孫永紅,別俊,何群育,郭奇遇
[摘要]目的? ?探討長鏈非編碼RNA(LncRNA)TMEM9B-AS1介導TCF7L2-SATB1途徑調(diào)控食管癌細胞環(huán)氧化酶-2(COX-2)和β連環(huán)蛋白1(CTNNB1)表達以及對細胞增殖和侵襲的影響。 方法? ?將人食管癌細胞KYSE510分為對照組、TMEM9B-AS1組和siTMEM9B-AS1組,分別轉(zhuǎn)染陰性對照(NC)質(zhì)粒、TMEM9B-AS1質(zhì)粒和siTMEM9B-AS1質(zhì)粒。通過細胞計數(shù)(CCK-8)法和轉(zhuǎn)移小室(Transwell)檢測細胞增殖活力和侵襲能力。通過定量逆轉(zhuǎn)錄聚合酶鏈式反應(RT-qPCR)和蛋白質(zhì)印跡(Western blot)檢測轉(zhuǎn)錄因子7樣蛋白2([STBX]TCF7L2)、特殊富含AT的序列結合蛋白1([STBX]SATB1)、COX-2、CTNNB1的mRNA和蛋白表達水平。 結果? ?與對照組相比較,TMEM9B-AS1組細胞的TMEM9B-AS1水平、侵襲能力以及[STBX]TCF7L2、[STBX]SATB1、COX-2、CTNNB1的mRNA和蛋白水平顯著升高(F=30.268~56.084,P<0.05),siTMEM9B-AS1組細胞則顯著降低(P<0.05)。各組細胞中增殖活力對比,差異具有統(tǒng)計學意義(F組別=18.681,P<0.001);隨著培養(yǎng)時間的延長,各組細胞的增殖活力顯著上調(diào)(F時間=4.347,P<0.001)。 結論? ?過表達TMEM9B-AS1可促進TCF7L2-SATB1途徑,提高COX-2和CTNNB1的表達,并促進食管癌細胞的增殖和侵襲的能力。
[關鍵詞]食管腫瘤;RNA,長鏈非編碼;細胞增殖;腫瘤浸潤;轉(zhuǎn)錄因子7樣2蛋白;環(huán)氧化酶2
[中圖分類號]R735.1;R342.2
[文獻標志碼]A
[文章編號]2096-5532(2022)04-0529-06
doi:10.11712/jms.2096-5532.2022.58.145[HT]
[開放科學(資源服務)標識碼(OSID)]
[網(wǎng)絡出版]https://kns.cnki.net/kcms/detail/37.1517.R.20220822.1545.007.html;[JY]2022-08-2310:45:44
EFFECT OF TMEM9B-AS1 ON THE PROLIFERATION AND INVASION OF ESOPHAGEAL CANCER CELLS AND RELATED MECHANISM
SUN Yonghong, BIE Jun, HE Qunyu, GUO Qiyu
(Department of Oncology, Nanchong Central Hospital, Nanchong 637000, China)
[ABSTRACT] Objective[WTBZ] To investigate the regulatory effect of the long non-coding RNA (LncRNA) TMEM9B-AS1 on the expression of cyclooxygenase-2 (COX-2) and beta-catenin 1 (CTNNB1) in esophageal cancer cells by mediating the TCF7L2-SATB1 pathway and its effect on the proliferation and invasion of esophageal cancer cells.
Methods Human esophageal cancer KYSE510 cells were divided into control group, TMEM9B-AS1 group, and siTMEM9B-AS1 group and were transfected with negative control plasmid, TMEM9B-AS1 plasmid, and siTMEM9B-AS1 plasmid, respectively. CCK-8 assay and Transwell assay were used to measure cell proliferation activity and invasion ability. Reverse transcription-quantitative PCR and Western blot were used to measure the mRNA and protein expression levels of transcription factor 7-like protein 2 ([STBX]TCF7L2), special AT-rich sequence-binding protein 1 ([STBX]SATB1), COX-2, and CTNNB1.
Results Compared with the control group, the TMEM9B-AS1 group had significant increases in the level of TMEM9B-AS1, the invasive ability of cells, and the mRNA and protein expression levels of [STBX]TCF7L2, SATB1, COX-2, and CTNNB1 (F=30.268-56.084,P<0.05), while the siTMEM9B-AS1 group had significant reductions in these indices (P<0.05). There was a significant difference in cell proliferation activity between groups (Fgroup=18.681,P<0.001), and cell proliferation activity significantly increased over the culture time (Ftime=4.347,P<0.001).
Conclusion
Overexpression of TMEM9B-AS1 can promote the TCF7L2-SATB1 pathway, increase the expression of COX-2 and CTNNB1, and promote the proliferation and invasion abilities of esophageal cancer cells.
[KEY WORDS]esophageal neoplasms; RNA, long noncoding; cell proliferation; neoplasm invasiveness; transcription factor 7-like 2 protein; cyclooxygenase 2
食管癌侵襲性強,男性的估計發(fā)病率是女性的3倍,總體5年生存率僅為20%左右[1]。因此,仍需要探索有效篩查、診斷和治療食管癌的新方法。長鏈非編碼RNA(LncRNA)是一種單鏈不具有編碼蛋白質(zhì)功能的RNA,其長度在200~100 000 nt之間[2],如ELFN1-AS1、FAM83A-AS1等均可促進食管癌的進展[3-4]。轉(zhuǎn)錄因子7樣蛋白2(TCF7L2)是Wnt信號通路的關鍵分子,并可以調(diào)控β連環(huán)蛋白1(CTNNB1)的轉(zhuǎn)錄[5],研究已經(jīng)發(fā)現(xiàn)TCF7L2-SATB1通路與食管癌病人不良預后有關[6-7]。環(huán)氧化酶-2(COX-2)是一種蛋白酶,研究表明約有82%的食管癌組織表達COX-2,并且參與食管癌的起源和發(fā)展[8]。前期研究發(fā)現(xiàn)的一種新型的LncRNA TMEM9B-AS1,主要在結腸和腎臟表達[9]。但是,其對食管癌的影響和作用機制尚不清楚,目前仍無相關報道。因此,本研究旨在探討TMEM9B-AS1在體外對食管癌細胞侵襲和增殖能力的影響,以及介導TCF7L2-SATB1途徑對食管癌細胞COX-2和CTNNB1蛋白表達的影響。
1材料與方法
1.1實驗材料
人食管癌細胞KYSE510(ATCC CRL-9609)以及96孔和24孔組織培養(yǎng)板(康寧公司,美國),DMEM培養(yǎng)液(Gibco公司,美國)。TMEM9B-AS1過表達、沉默質(zhì)粒以及相應的陰性對照(NC)(吉瑪公司,中國),Lipofectamine2000(Invitrogen公司,美國)。Trizol試劑(Aidlab公司,中國),RNAspin Mini試劑盒(GE Healthcare,美國),BestarTMqPCR試劑盒(DBI Bioscience公司,德國),PCR儀(ABI7900,ABI公司,美國)。一抗以及山羊抗免疫球蛋白G(IgG)二抗(1∶1 000稀釋,#ab6721,美國Abcam公司),PVDF膜(Bio-Rad公司,美國),ECL 顯色試劑盒(Thermo Fisher公司,美國),Matrigel膠和Transwell裝置(Corning公司,美國)。光學顯微鏡(Carl Zeiss公司,德國)。
1.2實驗方法
1.2.1細胞培養(yǎng)、分組和轉(zhuǎn)染將KYSE510細胞培養(yǎng)在DMEM完全培養(yǎng)液中,內(nèi)含有體積分數(shù)0.10牛血清、0.1 g/L鏈霉素和100 kU/ L青霉素。細胞在含體積分數(shù)0.05 CO2、37 ℃和95%濕度下培養(yǎng)。將KYSE510分為對照組(A組)、TMEM9B-AS1組(B組)和siTMEM9B-AS1組(C組),分別轉(zhuǎn)染NC質(zhì)粒、TMEM9B-AS1質(zhì)粒以及siTMEM9B-AS1質(zhì)粒。按試劑盒說明書利用Lipofectamine2000進行轉(zhuǎn)染,轉(zhuǎn)染條件為7 ℃和體積分數(shù)0.05 CO2,48 h后收集細胞進行后續(xù)研究,分別進行定量逆轉(zhuǎn)錄聚合酶鏈式反應(RT-qPCR)檢測、細胞計數(shù)(CCK-8)檢測、轉(zhuǎn)移小室(Transwell)實驗及蛋白質(zhì)印跡(Western blot)實驗。
1.2.2RT-qPCR檢測TMEM9B-AS1、[STBX]TCF7L2、SATB1、COX-2和CTNNB1的mRNA表達使用RNeasy Mini試劑盒提取細胞總RNA,然后將其逆轉(zhuǎn)轉(zhuǎn)錄為cDNA。使用BestarTMqPCR預混液進行qPCR實驗,條件如下:95 ℃、2 min, 94 ℃、20 s,58 ℃、 20 s,72 ℃、20 s,40個循環(huán),最后在72 ℃下延伸4 min。使用Agilent Stratagene Mx 3000P序列檢測系統(tǒng)進行RT-qPCR分析。通過比較循環(huán)閾值并以GAPDH作為內(nèi)參對照,計算TMEM9B-AS1、[STBX]TCF7L2、SATB1、COX-2以及CTNNB1的mRNA相對表達水平。
1.2.3CCK-8檢測細胞增殖活力將100 μL的細胞懸浮液添加到96孔板中,孵育48 h和72 h后,將體積為10 μL的CCK-8溶液添加到每個孔中并孵育2 h。用酶標儀檢測450 nm波長處每個孔的光密度(OD)值。
1.2.4Transwell檢測細胞侵襲能力將基質(zhì)膠Matrigel(1∶8稀釋)加入24 孔板-Transwell 裝置的上室,并在 37 ℃ 下孵育 30 min。 將 600 μL 完全培養(yǎng)液填充到裝置的下室。將細胞(密度為5×107 /L)在無血清培養(yǎng)液中于37 ℃培養(yǎng) 24 h進行饑餓處理。消化后,向上室中加入 100 μL 細胞溶液(密度為5×108 /L)。培養(yǎng)24 h后,洗去未侵入的細胞。滲入下室的細胞用體積分數(shù)0.95乙醇固定,1 g/L結晶紫室溫染色20 min。隨機取5個400倍視野進行細胞計數(shù)。
1.2.5Western blot檢測TCF7L2、SATB1、COX-2和CTNNB1蛋白的表達細胞裂解后通過離心(4 ℃,12 000 r/min,5 min)收集總蛋白。采用SDS-PAGE分離每個樣品中等量(50 μg)的蛋白質(zhì),并將其轉(zhuǎn)移到PVDF膜上。室溫下將膜浸入50 g/L脫脂牛奶中2 h,封閉非特異性抗原。隨后,將膜與一抗在4 ℃下孵育過夜,然后將膜與相應的辣根過氧化物酶偶聯(lián)的二抗在室溫下孵育1 h。使用化學發(fā)光試劑顯像,采用Quantum One軟件分析條帶灰度值并計算TCF7L2、SATB1、COX-2和CTNNB1蛋白相對于GAPDH的表達量。
1.3統(tǒng)計學處理
使用SPSS 19.0軟件進行統(tǒng)計學分析。計量資料數(shù)據(jù)以[AKx-D]±s表示,通過單因素或者雙因素方差分析(ANOVA)評估組間差異,不同組在不同作用時間指標的比較采用析因設計的方差分析。
2結果
2.1各組食管癌細胞TMEM9B-AS1的表達對照組、TMEM9B-AS1組和siTMEM9B-AS1組食管癌細胞TMEM9B-AS1的表達水平分別為1.00±0.08、4.27±0.45和0.32±0.03,差異具有統(tǒng)計學意義(F=38.035,P<0.001)。提示轉(zhuǎn)染實驗成功。
2.2TMEM9B-AS1對食管癌細胞增殖活力影響
結果表明,各組食管癌細胞不同時間的增殖活力比較,差異有統(tǒng)計學意義(F48 h=7.391,F(xiàn)72 h=19.190,P<0.05)。析因設計的方差分析結果顯示,不同時間和不同組別對食管癌細胞增殖活力均有影響,且二者存在交互效應,差異均具有統(tǒng)計學意義(F時間=4.347,F(xiàn)組別=18.681,F(xiàn)時間×組別=6.528,P<0.001)。兩兩比較的結果顯示,TMEM9B-AS1組的細胞增殖活力顯著高于對照組(P<0.05),而siTMEM9B-AS1組細胞增殖活力則顯著低于對照組(P<0.05)。見表1。
2.3TMEM9B-AS1對食管癌細胞侵襲能力影響
對照組、TMEM9B-AS1組和siTMEM9B-AS1組癌細胞的浸入數(shù)分別為186.45±8.75、314.79±15.42和96.21±7.38,差異有顯著性(F=30.268,P<0.001)。與對照組比較,TMEM9B-AS1組細胞的侵襲能力顯著升高,而siTMEM9B-AS1組則顯著降低(P<0.05)。見圖1。
2.4TMEM9B-AS1對食管癌細胞TCF7L2以及SATB1表達影響
對照組、TMEM9B-AS1組和siTMEM9B-AS1組食管癌細胞[STBX]TCF7L2、SATB1的mRNA和蛋白表達比較,差異均有統(tǒng)計學意義(FmRNA=42.658、49.318,F(xiàn)蛋白=35.154、37.489,P<0.001)。與對照組比較,TMEM9B-AS1組細胞[STBX]TCF7L2、SATB1的mRNA和蛋白表達水平顯著升高(P<0.05),siTMEM9B-AS1組則顯著降低(P<0.05)。見圖2和表2。
2.5TMEM9B-AS1對食管癌細胞CTNNB1和COX-2表達影響
對照組、TMEM9B-AS1組和siTMEM9B-AS1組食管癌細胞[STBX]CTNNB1、COX-2的mRNA和蛋白表達比較,差異均有統(tǒng)計學意義(FmRNA=54.309、56.084,F(xiàn)蛋白=36.448、42.738,P<0.001)。與對照組比較,TMEM9B-AS1組細胞[STBX]CTNNB1、COX-2的mRNA和蛋白表達水平顯著升高(P<0.05),而siTMEM9B-AS1組則顯著降低(P<0.05)。見圖3和表3。
3討論
食管癌發(fā)病率逐年升高,但是目前尚無治療食管癌的有效手段[10-11]。由于食管癌細胞早期可侵入黏膜下層或者轉(zhuǎn)移至遠處器官,許多病人在術后短時間內(nèi)就會出現(xiàn)腫瘤局部復發(fā)或遠處轉(zhuǎn)移[12-13]。由于食管癌病人術后生存率低、預期生存期短、預后差[14],因此,探究食管癌發(fā)病機制具有重大意義。
LncRNA是近年來的研究熱點,參與腫瘤的發(fā)生和進展。LncRNA具有許多生物學功能,首先,作為轉(zhuǎn)錄因子的組成部分,可以通過調(diào)控原癌基因和抑癌基因的轉(zhuǎn)錄參與食管癌細胞的增殖和轉(zhuǎn)移[15-17]。在轉(zhuǎn)錄后水平上,LncRNA可以通過調(diào)節(jié)mRNA的剪切水平調(diào)控基因的表達,如LncRNA DGCR5通過SRSF1介導的Mcl-1選擇性剪接參與食管鱗狀細胞癌的發(fā)生[18]。此外,LncRNA也可通過競爭性內(nèi)源RNA形式調(diào)控微小RNA,最終調(diào)控mRNA表達,如LINC00460通過靶向miR-1224-5p促進食管癌轉(zhuǎn)移潛能和上皮間質(zhì)轉(zhuǎn)化[19]。本研究主要分析新LncRNA TMEM9B-AS1在食管癌發(fā)生和發(fā)展中的作用。編碼LncRNA TMEM9B-AS1的基因位于11號染色體(NC_000011.10),轉(zhuǎn)錄本為389個堿基,表達于多種組織和器官,以結腸和腎臟為主。本研究利用質(zhì)粒轉(zhuǎn)染的方式分別構建了TMEM9B-AS1沉默和過表達的細胞模型,結果顯示,在TMEM9B-AS1的水平升高后,食管癌細胞增殖和侵襲能力顯著升高;而TMEM9B-AS1的水平降低后,細胞食管癌增殖和侵襲能力顯著降低。本文體外水平研究顯示TMEM9B-AS1具有促進食管癌細胞增殖和遷移的作用,說明其可能參與食管癌的發(fā)生和發(fā)展。
為進一步分析TMEM9B-AS1在食管癌發(fā)生和發(fā)展中的作用機制,我們檢測了TCF7L2-CTNNB1途徑以及COX-2和SATB1蛋白的表達。TCF7L2蛋白參與Wnt信號通路,并通過序列特異性方式與其啟動子結合來調(diào)節(jié)下游MYC基因的表達,其可調(diào)控CTNNB1的轉(zhuǎn)錄激活[5,20-21]。BAHRAMIAN等[22]收集腫瘤組織和鄰近組織研究發(fā)現(xiàn),TCF7L2在食管癌和胃癌中顯著表達,可能在功能上參與癌癥細胞的增殖、凋亡和血管生成通路。TCF7L2在食管鱗狀細胞癌細胞中通過ERK1/2依賴性途徑調(diào)控促癌基因轉(zhuǎn)錄,參與食管癌的發(fā)生和發(fā)展[23-24]。以上研究表明TCF7L2過表達可能對食管癌的發(fā)生具有促進作用。而[STBX]CTNNB1基因是編碼β-catenin蛋白的基因,其是促進食管癌細胞增殖、轉(zhuǎn)移的重要細胞內(nèi)信號通路,抑制該通路也是治療食管癌的重要思路[25-27]。在哺乳動物中,TCF7L2可以和β-catenin通過DNA結合位點進行結合,共同控制和調(diào)控Wnt信號通路。此外,SATB1是一種核基質(zhì)附著區(qū)結合蛋白,參與調(diào)控染色質(zhì)的合成,在哺乳動物細胞中,SATB1直接與β-catenin相互作用,并通過與其啟動子結合來調(diào)節(jié)Wnt靶標的表達[28-30]。并通過調(diào)控全局染色質(zhì)調(diào)節(jié)眾多基因的表達,研究已經(jīng)顯示SATB1通過上調(diào)FN1和PDGFRB在食管癌中發(fā)揮原癌基因的作用[31]。同時,COX-2蛋白對食管癌也具有促進作用,研究顯示miR-128的甲基化沉默通過提高COX-2的表達促進食管癌的發(fā)展[32]。以上4種分子TCF7L2-SATB1途徑,COX-2和CTNNB1均對食管癌細胞增殖、遷移以及發(fā)生發(fā)展具有促進作用。本研究結果顯示,在食管癌細胞內(nèi)過表達TMEM9B-AS1,可以明顯促進食管癌細胞中[STBX]TCF7L2、SATB1、COX-2和CTNNB1的mRNA和蛋白表達,而抑制TMEM9B-AS1在食管癌細胞內(nèi)過表達則可以促進上述指標的mRNA和蛋白表達水平。Wnt/β-catenin信號通路在各種類型的癌癥中通過調(diào)節(jié)[STBX]COX-2基因的表達來影響疾病的發(fā)展[33]。因此,COX-2是Wnt/β-catenin信號通路下游的分子。
本文研究結果表明,TMEM9B-AS1很可能是通過TCF7L2-SATB1途徑來抑制或者促進下游分子COX2的表達以及減少CTNNB1與TCF7L2的結合,從而影響食管癌細胞的增殖和侵襲能力,參與食管癌的發(fā)生和發(fā)展。CARROSSINI等[34]研究結果顯示,COX-2表達和食管癌病人異位脂肪量呈顯著正相關,并在腺癌中檢測到共定位,但在食管鱗狀細胞癌中未檢測到。CONG等[35]在食管鱗狀細胞癌中檢測到48.3%的SATB1表達量,而正常組織只有7.8%,但分析結果顯示SATB1表達與臨床病理學特征沒有顯著相關性。但SATB1高表達病人的生存期明顯短于SATB1低表達者,因此,高SATB1表達是食管鱗狀細胞癌病人的獨立預后因素,并且可作為其靶向治療的潛在分子。后續(xù)臨床研究應關注到COX-2和SATB1表達在兩種類型癌癥中的差別。
綜上所述,上調(diào)TMEM9B-AS1表達可以通過TCF7L2-SATB1途徑,提高COX-2和CTNNB1的表達,并增強食管癌細胞增殖和侵襲的能力。但目前研究僅僅在體外細胞水平驗證了TMEM9B-AS1在食管癌中的作用,仍缺乏組織水平和動物模型的體內(nèi)驗證,尤其是在轉(zhuǎn)基因工具鼠中的驗證效果更有說服力。其次,食管癌呈現(xiàn)出兩種主要的組織學亞型(腺癌和鱗狀細胞癌),兩種亞型在病理學和分子機制方面均存在很大差異,因此應研究分子以及信號通路在不同類型食管癌中的表達差異。再者關于4種分子TCF7L2、SATB1、COX-2和CTNNB1在食管癌細胞里互相作用機制仍未探究,因此未來研究應重點關注和解決TMEM9B-AS1在食管癌機制和治療中的臨床意義,其促癌的作用仍需要進行體內(nèi)研究,調(diào)控TCF7L2-SATB1途徑的分子機制也需要進一步研究和探索。
[參考文獻]
[1]KOJIMA T, SHAH M A, MURO K, et al. Randomized phase Ⅲ KEYNOTE-181 study of pembrolizumab versus chemotherapy in advanced esophageal cancer[J].? Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 2020,38(35):4138-4148.
[2]LI W L, LIU J, ZHAO H T. Identification of a nomogram based on long non-coding RNA to improve prognosis prediction of esophageal squamous cell carcinoma[J].? Aging, 2020,12(2):1512-1526.
[3]ZHANG C Y, LIAN H K, XIE L S, et al. LncRNA ELFN1-AS1 promotes esophageal cancer progression by up-regulating GFPT1 via sponging miR-183-3p[J].? Biological Chemistry, 2020,401(9):1053-1061.
[4]HUANG G M, ZANG H L, GENG Y X, et al. LncRNA FAM83A-AS1 aggravates the malignant development of esophageal cancer by binding to miR-495-3p[J].? European Review for Medical and Pharmacological Sciences, 2020,24(18):9408-9415.
[5]ZHENG A, SONG X Y, ZHANG L, et al. Long non-coding RNA LUCAT1/miR-5582-3p/TCF7L2 axis regulates breast cancer stemness via Wnt/β-catenin pathway[J].? Journal of Experimental & Clinical Cancer Research: CR, 2019,38(1):305.
[6]ISHIGURO H, WAKASUGI T, TERASHITA Y, et al. Nuclear expression of TCF4/TCF7L2 is correlated with poor prognosis in patients with esophageal squamous cell carcinoma[J].? Cellular & Molecular Biology Letters, 2016,21:5.
[7]MAO L J, YU H Y, MA S, et al. Combination of oncolytic adenovirus targeting SATB1 and docetaxel for the treatment of castration-resistant prostate cancer[J].? Journal of Cancer, 2021,12(6):1846-1852.
[8]LUZ C C F, NOGUTI J, ARAJO L, et al. Expression of VEGF and cox-2 in patients with esophageal squamous cell carcinoma[J].? Asian Pacific Journal of Cancer Prevention: APJCP, 2018,19(1):171-177.
[9]AMID C, BAHR A, MUJICA A, et al. Comparative genomic sequencing reveals a strikingly similar architecture of a conserved syntenic region on human chromosome 11p15.3 (including gene ST5) and mouse chromosome 7[J].? Cytogenetics and Cell Genetics, 2001,93(3-4):284-290.
[10]WANG H, TAN L J. Selection of neoadjuvant treatment arms in trials of patients with squamous cell cancer of the esophagus-reply[J].? JAMA Surgery, 2022,157(1):84-85.
[11]BUCKSTEIN M H, ANKER C J, CHUONG M D, et al. CROSSing into new therapies for esophageal cancer[J].? International Journal of Radiation Oncology, Biology, Physics, 2022,113(1):5-10.
[12]NOBEL T B, LIVSCHITZ J, XING X X, et al. Surveillance implications of recurrence patterns in early node-negative esophageal adenocarcinoma[J].? The Annals of Thoracic Surge-ry, 2019,108(6):1640-1647.
[13]XU J, CAO W P, SHAO A Z, et al. Metabolomics of esophageal squamous cell carcinoma tissues: potential biomarkers for diagnosis and promising targets for therapy[J].? BioMed Research International, 2022, 2022:7819235.
[14]ROGERS J E, SEWASTJANOW-SILVA M, WATERS R E, et al. Esophageal cancer: emerging therapeutics[J].? Expert Opinion on Therapeutic Targets, 2022,26(2):107-117.
[15]DENG S J, CHEN H Y, YE Z, et al. Hypoxia-induced LncRNA-BX111 promotes metastasis and progression of panc-
reatic cancer through regulating ZEB1 transcription[J].? Oncogene, 2018,37(44):5811-5828.
[16]YANG C B, CHEN K S. Long non-coding RNA in esophageal cancer: a review of research progress[J].? Pathology Oncology Research: POR, 2022,28:1610140.
[17]LI Z R, QIN X B, BIAN W, et al. Exosomal lncRNA ZFAS1 regulates esophageal squamous cell carcinoma cell proliferation, invasion, migration and apoptosis via microRNA-124/STAT3 axis[J].? Journal of Experimental & Clinical Cancer Research: CR, 2019,38(1):477.
[18]DUAN Y Q, JIA Y L, WANG J L, et al. Long noncoding RNA DGCR5 involves in tumorigenesis of esophageal squamous cell carcinoma via SRSF1-mediated alternative splicing of Mcl-1[J].? Cell Death & Disease, 2021,12(6):587.
[19]CUI Y B, ZHANG C Y, LIAN H K, et al. LncRNA linc00460 sponges miR-1224-5p to promote esophageal cancer metastatic potential and epithelial-mesenchymal transition[J].? Pathology, Research and Practice, 2020,216(7):153026.
[20]WENZEL J, ROSE K, HAGHIGHI E B, et al. Loss of the nuclear Wnt pathway effector TCF7L2 promotes migration and invasion of human colorectal cancer cells[J].? Oncogene, 2020,39(19):3893-3909.
[21]SHEN G D, GAO Q, LIU F F, et al. The Wnt3a/β-catenin/TCF7L2 signaling axis reduces the sensitivity of HER2-positive epithelial ovarian cancer to trastuzumab[J].? Biochemical and Biophysical Research Communications, 2020,526(3):685-691.
[22]BAHRAMIAN S, SAHEBI R, ROOHINEJAD Z, et al. Low expression of LncRNA-CAF attributed to the high expression of HIF1A in esophageal squamous cell carcinoma and gastric cancer patients[J].? Molecular Biology Reports, 2022,49(2):895-905.
[23]ZHAO Y, XIA Q X, LIU Y, et al. TCF7L2 and EGR1 synergistic activation of transcription of LCN2 via an ERK1/2-dependent pathway in esophageal squamous cell carcinoma cells[J].? Cellular Signalling, 2019,55:8-16.
[24]QIU H, LIN X T, TANG W F, et al. Investigation of TCF7L2, LEP and LEPR polymorphisms with esophageal squamous cell carcinomas[J].? Oncotarget, 2017,8(65):109107-109119.
[25]WANG Q, LV Q, BIAN H, et al. A novel tumor suppressor SPINK5 targets Wnt/β-catenin signaling pathway in esopha-geal cancer[J].? Cancer Medicine, 2019,8(5):2360-2371.
[26]WEI W, LIU H F, YUAN J, et al. Targeting Wnt/β-catenin by anthelmintic drug niclosamide overcomes paclitaxel resis-tance in esophageal cancer[J].? Fundamental & Clinical Pharmacology, 2021,35(1):165-173.
[27]ISHIGURO H, WAKASUGI T, TERASHITA Y, et al. Decreased expression of CDH1 or CTNNB1 affects poor prognosis of patients with esophageal cancer[J].? World Journal of Surgical Oncology, 2016,14(1):240.
[28]RAMANUJAM P L, MEHROTRA S, KUMAR R P, et al. Global chromatin organizer SATB1 acts as a context-dependent regulator of the Wnt/Wg target genes[J].? Scientific Reports, 2021,11(1):3385.
[29]ZHU H, PENG J, LI W. FOXA1 suppresses SATB1 transcription and inactivates the Wnt/β-catenin pathway to alle-viate diabetic nephropathy in a mouse model[J].? Diabetes Metab Syndr Obes, 2021,14:3975-3987.
[30]HAN G D, SUN Y, HUI H X, et al. miR-1224 acts as a prognostic biomarker and inhibits the progression of gastric cancer by targeting SATB1[J].? Frontiers in Oncology, 2021,11:748896.
[31]SONG G Q, LIU K, YANG X L, et al. SATB1 plays an oncogenic role in esophageal cancer by up-regulation of FN1 and PDGFRB[J].? Oncotarget, 2017,8(11):17771-17784.
[32]JIN J, GUO T T, GUO Y D, et al. Methylation-associated silencing of miR-128 promotes the development of esophageal cancer by targeting COX-2 in areas with a high incidence of?esophageal cancer[J].? International Journal of Oncology, 2019,54(2):644-654.
[33]MA R J, MA C, HU K, et al. Molecular mechanism, regulation, and therapeutic targeting of the STAT3 signaling pathway in esophageal cancer (Review)[J].? International Journal of Oncology, 2022,61(3):105.
[34]CARROSSINI N, MEIRELES DA COSTA N, ANDRADE-BARRETO E, et al. Lipid droplet biogenesis and COX-2 pathway activation are triggered by Barretts esophagus and adenocarcinoma, but not esophageal squamous cell carcinoma risk factors[J].? Scientific Reports, 2021,11:981.
[35]CONG Q X, ZHANG H, SUN SX, et al. Pilot study special AT-rich sequence-binding protein 1 investigating as a potential biomarker for esophageal squamous cell carcinoma[J].? Dis Esophagus, 2016,29(6):621-626.
(本文編輯于國藝)
青島大學學報(醫(yī)學版)2022年4期