• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of Ag-decorated vertical graphene nanosheets and their electrocatalytic efficiencies

    2022-06-01 07:55:26JialiCHEN陳佳麗PeiyuJI季佩宇MaoyangLI李茂洋TianyuanHUANG黃天源LanjianZHUGE諸葛蘭劍andXuemeiWU吳雪梅
    Plasma Science and Technology 2022年5期
    關(guān)鍵詞:佳麗諸葛

    Jiali CHEN (陳佳麗), Peiyu JI (季佩宇), Maoyang LI (李茂洋),Tianyuan HUANG (黃天源), Lanjian ZHUGE (諸葛蘭劍) and Xuemei WU (吳雪梅),*

    1 School of Physical Science and Technology and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, People’s Republic of China

    2 The Key Laboratory of Thin Films of Jiangsu,Soochow University,Suzhou 215006,People’s Republic of China

    3 Analysis and Testing Center, Soochow University, Suzhou 215123, People’s Republic of China

    Abstract Herein we report the successful preparation of silver(Ag)-decorated vertically oriented graphene sheets (Ag/VGs) via helicon wave plasma chemical vapor deposition (HWP-CVD) and radiofrequency plasma magnetron sputtering (RF-PMS).VGs were synthesized in a mixture of argon and methane(Ar/CH4)by HWP-CVD and then the Ag nanoparticles on the prepared VGs were modified using the RF-PMS system for different sputtering times and RF power levels.The morphology and structure of the Ag nanoparticles were characterized by scanning electron microscopy and the results revealed that Ag nanoparticles were evenly dispersed on the mesoporous wall of the VGs.X-ray diffraction results showed that the diameter of the Ag particles increased with the increase in Ag loading,and the average size was between 10.49 nm and 25.9 nm, consistent with the transmission electron microscopy results.Ag/VGs were investigated as effective electrocatalysts for use in an alkaline aqueous system.Due to the uniquely ordered and interconnected wall structure of VGs,the area of active sites increased with the Ag loading, giving the Ag/VGs a good performance in the oxygen evolution reaction.The double-layer capacitance(Cdl)of the Ag/VGs under different Ag loadings were studied,and the results showed that the highest Ag content gave the best Cdl (1.04 mF cm-2).Our results show that Ag/VGs are likely to be credible electrocatalytic materials.

    Keywords: Ag/VGs, helicon wave plasma, radiofrequency plasma magnetron sputtering

    1.Introduction

    Driven by the demand for more active and stable metal/carbon catalysts, in the past 10 years, researchers have made great efforts to explore new types of carbon nanomaterials as catalyst carriers, including mesoporous carbon (MFC) [1-3], carbon nanotubes (CNTs) [4-8], carbon nanofibers [9], graphene nanosheets(GNSs) [10], carbon nano coils[11] and vertically oriented graphene sheets (VGs)/carbon nanowalls [12-16].Among these, VGs with a high surface-to-volume ratio, vertical orientation and exposed sharp edges used as catalyst carriers have recently attracted more and more attention.This is attributed to the ability to stabilize active metal particles and disperse the catalyst nanoparticles.VGs have a wide range of applications, such as in biosensors and gas sensors, field electron emission, atmospheric nanoscale corona discharges,electrocatalysts, supercapacitors, lithium-ion batteries, surfaceenhanced Raman spectroscopy (SERS), fuel cells (catalyst support) and solar cells [11, 13, 17-20].VGs as a type of catalyst provide significant benefits in structural integration for electrochemical research.Compared with other three-dimensional(3D)graphene structures such as graphene foams(GFs)[11],VGs have the advantages of good mechanical stability,a large specific surface area and a large porosity.VGs also have the following additional advantages[11]:rich sharp edges that are more directly exposed to the electrolyte, which is conducive to electrocatalytic applications and improves electrode reaction kinetics and mass transfer,and a labyrinthine structure that makes the graphene nanosheets unaggregated and stable.The application of VGs is also diverse because they can be easily modified with other active materials.

    Silver (Ag) nanoparticles supported on various carbon materials have been extensively studied as catalysts for the oxygen reduction reaction (ORR) [21-23].One of the main reasons is that Ag-modified carbon material is the most likely material to replace platinum-based material.At present, there are many studies on the modification of graphene with noble metal nanoparticles but there are not many reports that utilize VGs.Nano Ag-modified graphene oxide has been widely used in catalysis, electrochemical sensing and surfaceenhanced Raman scattering(SERS)substrates.Therefore,it is useful to study Ag nanoparticle-modified VGs.

    However, in practical applications, there are still challenges and limitations in the implementation of VGs.The height (or thickness) of VGs is usually less than 1 μm.Even with the assistance of substrate bias,their maximum height can only be about 5 μm[11].Moreover,it is still a challenging task to load the active materials evenly on the surface of VGs.

    Our team has mastered the methods of regulating the growth structure of VGs.The deposition time was controlled to control the height of the VGs.By modulating the change in gas flow rate, the structure size and wall spacing of the VGs were changed.VGs with a height of 259.8 nm can be prepared in a minute without substrate bias and the detailed preparation method is presented in this paper [24].Also, we introduce the preparation of Ag/VGs by a helicon wave plasma chemical vapor deposition(HWP-CVD)method using a radiofrequency plasma magnetron sputtering (RF-PMS)system.VGs with a height of about 0.8 μm were prepared by the HWP-CVD method, and then Ag nanoparticles were sputtered on the prepared VGs by a magnetron sputtering system to complete the Ag nanoparticle-modified VGs.This preparation method did not produce toxic gases such as NO2or N2O4in the reaction.The composites prepared by this method were characterized for environmental friendliness and their oxygen evolution reactions (OERs) were analyzed.

    2.Experimental setup

    2.1.Sample preparation

    Figure 1 is a diagram showing the preparation method for VGs modified with Ag.First,the VGs were directly grown on the silicon substrate by a homemade HWP-CVD system; the growth time was 3 min.The specific preparation method for VGs has been reported in the previous research results of our group [24].The prepared VGs were immediately placed into the sputtering chamber of the RF-PMS system for Ag sputtering.Once the VGs were in place,the RF-PMS system was pumped down to a background vacuum of 5.0×10-3Pa.When the background vacuum was reached, high-purity argon(Ar 99.999%)as the working gas was controlled by the flowmeter and entered the reaction chamber through the pipe.The experimental parameters for the RF-PMS system for sputtering Ag nanoparticles onto VG samples were as follows: 5.0 Pa for the working pressure, 80 W for the input power and as 1 min,3 min and 5 min for the sputtering times.In addition, a set of samples were prepared for 1 min sputtering at a sputtering power of 100 W.The four groups of prepared samples were labeled as Ag/VGs-80 W 1 min,Ag/VGs-80 W 3 min, Ag/VGs-80 W 5 min and Ag/VGs-100 W 1 min,respectively.The specific device diagram is shown in figure 2.The sputtering chamber was made of stainless steel with a diameter of 48 cm and had a distance of 5 cm between the substrate and the target to constitute a RF-PMS system.

    Figure 1.Preparation diagram for vertical graphene sheets (VGs) modified with Ag.

    Figure 2.Schematic of the radiofrequency plasma magnetron sputtering system.

    2.2.Characterization and electrochemical measurements

    The surface morphologies of the five groups of samples were observed by scanning electron microscopy(SEM;Hitachi SU-8010), atomic force microscopy (AFM; Dimension Icon) and transmission electron microscopy (TEM; Tecnai G20 field emission).The crystalline structure of Ag/VGs was identified by x-ray diffraction (XRD) (Bruker D8 ADVANCE) using CuKα(λKα1= 1.5418 ?) as the radiation source.X-ray photoelectron spectroscopy (XPS; ESCALAB 250Xi) was employed for elemental analysis of the Ag/VGs.The Xplore PLUS Raman spectrometer(Horiba Company,Japan)was also used and the excitation wavelength was 532 nm.

    The electrochemistry of the catalyst was tested in a typical three-electrode system using the Ag/VGs as the working electrode, a Pt foil for the counter electrode and a Ag/AgCl(saturated KCl solution) double junction for the reference electrode; the electrolyte was KOH solution (0.1 M).Before electrochemical tests, oxygen (O2) or nitrogen (N2) was bubbled into KOH (0.1 M) for at least 30 min to keep the KOH solution in an O2/N2saturated state.Linear sweep voltammetry (LSV) measurement conditions were as follows: scan rate 5 mV s-1, potential range 0.064-1.464 V [versus a reversible hydrogen electrode (RHE)] with a N2saturated electrolyte.Cyclic voltammograms (CVs) were recorded for the prepared samples at different scan rates from 20 to 120 mV s-1in the potential range of 0.914-1.014 V (versus a RHE).According to the Nernst equation, ERHE= EAg/AgCl+ 0.964,all potential data were represented by the RHE.

    3.Results and discussion

    In the sputtering system, the Ag sputtering deposition rate was closely related to sputtering power, sputtering time and working pressure.Also, the loading of Ag is calculated according to deposition rate, deposition time and Ag density[25].According to the previous experimental data, the sputtering deposition rates of Ag at 100 W and 80 W are 72.14 nm min-1and 44.80 nm min-1, respectively.The reason for the increase in Ag sputtering rate with an increase in RF power is attributed to the fact that the RF power increases the plasma density and produces more argon ions, leading to the increase in Ag bombardment frequency and deposition rate [26].

    Figure 3(a)depicts the SEM results for the VGs and(b)-(e)show the SEM results for the Ag/VGs with different Ag loadings.The Ag loadings are 0.047 mg cm-2(Ag/VGs-80 W 1 min),0.076 mg cm-2(Ag/VGs-100 W 1 min),0.141 mg cm-2(Ag/VGs-80 W 3 min) and 0.235 mg cm-2(Ag/VGs-80 W 5 min), respectively.Compared with pure VGs without Ag particles, the other four groups of VGs were surrounded by welldispersed Ag nanoparticles.In addition, it can be seen from the four groups of figures that with the increase in Ag loading, the wall thickness of VGs also increased.The relatively large wall spacing facilitated the growth of Ag nanoparticles on the carbon skeleton framework.More structural details were obtained by AFM and TEM.The results show that the labyrinth structure of the VGs did not collapse and deform with the increase in Ag loading, indicating that the VGs have excellent structural strength.

    Figure 3.(a)-(e) SEM images of the VGs and Ag/VGs at different RF powers and deposition times.

    Figure 4 shows AFM and TEM images of the synthesized Ag/VGs and pure VGs.Figures 4(a1),(b1)and(c)show the 3D AFM images and root mean square roughness (RMS)values of the Ag/VGs (80 W 3 min), pure VGs and Ag nanoparticles (80 W 3 min), respectively.The RMSs of pure VGs and Ag nanoparticles (80 W 3 min) were 8.7 nm and 3.2 nm, respectively, while the RMS of the Ag/VGs (80 W 3 min)was 22.1 nm.This meant that the roughness of the Ag/VGs increased compared with pure Ag nanoparticles and pure VGs.Figures 4(a2)and(b2)are TEM images of Ag/VGs and pure VGs, respectively.The change in roughness indicates that the Ag nanoparticles were not only attached to the carbon skeleton but were deposited on the upper surface using VGs as a template.The acquired TEM images (80 W 3 min) show that Ag particles were attached (the average size of Ag particles was about 20 nm, labeled by black arrows in figure 4(a2)) to graphene.

    Figure 4.3D AFM image of (a1) Ag/VGs at 80 W 3 min, (b1) the VGs substrate and (c) Ag nanoparticles.The TEM of (a2) Ag-decorated VGs and (b2) bare VGs substrate.

    XRD patterns for Ag/VGs electrodes are shown in figure 5(a).The diffraction peaks at 38.3°, 44.4°, 64.6° and 77.5° observed for Ag/VGs were attributed to the cubic Ag crystal planes(111),(200),(220)and(311)[27],respectively.The average size of Ag nanoparticles was calculated from the Ag (111) peak according to Scherrer’s formula

    Figure 5.(a)XRD results for the films grown at different RF powers and deposition times.(b)Detailed Ag(111)peaks in the XRD patterns of Ag/VGs electrodes.(c)Raman spectra for the VGs and Ag/VGs grown for different times and different RF powers.(d)Crystallite size of Ag/VGs as a function of Ag loading.(e) ID/IG of VGs and Ag/VGs as a function of Ag loading.

    where d is the average size of the Ag nanoparticles,λKα1is the x-ray wavelength (0.15406 nm),θmaxis the maximum angle of the (111) peak andB2θis the half-peak width for Ag (111) in radians.The mean particle sizes of the different Ag/VGs electrodes were 25.90 nm for Ag/VGs-80 W 5 min, 20.47 nm for Ag/VGs-80 W 3 min,10.49 nm for Ag/VGs-100 W 1 min and 13.59 nm for Ag/VGs-100W 1 min, consistent with the corresponding TEM results.However,calculated grain sizes did not always agree with the TEM results, which may be because XRD includes the average density of the entire sample while TEM includes the average grain size based on specific counting information [28, 29].With an increase in time and power, the size of Ag nanoparticles also increased.

    To determine the effect of Ag nanoparticles on the vibration and structural properties of VGs, Raman spectra were recorded.Figure 5(c) shows the representative Raman spectra for the pristine VGs and Ag-decorated VGs.Figures 5(d)and(e)show the results for crystallite size and of ID/IGfor samples with different Ag loadings, respectively.The crystallite size increased with an increase in Ag loading.The D band(~1342 cm-1)and G band(~1587 cm-1)indicate the disorder and crystallinity of sp2carbon materials,respectively [30].Decoration of the VGs with Ag led to the following changes in the Raman spectra.The broadening of the G peak may be caused by the synergistic effect of strain and doping [31].The change in Raman signal is attributed to the significant charge transfer at the Ag/graphene interface and the surface induced by plasma-active Ag nanoparticles,which changes the Raman scattering phenomenon [32, 33].The intensity ratio of the D to G bands (ID/IG) for the Ag/VGs(1.16-1.47)was lower than that of undoped VGs(2.88),indicating that the degree of graphitization of Ag/VGs was higher [34].

    The surface elemental composition and chemical state of the VGs and Ag/VGs were analyzed by XPS.Figure 6 presents the survey scan XPS spectra of the synthesized Ag/VGs.The sample contained C, O and Ag, with a sharp photoelectron peak appearing at a binding energy of 288 eV(C 1 s), a strong photoelectron peak at about 367 eV (Ag 3d)and a weak photoelectron peak at 532 eV(O 1 s).The Ag 3d spectrum shows the typical Ag 3d5/2and 3d3/2doublets with binding energies of 367.2 and 373.2 eV[27,35],respectively.These doublets are typical of Ag spectra [36].This demonstrated that the Ag nanoparticles were deposited on VGs during the magnetron sputtering process.

    Figure 6.XPS spectra of VGs and Ag/VGs at different sputtering conditions.

    The electrocatalytic performance of the VGs with different Ag loadings for the ORR/OER was measured in N2-saturated 0.1 M KOH and compared with that of pure VGs.The CVs of the Ag/VGs and VGs are shown in figure 7(a) at 50 mV s-1.The four groups of Ag/VGs have prominent oxygen reduction peaks in the N2-saturated electrolyte, but these peaks are not in the CVs for the VGs,revealing that the Ag/VGs have intrinsic OER catalytic activities.The cathodic peak of Ag/VGs-80 W 3 min(1.10 V versus RHE)was located at a more positive position than that of the prepared Ag/VGs-80 W 1 min (1.08 V versus RHE)and Ag/VGs-100 W 1 min (0.95 V versus RHE) samples.This meant that the Ag/VGs-80 W 3 min sample had the best ORR catalytic activity among our prepared catalysts[37].The reduction peak current of Ag/VGs-80 W 5 min was 7.83 mA cm-2,which was three times higher than that of Ag/VGs-80 W 3 min (2.57 mA cm-2) and six times higher than that of Ag/VGs-80 W 1 min (1.38 mA cm-2).

    Figure 7.(a)CVs of prepared samples and VGs substrate recorded in N2-saturated 0.1 M KOH at 50 mV s-1.(b)-(e)CVs of the Ag/VGs at different scan rates from 20 to 120 mV s-1 in the potential range of 0.914-1.014 V versus RHE.

    Figures 7(b)-(e) show CVs of the Ag/VGs at different scan rates from 20 to 120 mV s-1in the potential range of 0.914-1.014 V (versus RHE).The double-layer capacitances(Cdl)of the four groups of prepared Ag/VGs samples were also measured by CVs at different scan rates from 20 to 120 mV s-1(figure 8(a)).Figure 8(b)shows that Ag/VGs-80 W 5 min had a Cdlvalue of 1.04 mF cm-2, superior to that of Ag/VGs-80 W 3 min (0.80 mF cm-2) and Ag/VGs-80W 1 min (0.71 mF cm-2).Because the Ag/VGs-80 W 5 min sample had a higher Ag loading,this implied a larger specific surface area for electrochemical activity.

    Figure 8(c) shows the corresponding OER polarization curves when the scan rate was 5 mV s-1.The relative current density came from the normalization of the geometric surface area of the electrode.The LSVs of the three samples suggested two different OER stages in the range of 1.1-1.9 V.In addition, the Tafel curves obtained by the linear fitting of the polarization curves were used to evaluate the catalytic kinetics of the samples.Figure 8(d) shows the corresponding Tafel plots in the potential region 1.58 < E < 1.70 V(versus RHE)obtained from the OER polarization curves (figure 8(c)).The Tafel slope of the Ag/VGs-100 W 1 min sample was 87.52 mV dec-1(figure 8(d)) smaller than the other samples,demonstrating that Ag/VGs-100 W 1 min had more facile kinetics for OER.Therefore,the lower Tafel slope of the Ag/VGs-100 W 1 min sample had markedly favorable OER kinetics in alkaline solutions.The OER in a solution of KOH is as follows:

    Figure 8.(a)The electrochemical double-layer capacitances of the Ag/VGs toward the OER.(b)The values of the double-layer capacitances.(c)LSV results in 0.1 M KOH of three typical samples in the OER region.(d)Tafel plots obtained from the corresponding OER LSV results.

    The results showed that the Tafel slope of the Ag/VGs-100 W 1 min sample at 87.52 mV dec-1was less than that of the other Ag/carbon frameworks [38], indicating faster reaction kinetics[39].The OER electrocatalytic activity of the Ag/VGs-100 W 1 min sample was higher than that of the others,for the following reasons.(1)Due to the uniqueness of VGs,Ag nanoparticles(100 W 1 min)are highly dispersed on the wall surface of VGs.With the increase in sputtering time,for example Ag/VGs-80 W 5 min, more Ag particles adhere to the top of the wall surface of VGs to form an accumulation,and there are no more Ag nanoparticles dispersed on the wall of the VGs.The change of top SEM morphology in figure 3(e) also confirms this.This explains why the OER catalytic activity of Ag/VGs-80 W 5 min was not as high as that of Ag/VGs-100 W 1 min(2)The facile transport of ions and molecules through the VGs because of a highly ordered structure with interconnected walls facilitates access of the reactants to the active sites [40-43].These results confirmed that Ag loading has an important effect on OER/ORR performance and that Ag is the key to obtaining improved kinetics.

    4.Conclusion

    In conclusion, Ag-decorated vertical graphene nanosheets(Ag/VGs) catalysts were successfully prepared by a HWPCVD system with RF-PMS technology.The results of SEM and XRD showed that the average size of the loaded Ag particles ranges from 10.49 to 25.90 nm, and they were uniformly dispersed in the mesopore walls of the VGs.The OER performance of Ag/VGs benefited from uniquely ordered and interconnected high walls of the VGs, conducive to high Ag particle dispersion and facile mass/charge transport.In addition,OER results also showed that the catalytic activity of the Ag/VGs was related not only to the loaded Ag particles but also to whether the Ag particles could be highly dispersed on the wall surface of the VGs.With the increase in Ag loading, the samples prepared at 80 W for 5 min have an excellent Cdlvalue (1.04 mF cm-2).In addition, these results show that the Ag/VGs samples are expected to be an excellent bipolar electrode material.It is necessary to further study Ag/VGs, which could be a substitute for platinumdecorated carbon materials.

    Acknowledgments

    This work is supported by National Natural Science Foundation of China (No.11975163), the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

    猜你喜歡
    佳麗諸葛
    Design of Creative Incentive Contract of Cultural and Creative Industry Chain from Dual Perspective
    原來我們就是傳說中的四大名著?
    放假前VS放假后,快說是不是你
    諸葛羽扇
    小讀者(2021年4期)2021-06-11 05:42:26
    家長(zhǎng)群VS 你的群,究竟區(qū)別何在
    2021,我們一起走花路吧
    諸葛南征
    談初中化學(xué)實(shí)驗(yàn)教學(xué)的初探
    “楊皮匠”雅鞋吸引國際佳麗
    西部皮革(2015年17期)2015-02-28 18:14:55
    諸葛八卦村的“妙”
    中文字幕最新亚洲高清| 天堂动漫精品| 一边摸一边抽搐一进一小说| 美女扒开内裤让男人捅视频| 老司机深夜福利视频在线观看| 午夜视频精品福利| 午夜福利,免费看| 日本 欧美在线| 色综合欧美亚洲国产小说| 波多野结衣巨乳人妻| 精品国产亚洲在线| 丰满的人妻完整版| 夜夜爽天天搞| 国产片内射在线| 亚洲色图av天堂| 亚洲国产毛片av蜜桃av| 亚洲av第一区精品v没综合| 久久这里只有精品19| 怎么达到女性高潮| 纯流量卡能插随身wifi吗| 88av欧美| 国产亚洲av嫩草精品影院| 多毛熟女@视频| 天天一区二区日本电影三级 | av福利片在线| 丁香六月欧美| 此物有八面人人有两片| 亚洲人成77777在线视频| 久久香蕉激情| 午夜免费男女啪啪视频观看 | 一进一出好大好爽视频| 亚洲欧美清纯卡通| 国产色婷婷99| 又粗又爽又猛毛片免费看| 亚洲国产欧洲综合997久久,| 成人性生交大片免费视频hd| 免费在线观看日本一区| 动漫黄色视频在线观看| 精品人妻视频免费看| 精品乱码久久久久久99久播| 久久精品综合一区二区三区| or卡值多少钱| 在线看三级毛片| 天堂网av新在线| 日韩国内少妇激情av| 亚洲真实伦在线观看| 国产精品一区二区三区四区久久| 亚洲成人久久爱视频| 联通29元200g的流量卡| 不卡一级毛片| 国产高清视频在线观看网站| 桃红色精品国产亚洲av| 美女被艹到高潮喷水动态| 免费在线观看影片大全网站| 日韩强制内射视频| 成年女人毛片免费观看观看9| 国产伦在线观看视频一区| av天堂在线播放| 国产一区二区在线av高清观看| 精品欧美国产一区二区三| 午夜精品一区二区三区免费看| 精品不卡国产一区二区三区| 日本 av在线| 天天躁日日操中文字幕| 级片在线观看| 免费在线观看影片大全网站| 舔av片在线| 国产精品嫩草影院av在线观看 | 此物有八面人人有两片| 嫩草影院新地址| 99久国产av精品| 欧美激情国产日韩精品一区| 亚洲精品成人久久久久久| 天美传媒精品一区二区| 国产av一区在线观看免费| 在线观看免费视频日本深夜| 亚洲av成人av| 成人性生交大片免费视频hd| 特级一级黄色大片| 男女做爰动态图高潮gif福利片| 免费搜索国产男女视频| 成熟少妇高潮喷水视频| 国语自产精品视频在线第100页| 国产主播在线观看一区二区| 久9热在线精品视频| 色哟哟·www| 1024手机看黄色片| 午夜日韩欧美国产| 自拍偷自拍亚洲精品老妇| 亚洲av.av天堂| 久久久久久久久大av| 九色成人免费人妻av| 我要搜黄色片| 人妻久久中文字幕网| 国产乱人伦免费视频| 久久精品夜夜夜夜夜久久蜜豆| 成人午夜高清在线视频| 精品久久久久久久久久久久久| 国产老妇女一区| 久久久久久伊人网av| 十八禁国产超污无遮挡网站| 亚洲在线自拍视频| 动漫黄色视频在线观看| 日本 av在线| 亚洲最大成人av| 成人鲁丝片一二三区免费| 看免费成人av毛片| 黄色女人牲交| 亚洲四区av| av专区在线播放| 亚洲精品在线观看二区| 男女视频在线观看网站免费| 99精品在免费线老司机午夜| 日本与韩国留学比较| 男女之事视频高清在线观看| 国产av一区在线观看免费| 国产午夜福利久久久久久| 99在线人妻在线中文字幕| 日韩 亚洲 欧美在线| 成人精品一区二区免费| 国产视频一区二区在线看| 日韩中文字幕欧美一区二区| 亚洲一区二区三区色噜噜| 精品久久久久久,| 天堂动漫精品| 免费看美女性在线毛片视频| 国内精品宾馆在线| 亚洲人与动物交配视频| 嫩草影院精品99| 欧美成人性av电影在线观看| 最后的刺客免费高清国语| 久久久久性生活片| 99久久成人亚洲精品观看| 中文字幕高清在线视频| 日韩中文字幕欧美一区二区| 亚洲国产欧洲综合997久久,| 成人鲁丝片一二三区免费| 精品福利观看| 琪琪午夜伦伦电影理论片6080| 美女高潮的动态| 成年版毛片免费区| a级毛片免费高清观看在线播放| 日本黄色片子视频| 一区二区三区激情视频| 深爱激情五月婷婷| 精品久久久久久久久久免费视频| 国产真实伦视频高清在线观看 | 人人妻人人看人人澡| 18禁黄网站禁片免费观看直播| 欧美黑人巨大hd| 精品一区二区三区av网在线观看| 美女免费视频网站| 男插女下体视频免费在线播放| 免费一级毛片在线播放高清视频| 精品久久久久久,| 久久天躁狠狠躁夜夜2o2o| 又黄又爽又刺激的免费视频.| 亚洲精品亚洲一区二区| 国模一区二区三区四区视频| 国产精品不卡视频一区二区| 美女黄网站色视频| 两人在一起打扑克的视频| 欧美日韩瑟瑟在线播放| 床上黄色一级片| 夜夜夜夜夜久久久久| 伦理电影大哥的女人| 欧美黑人欧美精品刺激| 亚洲av不卡在线观看| 中文亚洲av片在线观看爽| 亚州av有码| 在线观看午夜福利视频| av黄色大香蕉| 黄色日韩在线| 欧美日韩精品成人综合77777| 亚洲av第一区精品v没综合| 精品午夜福利视频在线观看一区| 国内精品久久久久精免费| 亚洲av五月六月丁香网| 亚洲av中文av极速乱 | 特大巨黑吊av在线直播| 国内精品一区二区在线观看| 18禁黄网站禁片免费观看直播| 亚洲欧美清纯卡通| 国内精品一区二区在线观看| 欧美性猛交黑人性爽| 成人亚洲精品av一区二区| 国产一区二区三区视频了| 听说在线观看完整版免费高清| 能在线免费观看的黄片| 日本欧美国产在线视频| 久久久久久久精品吃奶| 最近在线观看免费完整版| 欧美成人免费av一区二区三区| 精品久久久久久久人妻蜜臀av| 久久国产乱子免费精品| 高清毛片免费观看视频网站| 成人高潮视频无遮挡免费网站| 美女黄网站色视频| 国产视频内射| 12—13女人毛片做爰片一| 日本a在线网址| 精品久久久久久久久久免费视频| 美女大奶头视频| 在现免费观看毛片| 亚洲精品一卡2卡三卡4卡5卡| 欧美一区二区国产精品久久精品| 国产大屁股一区二区在线视频| 日日啪夜夜撸| 日韩亚洲欧美综合| av天堂中文字幕网| 男女之事视频高清在线观看| 波多野结衣巨乳人妻| 国产高清激情床上av| 午夜爱爱视频在线播放| 亚洲经典国产精华液单| 99热只有精品国产| 亚洲精华国产精华精| 午夜福利在线在线| 亚洲熟妇中文字幕五十中出| videossex国产| 国产久久久一区二区三区| 成人av一区二区三区在线看| 亚洲精品久久国产高清桃花| 日韩,欧美,国产一区二区三区 | 国产v大片淫在线免费观看| 三级国产精品欧美在线观看| 男女视频在线观看网站免费| 熟妇人妻久久中文字幕3abv| 日本精品一区二区三区蜜桃| 午夜福利成人在线免费观看| 97碰自拍视频| 最近在线观看免费完整版| 亚洲性久久影院| 久久中文看片网| 麻豆av噜噜一区二区三区| 亚洲电影在线观看av| 国产精品女同一区二区软件 | 听说在线观看完整版免费高清| 中文在线观看免费www的网站| 自拍偷自拍亚洲精品老妇| 国产亚洲av嫩草精品影院| 伦精品一区二区三区| 天堂动漫精品| 日韩欧美在线二视频| 国产精品久久久久久亚洲av鲁大| 国产一区二区三区在线臀色熟女| 日本免费a在线| 欧美日韩中文字幕国产精品一区二区三区| 精品欧美国产一区二区三| 亚洲天堂国产精品一区在线| 波野结衣二区三区在线| 18禁黄网站禁片免费观看直播| 午夜亚洲福利在线播放| 国产日本99.免费观看| 国产精品99久久久久久久久| 亚洲成人中文字幕在线播放| 免费搜索国产男女视频| 99久久成人亚洲精品观看| 亚洲电影在线观看av| 久久中文看片网| 欧美xxxx黑人xx丫x性爽| 亚洲精品乱码久久久v下载方式| 亚洲色图av天堂| 久久久成人免费电影| 嫁个100分男人电影在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲精华国产精华精| 啦啦啦啦在线视频资源| 中文字幕av在线有码专区| 我的老师免费观看完整版| 国产国拍精品亚洲av在线观看| 午夜福利视频1000在线观看| 成人美女网站在线观看视频| 久久热精品热| 欧美成人一区二区免费高清观看| 少妇熟女aⅴ在线视频| 国产黄a三级三级三级人| 99久久成人亚洲精品观看| 日本色播在线视频| 国产美女午夜福利| 久久久久久九九精品二区国产| 日韩高清综合在线| 波野结衣二区三区在线| 日本a在线网址| 在线国产一区二区在线| 成年女人永久免费观看视频| 大又大粗又爽又黄少妇毛片口| 色综合亚洲欧美另类图片| 91精品国产九色| 亚洲精品亚洲一区二区| 久久九九热精品免费| 色综合色国产| 少妇裸体淫交视频免费看高清| 精品一区二区三区av网在线观看| 国产爱豆传媒在线观看| 天天一区二区日本电影三级| 不卡一级毛片| 欧美精品国产亚洲| 97热精品久久久久久| 免费黄网站久久成人精品| 麻豆成人av在线观看| 久久精品国产清高在天天线| 午夜福利视频1000在线观看| 国内精品久久久久精免费| 日日啪夜夜撸| 亚洲va在线va天堂va国产| 黄色一级大片看看| 校园人妻丝袜中文字幕| 国产精品人妻久久久久久| 国产国拍精品亚洲av在线观看| 亚洲天堂国产精品一区在线| 男女下面进入的视频免费午夜| 日本黄色片子视频| av中文乱码字幕在线| 一进一出抽搐动态| 国产乱人视频| 日本欧美国产在线视频| 久久精品91蜜桃| 日本 欧美在线| 少妇熟女aⅴ在线视频| 少妇的逼好多水| 最新在线观看一区二区三区| 变态另类成人亚洲欧美熟女| 免费不卡的大黄色大毛片视频在线观看 | 一个人看视频在线观看www免费| 99在线人妻在线中文字幕| 午夜久久久久精精品| 国产主播在线观看一区二区| 亚洲国产精品久久男人天堂| 久久精品国产亚洲av香蕉五月| 成年女人毛片免费观看观看9| 国产av在哪里看| 一进一出抽搐动态| 此物有八面人人有两片| 日本撒尿小便嘘嘘汇集6| 999久久久精品免费观看国产| av在线天堂中文字幕| 如何舔出高潮| 一区二区三区高清视频在线| 欧美zozozo另类| 日日夜夜操网爽| 欧美日韩精品成人综合77777| 欧美色视频一区免费| 伦精品一区二区三区| 欧美bdsm另类| 日本欧美国产在线视频| 国产探花极品一区二区| 精品午夜福利在线看| 十八禁国产超污无遮挡网站| 国产亚洲91精品色在线| av专区在线播放| 少妇的逼好多水| 老女人水多毛片| 成人av一区二区三区在线看| а√天堂www在线а√下载| 国产午夜精品论理片| 亚洲狠狠婷婷综合久久图片| 国产伦在线观看视频一区| 波野结衣二区三区在线| 精品乱码久久久久久99久播| 男女那种视频在线观看| 长腿黑丝高跟| 天堂av国产一区二区熟女人妻| 国产高清视频在线观看网站| 美女被艹到高潮喷水动态| 国产黄a三级三级三级人| 精品国内亚洲2022精品成人| 午夜爱爱视频在线播放| 神马国产精品三级电影在线观看| 国产亚洲欧美98| 成人国产一区最新在线观看| 99久久无色码亚洲精品果冻| 午夜激情欧美在线| a在线观看视频网站| 亚洲图色成人| 悠悠久久av| 少妇裸体淫交视频免费看高清| 看片在线看免费视频| 亚州av有码| 日本一本二区三区精品| 国产男人的电影天堂91| 黄色欧美视频在线观看| 女生性感内裤真人,穿戴方法视频| 午夜精品一区二区三区免费看| 免费电影在线观看免费观看| 欧美国产日韩亚洲一区| 国产私拍福利视频在线观看| 亚洲三级黄色毛片| 淫秽高清视频在线观看| 熟妇人妻久久中文字幕3abv| 免费搜索国产男女视频| 久久香蕉精品热| 国产亚洲精品久久久com| 国产一区二区三区视频了| 久9热在线精品视频| 日韩人妻高清精品专区| 国产69精品久久久久777片| 深夜a级毛片| 成熟少妇高潮喷水视频| 高清日韩中文字幕在线| 成人一区二区视频在线观看| 国产一区二区三区在线臀色熟女| 天天一区二区日本电影三级| 午夜福利在线观看吧| av天堂中文字幕网| 日韩亚洲欧美综合| 神马国产精品三级电影在线观看| 91精品国产九色| 精品国产三级普通话版| 最近最新中文字幕大全电影3| 国产精品,欧美在线| 天堂网av新在线| 国产精品三级大全| 欧美激情国产日韩精品一区| 日本 欧美在线| 在线天堂最新版资源| 久久九九热精品免费| 亚洲成人久久性| 热99re8久久精品国产| 人人妻人人澡欧美一区二区| 特大巨黑吊av在线直播| 99久久中文字幕三级久久日本| 精品一区二区三区av网在线观看| 亚洲无线在线观看| 国产伦在线观看视频一区| 亚洲av熟女| 小说图片视频综合网站| 成人av在线播放网站| 久久欧美精品欧美久久欧美| 又爽又黄无遮挡网站| 男女下面进入的视频免费午夜| 尤物成人国产欧美一区二区三区| 人人妻人人澡欧美一区二区| 一本一本综合久久| 国产免费男女视频| 亚洲av不卡在线观看| 人妻夜夜爽99麻豆av| 一边摸一边抽搐一进一小说| 日韩国内少妇激情av| 我要看日韩黄色一级片| 赤兔流量卡办理| 亚洲内射少妇av| 一本精品99久久精品77| 香蕉av资源在线| 久久精品国产鲁丝片午夜精品 | 听说在线观看完整版免费高清| 窝窝影院91人妻| 国产亚洲91精品色在线| 高清在线国产一区| 日韩精品有码人妻一区| 亚洲久久久久久中文字幕| 日韩精品青青久久久久久| 国产精品美女特级片免费视频播放器| 日本-黄色视频高清免费观看| 久久国内精品自在自线图片| 国产毛片a区久久久久| 欧美一区二区国产精品久久精品| 男女那种视频在线观看| 国产蜜桃级精品一区二区三区| 亚洲精品456在线播放app | 99在线视频只有这里精品首页| 国产黄片美女视频| 欧美性感艳星| 欧美最黄视频在线播放免费| 99久久精品热视频| 人妻久久中文字幕网| 日本与韩国留学比较| 精品人妻熟女av久视频| 日本-黄色视频高清免费观看| 色播亚洲综合网| 欧美高清成人免费视频www| 国产精品三级大全| 可以在线观看毛片的网站| 女生性感内裤真人,穿戴方法视频| 可以在线观看毛片的网站| 国产男人的电影天堂91| 直男gayav资源| 18禁黄网站禁片免费观看直播| 亚洲精品456在线播放app | 国产欧美日韩一区二区精品| 亚洲色图av天堂| 欧美激情在线99| 伦理电影大哥的女人| 亚洲最大成人手机在线| 午夜福利18| 精品人妻一区二区三区麻豆 | 久久久久久久精品吃奶| 三级国产精品欧美在线观看| 亚洲一区高清亚洲精品| 亚洲av.av天堂| 可以在线观看毛片的网站| 校园人妻丝袜中文字幕| 免费观看在线日韩| 麻豆av噜噜一区二区三区| 精品一区二区免费观看| av专区在线播放| 91在线精品国自产拍蜜月| 在线天堂最新版资源| 精品无人区乱码1区二区| 五月伊人婷婷丁香| 亚洲欧美日韩高清在线视频| 国产精品女同一区二区软件 | 亚洲人与动物交配视频| 最新中文字幕久久久久| 日日夜夜操网爽| а√天堂www在线а√下载| 成人高潮视频无遮挡免费网站| 最近中文字幕高清免费大全6 | 久久亚洲精品不卡| 人妻久久中文字幕网| 亚洲成人中文字幕在线播放| 最新在线观看一区二区三区| 国产精品福利在线免费观看| 又爽又黄a免费视频| 欧美性猛交黑人性爽| 内射极品少妇av片p| 成人无遮挡网站| 国产三级中文精品| 日本三级黄在线观看| 久久久久久久午夜电影| 黄色日韩在线| 国产中年淑女户外野战色| 婷婷六月久久综合丁香| 免费人成在线观看视频色| 欧美成人性av电影在线观看| 日韩欧美 国产精品| 亚洲精品456在线播放app | 亚洲国产日韩欧美精品在线观看| videossex国产| 国产精品久久久久久亚洲av鲁大| 99久久成人亚洲精品观看| 欧美性猛交黑人性爽| 亚洲精品一卡2卡三卡4卡5卡| 国产美女午夜福利| 热99在线观看视频| 精品一区二区三区av网在线观看| 免费看美女性在线毛片视频| 亚洲国产高清在线一区二区三| 色视频www国产| 久久久久久久久大av| 欧美高清成人免费视频www| 97热精品久久久久久| 国产av在哪里看| 观看免费一级毛片| 天美传媒精品一区二区| 亚洲成人久久性| 亚洲av不卡在线观看| 变态另类丝袜制服| 欧美不卡视频在线免费观看| 成人av在线播放网站| 成人国产麻豆网| 日日摸夜夜添夜夜添小说| 嫩草影院入口| eeuss影院久久| 中文字幕久久专区| 偷拍熟女少妇极品色| 亚洲va日本ⅴa欧美va伊人久久| 女人十人毛片免费观看3o分钟| 亚洲aⅴ乱码一区二区在线播放| 中文资源天堂在线| 免费大片18禁| 国产精品乱码一区二三区的特点| 99九九线精品视频在线观看视频| 国产毛片a区久久久久| 一进一出抽搐动态| 亚洲av.av天堂| 国产精品亚洲美女久久久| 一本一本综合久久| 午夜a级毛片| 国产亚洲精品综合一区在线观看| 嫁个100分男人电影在线观看| 国产真实伦视频高清在线观看 | 丰满人妻一区二区三区视频av| 老司机深夜福利视频在线观看| 在线免费十八禁| 国产精品av视频在线免费观看| 波多野结衣巨乳人妻| 国产成人影院久久av| 精品人妻视频免费看| 欧美潮喷喷水| 久久久久国内视频| 日本色播在线视频| 亚洲av中文字字幕乱码综合| a在线观看视频网站| 婷婷色综合大香蕉| 中文字幕av在线有码专区| 男人的好看免费观看在线视频| 最好的美女福利视频网| 欧美一级a爱片免费观看看| 日日干狠狠操夜夜爽| 99视频精品全部免费 在线| 国产精品一区www在线观看 | 亚洲三级黄色毛片| 91在线精品国自产拍蜜月| 亚洲成人免费电影在线观看| 日韩 亚洲 欧美在线| 日本 av在线| 亚洲国产日韩欧美精品在线观看| 日韩亚洲欧美综合| 黄色女人牲交| 熟妇人妻久久中文字幕3abv| 国产成人aa在线观看| 丰满人妻一区二区三区视频av| 国内精品一区二区在线观看| 很黄的视频免费| 欧美精品国产亚洲| av天堂中文字幕网| 老司机午夜福利在线观看视频| 欧美日韩中文字幕国产精品一区二区三区| 亚洲成人免费电影在线观看| 欧美极品一区二区三区四区| 九九热线精品视视频播放| 午夜福利在线观看免费完整高清在 | 91久久精品国产一区二区三区| 欧美三级亚洲精品|