分別為9.63%和3.54%.顯然,污泥流失之后,菌屬仍是系統(tǒng)顆粒污泥的優(yōu)勢(shì)菌屬.其中,的相對(duì)豐度是的2.7倍,這可能是由于氮負(fù)荷大小造成的,據(jù)Li[35]報(bào)道,在低氮負(fù)荷的豐度高于,且隨著氮負(fù)荷的增加,的豐度會(huì)逐漸增加.
顆粒污泥具有較高的物種及基因多樣性.試驗(yàn)共檢測(cè)到648580個(gè)基因,Shnnon指數(shù)和Simpson指數(shù)分別為11.70和2.4×10-5.本試驗(yàn)共檢測(cè)到18個(gè)與氮素代謝有關(guān)的功能基因(圖4).在anammox反應(yīng)中[36],起關(guān)鍵作用的代謝酶有亞硝酸鹽還原酶(S)、聯(lián)氨合成酶()、聯(lián)氨氧化酶()、羥胺氧化還原酶()及聯(lián)氨脫氫酶()[37].AnAOB通過(guò)S將NO2--N還原為NO,其在的作用下結(jié)合NH4+-N生成N2H4,最后通過(guò)功能基因//將生成的N2H4轉(zhuǎn)化為N2[36,38].本試驗(yàn)中,anammox功能基因包括S、、、和,相對(duì)豐度分別為1.27%、1.28%、1.29%、7.04%和0.81%.
基因是AnAOB獨(dú)有的一種功能基因,只能被用來(lái)氧化N2H4生成N2[13].基因產(chǎn)生的渠道有好氧氨氧化菌(AOB)、反硝化菌(DB)和AnAOB[39],但不同菌種的基因所表達(dá)的功能不同.AOB和DB中的基因既可以將NH2OH氧化為NO2-,又可以將NO2--N還原為NH2OH[1],來(lái)自AnAOB的基因只能將NH2OH氧化為NO.對(duì)N2H4的親和力弱于,更傾向于親和NH2OH,但會(huì)結(jié)合NH2OH卻沒(méi)有任何作用[39],故NH2OH的含量會(huì)抑制的活性.周英杰等[40]研究發(fā)現(xiàn)NH2OH含量超過(guò)2.4μmol/L便會(huì)對(duì)活性造成抑制.NH4+-N能夠在和的作用下生成NH2OH[38-39].本試驗(yàn)的RA為0.0076%,由于厭氧條件,的作用生成的NH2OH可能較低.本試驗(yàn)中的RA為7.04%.在的作用下,部分NO2--N轉(zhuǎn)化為NH2OH.本試驗(yàn)檢測(cè)出變形菌門(mén)的RA為28.03%.反硝化菌屬于變形菌門(mén)[13,41],故部分的有可能來(lái)自于DB.
圖4 功能基因豐度
在本試驗(yàn)中,和的RA較低,分別為1.28%和1.29%.即便如此,試驗(yàn)期間反應(yīng)器有著穩(wěn)定的脫氮性能,這說(shuō)明和的活性較高.在試驗(yàn)運(yùn)行條件下,其能夠滿足系統(tǒng)穩(wěn)定脫氮,Wang等[42]的研究揭示了在合適的運(yùn)行環(huán)境下少量的基因豐度就可以表現(xiàn)出較高的厭氧氨氧化活性.只有在溫度過(guò)高或過(guò)低或偏酸偏堿等逆境中,AnAOB才需要轉(zhuǎn)錄更多的基因來(lái)表達(dá)更多的酶來(lái)抵制不利環(huán)境因子的影響.
本試驗(yàn)也檢測(cè)到了RA為6.20%的多功能酶硝酸鹽-亞硝酸鹽氧還酶基因(G)和硝酸還原酶前體基因(A),其相對(duì)豐度分別為6.20%和1.04%. Anammox反應(yīng)產(chǎn)生的硝酸鹽在G和A的作用下會(huì)進(jìn)行反硝化反應(yīng)[38],這也是本試驗(yàn)Rp低于理論值的原因.試驗(yàn)還檢測(cè)出RA為2.23%和0.69%的形成氨的異化亞硝酸鹽還原酶基因(A)和B,A和B可促進(jìn)NO2--N向NH4+-N轉(zhuǎn)換[1].以及1.56%的一氧化氮還原酶基因(B)和1.51%的一氧化二氮還原酶基因(Z)等,B可將NO還原為N2O,Z進(jìn)一步將N2O還原為N2[36].試驗(yàn)結(jié)果表明,整個(gè)anammox系統(tǒng)跟脫氮相關(guān)的途徑不止一個(gè),系統(tǒng)脫氮過(guò)程可能由不同基因表達(dá)合成的酶共同完成.
3.1 Anammox工藝能夠保持長(zhǎng)期穩(wěn)定運(yùn)行, NH4+-N、NO2--N和TN的平均去除率分別高達(dá)95.60%、99.20%和90.52%.在穩(wěn)定運(yùn)行的anammox系統(tǒng)中,污泥流失并未對(duì)anammox系統(tǒng)的脫氮性能造成較大影響,TN平均去除率仍可達(dá)88.69%,并在4d后恢復(fù)到89.18%.
3.2 較高的EPS含量及較低的PN/PS值(0.12)有利于anammox顆粒污泥的形成和集聚.Anammox顆粒污泥粒徑大于0.5mm的污泥占總污泥的84.3%,能夠有效持留污泥.
3.3 Anammox工藝優(yōu)勢(shì)菌門(mén)為變形菌門(mén)(28.03%)、浮霉菌門(mén)(15.57%)和綠彎菌門(mén)(8.63%). AnAOB優(yōu)勢(shì)屬為(9.63%)和(3.54%),主要脫氮功能基因?yàn)镾(1.27%)、(1.28%)、(1.29%)、(7.04%)和(0.81%).此外,反硝化菌及其功能基因的存在使得anammox反應(yīng)化學(xué)計(jì)量比Rs和Rp低于理論值.
[1] You Q G, Wang J H, Qi G X, et al. Anammox and partial denitrification coupling: a review [J]. RSC Advances, 2020,10: 12554-12572.
[2] Liu Y X, Liu W, Li Y Y, et al. Layered inoculation of anaerobic digestion and anammox granular sludges for fast start-up of an anammox reactor [J]. Bioresource Technology, 2021,339(11):125573.
[3] Li Y, Fan T, Xu D, et al. Advances in biological nitrogen removal of landfill leachate [J]. Sustainability, 2021,13(11):6236.
[4] Ren Y, Ngo H H, Guo W S, et al. New perspectives on microbial communities and biological nitrogen removal processes in wastewater treatment systems [J]. Bioresource Technology, 2019,297(8):122491.
[5] Wei Y, Jin Y, Zhang W J. Domestic Sewage Treatment Using a one-stage ANAMMOX process [J]. International Journal of Environmental Research and Public Health, 2020,17(9):3284.
[6] Strous M, Heijnen J J, Kuenen J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms [J]. Applied Microbiology and Biotechnology, 1998,50(5):589-596.
[7] 陳重軍,王瑤琪,姜 瀅,等.有機(jī)物對(duì)連續(xù)流Anammox脫氮及微生物群落影響 [J]. 中國(guó)環(huán)境科學(xué), 2019,39(12):5049-5055.
Cheng C J, Wang Y Q, Jiang Y, et al. Effects of organic matter on nitrogen removal and microbial community in anammox reactor [J]. China Environmental Science, 2019,39(12):5049-5055.
[8] Wang Y, Ji X M, Jin R C. How anammox responds to the emerging contaminants: Status and mechanisms [J]. Journal of Environmental Management, 2021,293:112906.
[9] Kocamemi B A, Dityapak D, Semerci N, et al. Anammox start-up strategies: the use of local mixed activated sludge seed versus anammox seed [J]. Water Science & Technology, 2018,78(9):1901– 1915.
[10] Zheng B Y, Zhang L, Guo J H, et al. Suspended sludge and biofilm shaped different anammox communities in two pilot-scale one-stage anammox reactors [J]. Bioresource Technology, 2016,211:273-279.
[11] Niederdorfer R, Hausherr D, Palomo A, et al. Temperature modulates stress response in mainstream anammox reactors.[J]. Communications Biology, 2021,4(1):23.
[12] Adams M, Xie J X, Kabore A W J, et al. Research advances in anammox granular sludge:a review [J]. Critical Reviews in Environmental Science and Technology, 2020,(4):1-44.
[13] Lin Q J, Kang D, Zhang M, et al. The performance of anammox reactor during start-up: enzymes tell the story [J]. Process Safety and Environmental Protection, 2019,121:247-253.
[14] Zhu G B, Wang S Y, Ma B, et al. Anammox granular sludge in low-ammonium sewage treatment: Not bigger size driving better performance [J]. Water Research, 2018,142:147-158.
[15] 國(guó)家環(huán)境保護(hù)總局.水和廢水監(jiān)測(cè)分析方法[M]. 4版.北京:中國(guó)環(huán)境科學(xué)出版社, 2002:227-285.
The State Environmental Protection Administration. Water and wastewater monitoring and analysis method [M]. 4th Edition. Beijing: China Environmental Science Press, 2002:227-285.
[16] 顧澄偉.厭氧氨氧化顆粒污泥培養(yǎng)及其顆粒特性研究[D]. 蘇州:蘇州科技大學(xué), 2019.
Gu C W. The Cultivation and features of anammox granular sludge [D]. Suzhou: Suzhou University of Science and Technology, 2019.
[17] Adav S S, Lee D J. Extraction of extracellular polymeric substances from aerobic granule with compact interior structure [J]. Journal of Hazardous Materials, 2008,154(1-3):1120-1126.
[18] Luo J H, Hao T W, Wei L, et al. Impact of influent COD /N ratio on disintegration of aerobic granular sludge [J]. Water Research, 2014, 62:127-135.
[19] 朱曉桐,于冰潔,林久淑,等.ANAMMOX-UASB反應(yīng)器啟動(dòng)特性[J]. 環(huán)境科學(xué)與技術(shù), 2020,43(12):143-150.
Zhu X T, Yu B J, Lin J S, et al. Startup characteristics of ANAMMOX-UASB reactor [J]. Environmental Science & Technology [J]. Environmental Science & Technology, 2020,43(12): 143-150.
[20] Wang D P, He Y, Zhang X X. A comprehensive insight into the functional bacteria and genes and their roles in simultaneous denitrification and anammox system at varying substrate loadings [J]. Applied Microbiology and Biotechnology, 2019,103(3):1523-1533.
[21] 唐崇儉,鄭 平,陳建偉,等.中試厭氧氨氧化反應(yīng)器的啟動(dòng)與調(diào)控[J]. 生物工程學(xué)報(bào), 2009,25(3):406-412.
Tang C J, Zheng P, Chen J W, et al. Start-up and process control of a pilot-scale Anammox bioreactor at ambient temperature [J]. Chinese Journal of Biotechnology, 2009,25(3):406-412.
[22] Lotti T, Carretti E, Berti D, et al. Extraction, recovery and characterization of structural extracellular polymeric substances from anammox granular sludge [J]. Journal of Environmental Management, 2019,236(15):649-656.
[23] Wang W G, Yan Y, Zhao Y H, et al. Characterization of stratified EPS and their role in the initial adhesion of anammox consortia [J]. Water Research, 2020,169:115223.
[24] McSwain B S, Irvine R L, Hausner M, et al. Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge [J]. Applied and Environmental Microbiology, 2005, 71(2):1051-1057.
[25] Wang S, Huang X X, Liu L J, et al. Understanding the mechanism in aggregation ability between aerobic and anammox granular sludge from the perspective of exopolysaccharides [J]. Journal of Water Process Engineering, 2020,38:101629.
[26] 唐崇儉,鄭 平,汪彩華,等.高負(fù)荷厭氧氨氧化EGSB反應(yīng)器的運(yùn)行及其顆粒污泥的ECP特性[J]. 化工學(xué)報(bào), 2010,61(3):732-739.
Tang C J, Zheng P, Wang C H, et al. Granulation and characteristics of extracellular polymers of anammox sludge in high-load EGSB reactor [J]. CIESC Journal, 2010,61(3):732-739.
[27] 陳方敏,顧澄偉,胡羽婷,等.厭氧氨氧化污泥恢復(fù)過(guò)程中的顆粒特性[J]. 環(huán)境科學(xué), 2018,39(12):319-325.
Chen F M, Gu C W, Hu Y T, et al. Granular characteristics of anaerobic ammonia oxidation sludge during the recovery process [J]. Environmental Science, 2018,39(12):319-325.
[28] Liu S, Lin C, Diao X X, et al. Interactions between tetracycline and extracellular polymeric substances in anammox granular sludge [J]. Bioresource Technology, 2019,293:122069.
[29] Liu L J, Ji M, Wang F, et al. Microbial community shift and functional genes in response to nitrogen loading variations in an anammox biofilm reactor [J]. International Biodeterioration & Biodegradation, 2020,153:105023.
[30] Yu M, Liao R H, Zhang X X, et al. Metagenomic insights into Cr (VI) effect on microbial communities and functional genes of an expanded granular sludge bed reactor treating high-nitrate wastewater [J]. Water Research, 2015,76:43-52.
[31] Ismail S, Elreedy A, Elsamadony M, et al. Response of anammox bacteria to short-term exposure of 1,4-dioxane: Bacterial activity and community dynamics [J]. Separation and Purification Technology, 2021,266:118539.
[32] Zhang Z, Liu S. Insight into the overconsumption of ammonium by ANAMMOX consortia under anaerobic conditions [J]. Journal of Applied Microbiology, 2014,117(6):1830-1838.
[33] 黃鄭鄭,曹 剛,李紫惠,等.XH02菌強(qiáng)化反應(yīng)器脫氮過(guò)程中菌群結(jié)構(gòu)的高通量分析[J]. 中國(guó)環(huán)境科學(xué), 2017,37(5):1922-1929.
Huang Z Z, Cao G, Li Z H, et al. High-throughput sequencing analysis of community structure in reactor enhanced by heterotrophic nitrification-aerobic denitrification bacteria XH02 [J]. China Environmental Science, 2017,37(5):1922-1929.
[34] Alyne D P, Angela C, Claudia E, et al. Microbial communities in anammox reactors: a review [J]. Environmental Technology Reviews, 2017,6(1):74-93.
[35] Li Q Y, Chen J H, Liu G H, et al. Effects of biotin on promoting anammox bacterial activity [J]. Scientific Reports, 2021,11(1):2038.
[36] Zhao Y P, Jiang B, Tang X, et al. Metagenomic insights into functional traits variation and coupling effects on the anammox community during reactor start-up [J]. Science of the Total Environment, 2019, 687:50-60.
[37] 王海月,彭 玲,毛念佳,等.三價(jià)鐵對(duì)有機(jī)物存在下厭氧氨氧化脫氮的影響[J]. 中國(guó)環(huán)境科學(xué), 2021,41(4):1672-1680.
Wang H Y, Peng L, MaoN J, et al. Effect of Fe3+on nitrogen removal of Anammox in the presence of organic matter [J]. China Environmental Science, 2021,41(4):1672-1680.
[38] Peeters S H, Niftrik L V. Trending topics and open questions in anaerobic ammonium oxidation [J]. Current Opinion in Chemical Biology, 2019,49:45-52.
[39] 趙弋戈,鄭 平.厭氧氨氧化體的組成、結(jié)構(gòu)與功能[J]. 微生物學(xué)報(bào), 2016,56(1):8-18.
Zhao Y G, Zheng P. Composition, structure and function of anammox [J]. Acta Microbiologica Sinica, 2016,56(1):8-18.
[40] 周英杰,王淑梅,張兆基,等.厭氧氨氧化菌的代謝途徑及其關(guān)鍵酶的研究進(jìn)展[J]. 生態(tài)學(xué)雜志, 2012,31(3):738-744.
Zhou Y J, Wang S M, Zhang Z J, et al. Metabolic pathways of anammox bacteria and related key enzymes: a review [J]. Chinese Journal of Ecology, 2012,31(3):738-744.
[41] 常堯楓,郭萌蕾,謝軍祥,等.厭氧氨氧化脫氮除碳功能菌群結(jié)構(gòu)及代謝途徑[J]. 中國(guó)環(huán)境科學(xué), 2022,42(3):1138-1145.
Chang Y F, Guo M L, Xie J X, et al. The structure and metabolic pathway of functional bacteria for nitrogen and carbon removal in Anammox [J]. China Environmental Science, 2022,42(3):1138-1145.
[42] Wang Z B, Ni S Q, Zhang J, et al. Gene expression and biomarker discovery of anammox bacteria in different reactors [J]. Biochemical Engineering Journal, 2016,115:108-114.
Effects of high sludge loss on the nitrogen removal performance and microbial community of anammox process.
ZHAO Yi-chun1,2,3, LIU Ya-lei2,3, LI Yi-shu2,3, FANG Yuan-yuan2,3, WANG Bo-han2, LI Jia-rui2, WU Dong2, CHANG Ben-ze2, YANG Guang-feng2,3*
(1.National Engineering Research Center of Marine Facility Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China;2.Department of Environmental Science and Engineering, Zhejiang Ocean University, Zhoushan 316022, China;3.Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316022, China)., 2022,42(5):2161~2168
In order to study the effects of strong sludge loss on the operation performance, characteristics of granular sludge and nitrogen removal bacteria and functional genes in anaerobic ammonia oxidation (anammox) reactor, a upflow anaerobic sludge blanket (UASB) system was constructed and operated to treat synthetic wastewater. Experimental results showed that the nitrogen removal performance of anammox process was not obviously impaired by high sludge loss, and the total nitrogen (TN) removal efficiency (RE) reached 89.18% after 4days’ recovery. A higher EPS content and a lower PN/PS value of 0.12were beneficial to the formation and agglomeration of anammox granular sludge. The anammox granular sludge with sludge size of > 2mm accounted for 44.9% of the total sludge in this system, and corresponding value was 84.3% for the sludge with size of > 0.5mm, which was advantage to the sludge retention in the reactor. The dominant anammox phyla were Proteobacteria (28.03%), Planctomycetes (15.57%) and Chloroflexi (8.63%), and the domimant genera were anammox bacteria(9.63%) and(3.54%). The functional genes involved in anammox reaction includedS(1.27%),(1.28%),(1.29%),(7.04%) and(0.81%), but the presence of denitrification bacteria and related functional genes decreased the stoichiometric ratios Rs (ΔNO2--N/ΔNH4+-N) and Rp (ΔNO3--N/ΔNH4+-N) of anammox reaction.
anaerobic ammonia oxidation;sludge loss;sludge characteristics;bacterial community;functional genes
X703
A
1000-6023(2022)05-2161-08
趙一淳(1997-),男,甘肅蘭州人,浙江海洋大學(xué)在讀碩士研究生,主要從事新型生物脫氮技術(shù)研究.
2021-10-25
國(guó)家自然科學(xué)基金資助項(xiàng)目(51808498);浙江省自然科學(xué)基金青年基金資助項(xiàng)目(LQ17E090002);國(guó)家級(jí)大學(xué)生創(chuàng)新訓(xùn)練項(xiàng)目(202010340008)
* 責(zé)任作者, 講師, ygfscu@126.com;yanggf@zjou.edu.cn