康寧,荊科
(1.南京財經(jīng)大學經(jīng)濟學院,江蘇 南京 210023; 2.南京財經(jīng)大學應用數(shù)學學院,江蘇 南京 210023)
一類重心權(quán)Hermite有理插值的二階導數(shù)收斂性
康寧1,荊科2
(1.南京財經(jīng)大學經(jīng)濟學院,江蘇 南京 210023; 2.南京財經(jīng)大學應用數(shù)學學院,江蘇 南京 210023)
研究了一類特殊情形的重心權(quán)Hermite有理插值,證明了該插值函數(shù)的二階導數(shù)在插值節(jié)點和非插值節(jié)點處分別以和的速度收斂于函數(shù)。數(shù)值例子進一步驗證了方法的有效性。
重心權(quán)有理插值;Hermite插值;收斂速度;二階導數(shù)
并給出了插值函數(shù)在插值區(qū)間內(nèi)無極點的必要條件和具有重心權(quán)形式的充分條件,遺憾的是,該插值方法雖然解決了計算復雜性問題,但逼近誤差可能較大。為解決重心權(quán)Hermite有理插值在實數(shù)范圍內(nèi)無極點以及收斂性問題,文獻[3]給出了一種Hermite有理插值的Newton形式。文獻[5-7]提出了一種重心權(quán)Hermite有理插值的迭代構(gòu)造方法,并研究了度量數(shù)值穩(wěn)定性的Lebesgue常數(shù)性質(zhì)。文獻[8]針對一類特殊情形的Hermite插值,證明了的收斂速度為,并給出了具有較高數(shù)值穩(wěn)定性和較低計算復雜度的重心權(quán)函數(shù)式:
上述研究結(jié)果極大地豐富了重心權(quán)Hermite有理插值的理論方法,但研究重點集中在重心權(quán)Hermite有理插值函數(shù)及其一階導數(shù)的收斂性上。鑒于此,本文進一步探討文獻[8]中的重心權(quán)Hermite有理插值,并證明重心權(quán)Hermite有理插值的二階導數(shù)同樣具有高階收斂性質(zhì),以豐富已有研究成果。
由文獻[9]Hermite多項式插值的誤差公式:
得到式(2)的重心權(quán)Hermite有理插值的誤差估計:
為解決式(3)的極限問題,定義函數(shù):
另外,由文獻[10-11]中擬等距節(jié)點的定義,有
其次,將式(8)分為4項:
依次證明各項的收斂性質(zhì)。
其中,
又因文獻[8]式(3.10)已獲證
同理,
其中,
然后,對i賦值,可得
同理,
最后,與式(11)類似,可得
同理,
綜上,定理2得證。
采用Matlab軟件進一步驗證重心權(quán)Hermite有理插值的二階導數(shù)收斂性質(zhì),并將其應用于2個經(jīng)典的函數(shù)實例,見表1。
表1 函數(shù)、參數(shù)和插值節(jié)點Table 1 Functions , parameters , and interpolation nodes
表1 函數(shù)、參數(shù)和插值節(jié)點Table 1 Functions , parameters , and interpolation nodes
實驗函數(shù)參數(shù)插值區(qū)間插值節(jié)點xi12
表2 逼近誤差和收斂階Table 2 Approximation errors and convergence orders
圖1 實驗1中重心權(quán)Hermite有理插值的二階導數(shù)曲線Fig.1 Plot of the second derivatives of barycentric Hermite rational interpolation in experiment 1
圖2 實驗2中重心權(quán)Hermite有理插值的二階導數(shù)曲線Fig.2 Plot of the second derivatives of barycentric Hermite rational interpolation in experiment 2
由表2及圖1、圖2可知,重心權(quán)Hermite有理插值的二階導數(shù)的數(shù)值逼近誤差及收斂階支持定理1和定理2,進一步驗證了本文方法的有效性。
[1]SZABADOS J. On the order of magnitude of fundamental polynomials of Hermite interpolation[J]. Acta Mathematica Hungarica, 1993,61(3/4):357-368. DOI:10.1007/bf01874691
[2]CIRILLO E. Advances in Barycentric Rational Interpolation of a Function and Its Derivatives[D]. Lugano: Università della Svizzera Italiana,2019.
[3]SCHULZ C. Topics in Curve Intersection and Barycentric Interpolation[D]. Oslo: University of Oslo,2009.
[4]SCHNEIDER C, WERNER W. Hermite interpolation:The barycentric approach[J]. Computing,1991, 46(1):35-51. DOI:10.1007/BF02239010
[5]CIRILLO E, HORMANN K. An iterative approach to barycentric rational Hermite interpolation[J]. Numerische Mathematik, 2018,140(4): 939-962. DOI:10.1007/s00211-018-0986-y
[6]CIRILLO E, HORMANN K,SIDON J. Convergence rates of a Hermite generalization of Floater-Hormann interpolants[J]. Journal of Computational and Applied Mathematics, 2020,371: 112624. DOI:10.1016/j.cam.2019.112624
[7]CIRILLO E, HORMANN K. On the Lebesgue constant of barycentric rational Hermite interpolants at equidistant nodes[J]. Journal of Computational and Applied Mathematics, 2019,349: 292-301. DOI:10.1016/j.cam.2018.06.011
[8]JING K, KANG N,ZHU G Q. Convergence rates of a family of barycentric osculatory rational interpolation[J]. Journal of Applied Mathematics and Computing, 2017,53(1): 169-181. DOI:10.1007/s12190-015-0962-y
[9]ATKINSON K E. An Introduction to Numerical Analysis[M]. New York: John Wiley amp; Sons,1989: 131-196.
[10]KLEIN G, BERRUT J P. Linear rational finite differences from derivatives of barycentric rational interpolants[J]. SIAM Journal on Numerical Analysis,2012, 50(2):643-656. DOI:10.1137/110827156
[11]HORMANN K, KLEIN G,MARCHI S D. Barycentric rational interpolation at quasi-equidistant nodes[J]. Dolomites Research Notes on Approximation, 2012,5(1): 1-6. DOI:10.14658/pupj-drna-2012-1-1
Convergence of second derivative of a family of barycentric Hermite rational interpolants
KANG Ning1, JING Ke2
(1. School of Economics,Nanjing University of Finance and Economics,Nanjing210023,China;2. School of Applied Mathematics,Nanjing University of Finance and Economics,Nanjing210023,China)
In this paper, we further study a family of barycentric Hermite rational interpolants in a special caseand prove that the second derivativesof interpolation function converges to corresponding functionat the rate ofandat interpolation nodes and non-interpolation nodes, respectively. Finally, numerical examples further verify the effectiveness of the method.
barycentric rational interpolation; Hermite interpolation; convergence rates; second derivatives
O 241.3
A
1008?9497(2022)03?324?05
10.3785/j.issn.1008-9497.2022.03.009
2021?04?06.
國家自然科學基金資助項目(11601224);教育部人文社科項目(18YJC790069);江蘇省高等學校自然科學研究項目(18KJD110007);國家統(tǒng)計局項目(2018LY28).
康寧(1986—),ORCID:https://orcid.org/0000-0002-2905-6193,女,博士,副教授,主要從事應用數(shù)值逼近、統(tǒng)計計算研究,E-mail:9120171058@nufe.edu.cn.