• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optical and X-Ray Observations of MAXI J1820+070 During the Early Outburst Phase in 2018:Zooming in the Low Frequency QPOs*

    2022-05-24 08:10:22DongMingMaoWenFeiYuJuJiaZhangZhenYanStefanoRapisardaXiaoFengWangandJinMingBai

    Dong-Ming Mao ,Wen-Fei Yu ,Ju-Jia Zhang,Zhen Yan ,Stefano Rapisarda ,Xiao-Feng Wang ,and Jin-Ming Bai

    1 Shanghai Astronomical Observatory,Chinese Academy of Sciences,Shanghai 200030,China;wenfei@shao.ac.cn

    2 University of Chinese Academy of Sciences,Beijing 100049,China

    3 Yunnan Observatories,Chinese Academy of Sciences,Kunming 650011,China

    4 Key Laboratory for the Structure and Evolution of Celestial Objects,CAS,Kunming 650216,China

    5 Physics Department,Tsinghua University,Beijing 100084,China

    6 Beijing Planetarium,Beijing Academy of Sciences and Technology,Beijing 100044,China

    Abstract We report a further investigation of the optical low frequency quasi periodic oscillations(LF QPOs)detected in the black hole transient MAXI J1820+070 in the 2018 observations with the YFOSC mounted on Lijiang 2.4 m telescope(LJT).In addition,we make use of the Insight-HXMT/HE observations to measure the properties of the quasi-simultaneous X-ray LF QPOs of MAXI J1820+070 on the same day.We compared the centroid frequency,the full width at half maximum (FWHM) and the fractional rms of the LF QPOs in both wavelength ranges.We found that the centroid frequency of the optical QPO is at a frequency of 51.58 mHz,which is consistent with that of the X-ray LF QPO detected on the same day within 1 mHz.We also found that the FWHM of the optical LF QPO is significantly smaller than that of the X-ray LF QPO,indicating that the optical QPO has a higher coherence.The quasi-simultaneous optical and the X-ray LF QPO at a centroid frequency of about 52 mHz suggests that the actual mechanisms of these LF QPOs as the Lense–Thirring precession should work in the vicinity of a radius of about 80–117 gravitational radii (Rg=GM/c2, M is the mass of the black hole) from the black hole if the QPO frequency is related to a proxy of the orbital frequency in the accretion flow as the Lense–Thirring precession model suggests.Furthermore,the apparent higher coherence of the optical QPO favors that it is a more original signal as compared with the X-ray QPO.

    Key words: X-ray stars–Low mass binary stars–X-ray transient sources

    1.Introduction

    Black hole X-ray binaries (BH XRBs) are critical to our understanding of accretion physics.The majority of BH XRBs in our galaxy are transients,which usually stay in quiescence with occasional outbursts lasting weeks to months (Chen et al.1997;Yan &Yu2015).Generally speaking,BH XRB transients undergo several different spectral states during their outbursts,which are mostly classified into the hard and soft states,as well as intermediate state or very high state,based on their X-ray energy spectra and temporal properties (Remillard&McClintock2006;Belloni2010).BH XRBs in the hard state show an X-ray energy spectrum dominated by a power-law component with a photon index of 1.4–2 and a high-energy cutoff around 100 keV.The power-law component is thought to be the result of reverse Compton scattering of soft X-ray photons in a hot electron cloud very close to the black hole(Dove et al.1998;Gilfanov2010).As the outburst evolves,most BH XRBs enter the soft state,in which the X-ray energy spectrum is dominated by a multi-temperature blackbody component with a peak temperature of about 1 keV.This soft component is commonly considered to originate in an optically thick but geometrically thin accretion disk (Shakura &Sunyaev1973;Zhang et al.1997;Gierliński et al.1999;Belloni2010;Belloni &Motta2016).During a typical evolution of an outburst,BH XRBs may go through intermediate states (hard and soft intermediate state),during which their energy spectra and timing properties are in between hard and soft states (Belloni2010).

    X-ray timing observations reveal that BH XRBs have distinct X-ray temporal properties in different spectral states(Homan et al.2001;Remillard &McClintock2006;Belloni2010).Such temporal properties are usually quantified by computing the fractional root-mean-square(fractional rms)and looking at the Fourier power spectrum of the light curve (van der Klis1989a).The X-ray light curve of BH XRBs in the hard state is highly variable,with fractional rms of 20%–40%(Belloni &Stella2014) and power spectrum dominated by band-limited noise (BLN) and quasi-periodic oscillation(QPO) (van der Klis1989b;Belloni et al.2002).In the soft state,the X-ray variability is weak (fractional rms~1%–5%,Belloni et al.2005,2011;Belloni2010;Motta et al.2011)and the power spectrum is dominated by power-law noise(Miyamoto et al.1994;Cui et al.1997;Remillard &McClintock2006;Gilfanov2010).

    QPOs in BH XRBs appear as relatively narrower peak in the X-ray power spectrum on top of broad band noise (van der Klis1989b;Belloni et al.2002;van Straaten et al.2002;Ingram &Motta2019).The QPOs with centroid frequency below 30 Hz,generally referred as low-frequency quasiperiodic oscillations (LF QPOs,Belloni2010),have been detected in most black hole transients (Ingram &Motta2019).LF QPOs are usually classified into types A,B,or C according to their characteristics (peak frequency,coherence,and amplitude)in association with overall power spectral evolution(Wijnands&van der Klis1999;Casella et al.2005;Motta et al.2015).The type-A QPO is generally considered to occur in the soft state,with a small fractional rms and a broad profile at the typical centroid frequency of about 6–8 Hz.The type-B QPO usually occurs in the soft intermediate state,with a relatively higher variability and a narrow profile at a typical centroid frequency range of 5–6 Hz (Casella et al.2005;Belloni &Motta2016).Finally,type-C QPOs are the most common QPO type in BH transients.They are usually observed on top of BLN noise in hard and hard-intermediate states,with centroid frequency increasing from a few mHz to~10 Hz(e.g.,Homan et al.2005,and references therein).Among all the QPO types,type-C QPOs have the narrowest profiles and the highest amplitudes (fractional rms~20%,Motta et al.2012).

    LF QPOs have been also detected in the optical and infrared energy band.For example,Motch et al.(1983)discovered that an optical LF QPO at a frequency about 1/2 of the X-ray QPO frequency in their simultaneous X-ray/optical observations of GX 339-4,and Gandhi et al.(2010)have also detected optical LF QPOs of this source.Hynes et al.(2003) found the frequencies of ultra-violet and optical LF QPOs are the same as that of X-ray ones in XTE J1118+480 and suggested that they have a common origin.Kalamkar et al.(2016)first detected an infrared LF QPO in GX 339-4 and suggested that it is connected to the precession of the jet.

    Despite the extensive timing studies performed on BH XRBs,the origin of LF QPOs is still controversial.One of the most promising physical scenario proposed to explain the complex QPO phenomenology is the Lense–Thirring precession of the hot accretion flow in the vicinity of the black hole(Stella&Vietri1998;Ingram et al.2009;Ingram&Done2011;Ingram &Motta2019).An alternative model proposed by Tagger &Pellat (1999) suggests that the X-ray LF QPO is connected to the accretion-jet instability(Rodriguez et al.2002;Varnière et al.2002).A statistical study on X-ray LF QPOs amplitudes in GRS 1915+105 by Yan et al.(2013) suggests that low-frequency QPOs may originate in the corona rather than the jet.Ma et al.(2021) found the X-ray LF QPO can contribute up to above 200 keV in the black hole transient MAXI J1820+070,and they suggested that the QPO originates from an X-ray jet near the black hole.The model proposed by Veledina et al.(2013) argued that optical QPO may originate from the hot accretion flow by the Lense–Thirring precession,with optical photons produced in the outer region of the flow.Instead,Veledina &Poutanen (2015) suggested that X-rays generated in the precessing accretion flow near the black hole irradiate on the outer accretion disk and then produce the optical photons.

    Optical fast photometric observations are an important tool to investigate the connections between phenomena occurring close to the black hole and the accretion disk.This could provide fundamental hints to unveil the geometry of accretion onto black holes and to validate general relativity predictions in the region closest to the black hole(Hynes et al.2003;Ingram&Motta2019).An optical QPO in the black hole transient MAXI J1820+070 was discovered by the Lijiang 2.4 m Telescope (LJT) and the Yunnan Faint Object Spectrograph and Camera (YFOSC) on MJD 58209 (2018 April 1) (Yu et al.2018b)—the first time an optical QPO in a BH transient was discovered by Chinese optical facilities.The low frequency of the optical QPO allows us to investigate the frequency limit of optical QPOs in BH XRBs and to study the connection between the optical and the X-ray LF QPOs in a broad frequency range.In this paper,we present a comparison of the optical and the X-ray LF QPOs in MAXI J1820+070 detected on the same day by the LJT/YFOSC and the Insight-Hard X-ray Modulation Telescope (Insight-HXMT).In Section2,we introduce the quasi-simultaneous optical and X-ray observations and the corresponding data reductions.In Section3,we present the optical and the X-ray data analysis and results,including the power spectral analysis and the comparison of the QPO properties.The last section is discussion and conclusion.

    2.Observations and Data Reduction

    MAXI J1820+070 was discovered as the optical transient ASASSN-18ey by the All-Sky Automated Survey for Supernovae(ASAS-SN)on 2018 March 6(Denisenko2018;Tucker et al.2018).A few days later it was observed in the X-ray band by the Monitor of All-sky X-ray Image (MAXI) on 2018 March 11 (Kawamuro et al.2018).The position of MAXI J1820+070 is at R.A.=18:20:21.94,decl.=+07:11:07.19(Gandhi et al.2019),and its distance is estimated as 2.96±0.33 kpc (Atri et al.2020).As a BH XRB (Baglio et al.2018;Torres et al.2019,2020),MAXI J1820+070 was very bright in both X-ray (e.g.,Mereminskiy et al.2018) and optical bands (e.g.,Russell et al.2018;Sai et al.2021).LF QPOs in MAXI J1820+070 have been detected in both optical(Fiori et al.2018;Yu et al.2018a,2018b;Zampieri et al.2018)and X-ray(Buisson et al.2018,2019;Mereminskiy et al.2018;Mudambi et al.2020;Stiele &Kong2020) bands.

    Figure1shows the daily averaged light curves during the 2018 outburst of MAXI J1820+070 monitored by the MAXI(2–20 keV) and the Swift/BAT (15–50 keV).The vertical dashed lines mark the X-ray spectral states—the low/hard state(LH),the intermediate state (IM) and the high/soft state (HS)(Shidatsu et al.2019).The red vertical line indicates the day on which simultaneous observations were performed by the LJT/YFOSC and the Insight-HXMT.The source was in the hard state on that day.

    Figure 1.The monitoring light curves of MAXI J1820+070 by the MAXI and the Swift/BAT during the 2018 outburst.The black points represent the data with 1 day time bins.The red vertical line indicates that the optical and X-ray observation with the LJT/YFOSC and the Insight-HXMT on MJD 58209.The black vertical dashed lines show the X-ray spectral states of MAXI J1820+070 during its outburst (Shidatsu et al.2019).“LH,” “IM” and “HS” represent the hard state,the intermediate state and the soft state,respectively.

    2.1.Optical Observation with the LJT/YFOSC

    High-cadence photometric observations of MAXI J1820+070 were obtained with the YFOSC installed on the LJT(Fan et al.2015;Wang et al.2019) on MJD 58208,58209,and 58212.Of them,the observations spanned from 19:53:35 to 20:19:45 on MJD 58209 allowed the study of optical variability on a short timescale.For this observation,the exposure time of each exposure was set to 3 s,and the readout time of each frame is about 3.5 s.The total exposure time lasted for 1570 s,and a total of 240 images were obtained,with an average frame time of 6.58±0.59 s.We used the standard LJT/YFOSC photometric program to obtain the flux of MAXI J1820+070 relative to the averaged flux of the total comparison stars near the target.We finally obtained the light curve with a time resolution of~6.58 s,shown in Figure2.

    Figure 2.The optical light curve of MAXI J1820+070 obtained by the LJT/YFOSC on MJD 58209.

    2.2.X-Ray Observation with the Insight-HXMT/HE

    The Insight-Hard X-ray Modulation Telescope (Insight-HXMT) was launched on 2017 June 15 as the first X-ray astronomical satellite of China (Zhang et al.2020).Insight-HXMT has a broad energy band and high time resolution with three main instruments,namely High Energy X-ray telescope(HE,~20–250 keV,Liu et al.2020),Medium Energy X-ray telescope(ME,~5–30 keV,Cao et al.2020),and Low Energy X-ray telescope (LE,~1–15 keV,Chen et al.2020).The time resolutions of the three instruments are 25 μs (HE),280 μs(ME),and 1 ms (LE),respectively.

    Two Insight-HXMT observations (ObsID:P0114661010 and P0114661 011) of MAXI J1820+070 starting at 20:41:00 on MJD 58208 and 20:33:19 on MJD 58209 (UTC) are the observations closest to the LJT/YFOSC optical observations.The total exposure times are 18,209 s and 68,997 s,respectively.We used Insight-HXMT Data Analysis Software(HXMTDAS,v2.0) for the data reduction and analysis of these two observations by applying the following suggested criteria:(1) elevation angle <10°;(2) geomagnetic cutoff rigidity >8 GeV;(3)pointing offset angle <0°.04;(4)the time when Insight-HXMT passed the South Atlantic Anomaly(SAA) >300″.The observation P0114661011 consists of five exposures,and we select the two exposures (P011466101101 and P011466101102) that are the closest to the LJT/YFOSC optical observation.The observation P0114661010 has an exposure window from 20:41 on MJD 58208 to 1:44 on the next day.P0114661011 had two exposure windows from 20:33 to 20:37 and from 23:37 to 4:08 on MJD 58209.The HE is capable of the highest time resolution for the X-ray detection in the high-energy band among the three detectors.Our data reduction of the X-ray LF QPO is similar to that in Ma et al.(2021).We used Insight-HXMT/HE results for the following power spectral analysis and comparison of the optical and X-ray LF QPOs,due to its larger averaged count rate.

    In addition,the Swift/XRT observation (ObsID 00010627021) starting at 09:35:04 on MJD 58209 is also close to the optical observation.We included the result of the QPO detected in this observation(see ATEL#11510:Yu et al.2018b) in the subsequent comparison analysis.

    3.Data Analysis and Results

    3.1.The Optical and X-Ray Power Spectral Analysis

    We investigated optical and X-ray variability of MAXI J1820+070 and the connection between them by Fourier power spectral analysis.we divided the optical light curve with the duration of~1570 s (see Figure2) into continuous 421 s segments,computed the power spectrum by fast Fourier transform for each time segment and averaged all of them.The power spectrum computed in this way has a frequency resolution~0.002 Hz and a Nyquist frequency of~0.076 Hz.As the low Nyquist frequency does not allow to measure the contribution of the white noise in a region where no variability is expected,we fixed the white level to a constant value by fitting.The X-ray power spectra were generated from the 20–250 keV X-ray light curves of the Insight-HXMT/HE divided into time segments of 262 s with the time bin size of~0.001 s.We used the average power above 800 Hz as an estimate of the white noise level in the X-ray power spectra.Both the optical and X-ray power spectra were rms normalized(see Belloni et al.2002,for example).

    Figure 3.The optical and X-ray power spectra of MAXI J1820+070 within one day.The solid lines represent the power spectra(rms normalized)and fitting results of LJT/YFOSC (red) and Insight-HXMT/HE (black),respectively.The dashed lines represent the components in the power spectral fitting.The observation time is shown on the right side of each panel,and the earliest observed power spectrum is displayed at the bottom panel,and later ones are shown in upper panel in proper sequence.The time difference between the LJT/YFOSC observation and the nearest Insight-HXMT/HE observation is about 43 minutes,and the QPO centroid frequencies of these two bands are almost the same.In order to display each power spectrum more clearly and be convenient to compare them,we use the logarithmic coordinate for the X-axis and the linear coordinate for the Y-axis.

    We fit the optical and X-ray power spectra with a model composed of a zero-centered Lorentzian plus several additional Lorentzians to take into account the possible QPO components(Belloni et al.2002;van Straaten et al.2002).The reduced χ2of the best fit results is about 0.7–1.2.Table1shows the LJT/YFOSC and Insight-HXMT/HE observation time,the centroid frequency(ν0),the full width half maximum(FWHM)and the fractional rms of the QPOs obtained in the power spectral fitting.Our results of the QPO measurements are shown in Table1.

    Table 1 The Measurement of the Parameters of the Optical and X-Ray LF QPOs in MAXI J1820+070

    Figure3shows the optical and X-ray power spectra of MAXI J1820+070 obtained by LJT/YFOSC and Insight-HXMT/HE around MJD 58209.It can be seen that the X-ray power spectra of MAXI J1820+070 are similar to that of a typical BH XRB in the hard state.It consists of a BLN component and a QPO signal.The optical power spectrum of MAXI J1820+070 has a quite similar feature to the X-ray power spectra,with the centroid frequencies of the optical and X-ray QPOs are almost the same.The similarity between optical and X-ray power spectra quasi-simultaneously observed in the black hole transient MAXI J1820+070 suggests that the optical and X-ray variability are likely connected.The similarity between the two powers may suggest a common origin,but a deep investigation of this possibility with more appropriate tools (such as cross-correlation) is beyond the scope of this work.

    Figure 4.The evolution of the optical and X-ray LF QPOs centroid frequency in MAXI J1820+070 around one day.The black solid line represents the linear fitting of the X-ray QPO centroid frequency (ν0) to the observation time (t) of the Insight-HXMT/HE and the Swift/XRT (ν 0=t0=MJD 58209).

    3.2.Comparison of the Optical and X-Ray Lowfrequency QPO

    To investigate the connection between the optical and the X-ray LF QPOs in MAXI J1820+070,we first compared the centroid frequency of the nearest optical/X-ray LF QPOs.We found that the difference between them ismHz (see Figure3and Table1).It can be seen that the frequency down to 51.58 mHz of the optical QPO in MAXI J1820+070 is consistent with that of the X-ray QPO.Our LJT/YFOSC optical observation time does not match exactly the HXMT/HE X-ray observation time,so we considered three HXMT/HE X-ray observations and a Swift/XRT observation(see ATEL#11510:Yu et al.2018b) as almost the same day with the optical.We fitted the QPO frequency trend in the X-ray band to check what the QPO frequency should be during our optical observation.Figure4shows the centroid frequencies of the optical/X-ray LF QPOs evolved with the observation time(MJD).The average of the frequency of X-ray QPOs detected by the quasi-simultaneous observations (including the three Insight-HXMT/HE observations and one Swift/XRT observation) on MJD 58209 ismHz,which differs from the optical QPO centroid frequency bymHz.We tentatively assume that the evolution of the QPO frequency in the X-ray band within one day can be well described by a linear form,thus the above X-ray QPO detection time versus centroid frequency can be fitted with ν0=a0(t-t0)+a1,where ν0is the QPO centroid frequency,tis the observation time of the QPO,t0=MJD 58209,anda0anda1are the parameters to be fitted.The best fitting result givesThe difference between the centroid frequency of the optical OPO and the X-ray one calculated from the above linear model is about 3.80 mHz.The centroid frequency at about 51.58 mHz of the optical LF QPO in MAXI J1820+070 is consistent with that of the X-ray QPOs within 4 mHz.

    We further compared the FWHM and the fractional rms of the LF QPOs in MAXI J1820+070 in both bands.As shown in Table1and Figure3,the FWHM and the fractional rms of the optical LF QPO are both smaller than those of the quasisimultaneous X-ray QPOs,and are about 1/2 of the average FWHM and 1/3 of the average fractional rms of the X-ray LF QPOs.The smaller FWHM of the optical QPO indicates that it has higher coherence than that of the X-ray QPOs,which suggests that the optical QPO may not be generated by the X-ray reprocessing and be likely from a more original signal.

    4.Discussion and Conclusion

    We re-analyzed the LJT/YFOSC optical observation of the black hole transient MAXI J1820+070 during the 2018 outburst (Yu et al.2018b) in which the black hole optical LF QPO was detected and the Insight-HXMT/HE X-ray observations of MAXI J1820+070 performed on almost the same day in order to compare their centroid frequencies,FWHMs and fractional rms.We found that the centroid frequency of the optical LF QPO in MAXI J1820+070 wasmHz,and the frequencies of the X-ray QPOs weremHz,mHz andmHz,respectively.The centroid frequency of the optical LF QPO differs from that of the X-ray QPO bymHz.By assuming a linear evolution occurring in the centroid frequency of the X-ray QPOs within one day,the centroid frequency of the optical LF QPO is consistent with that of the X-ray LF QPO.The independent measurements of consistent frequencies of the optical/X-ray LF QPOs in MAXI J1820+070 indicate that the optical and X-ray LF QPOs are linked.

    The optical/infrared/ultra-violet LF QPOs with same centroid frequency as that of the X-ray LF QPO (or 1/2 of the X-ray QPO frequency) and similar evolving trend (Hynes et al.2003)have also been observed in several BH XRBs,such as GX 339-4(Motch et al.1983;Imamura et al.1990;Gandhi et al.2010;Kalamkar et al.2016),XTE J1118+480 (Hynes et al.2003) and SWIFT J1753.5-0127 (Durant et al.2009).These phenomena suggest that the optical/infrared/ultra-violet LF QPOs might originate from the same physical mechanism responsible for the X-ray LF QPO.One of the most promising model for explaining the origin of the LF QPO is the Lense–Thirring precession of the hot accretion flow near the black hole (Stella &Vietri1998;Ingram et al.2009;Ingram &Done2011;Ingram &Motta2019).The hot accretion flow model proposed by Veledina et al.(2013)suggests that both the optical and X-ray LF QPOs originate from the precessing accretion flow,of which the outer region generates the optical photons.In an alternative X-ray reprocessing model,Veledina&Poutanen (2015) propose that the accretion flow produces the X-rays near the black hole.The optical emission comes from the irradiation of the X-ray in the outer region of the accretion disk.Thus the optical variability is modulated by the X-ray and presents the LF QPO with the same frequency as the X-ray.Our results show that,in the black hole transient MAXI J1820+070,the centroid frequency down to about 51.58 mHz of the optical LF QPO is consistent with that of the X-ray QPO detected on the same day.One way to investigate the relation between X-ray and optical QPO is by crosscorrelating the light curves in these two energy bands.Unfortunately,our optical observations happened to be not exactly simultaneous with the X-ray data.By extrapolating the centroid frequency trend in the X-ray band,we compared the optical QPO centroid frequency with the best fit value at the detection time of the optical QPO,and found that these two values are consistent within a difference of about 4 mHz.This seems to suggest that the centroid frequencies of the optical and the X-ray LF QPOs are consistent within uncertainties,nevertheless,more accurate investigation is necessary to validate this preliminary conclusion.

    In addition,we found that both the FWHM and the fractional rms of the optical LF QPO were smaller than those of the quasi-simultaneously observed X-ray QPOs,with the optical-X-ray ratio being 1/2 for the averaged FWHM and 1/3 for the averaged fractional rms,respectively.

    Following the trend of increasing frequency of the LF QPO in MAXI J1820+070,Yu et al.(2018a)later used the LJT and the Fast Optical Camera(FOC)on 2018 April 22(MJD 58230)to perform photometric observations of the black hole binary MAXI J1820+070 on the sub-second timescales and confirmed the consistency of the optical and the X-ray QPOs at~160 mHz.This indicates that the centroid frequency of the optical QPO in MAXI J1820+070 increased by a factor of about three in three weeks while remaining consistent with the centroid frequency of the X-ray LF QPO.These observations,together with our study,add important constrains on models aiming on explaining the complex LF QPO phenomenology in BH XRBs.The centroid frequency down to about 51.58 mHz of the optical QPO indicates that the Lense–Thirring precession model (see the equation in Ingram et al.2009)should work within a radius of about 80–117Rgfrom the black hole if the QPO frequency is a proxy of the orbital frequency in the accretion flow as suggested in the Lense–Thirring scenario,assuming that the compact object is a 8.48 solar mass black hole (Torres et al.2020) with a spin of 0.3–0.998 and the surface density of the hot accretion flow is constant,and the threefold increasing of frequency means that the radius of the Lense–Thirring precession changes by about 1.9 times (up to~175Rg).

    The ratio of the QPO centroid frequency to the FWHM is generally called the quality factor (Q=ν0/FWHM),which describes the coherence of the QPO signal,i.e.,the timescale on which the QPO waveform remain coherent.As Barret et al.(2005) showed,the coherence timescale of a QPO signal is estimated as τ=Q/(πν0)=1/(π·FWHM).Our results indicate that the optical LF QPO has consistent centroid frequency as that of the X-ray,but a smaller FWHM,indicating that the optical LF QPO has higher coherence suggesting that its coherence time is longer.This implies that the optical LF QPO cannot be generated due to the reprocessing and modulation of the X-ray emission from the hot accretion flow near the black hole,further suggesting that the optical QPO is likely produced by a more original process.

    Acknowledgments

    This work was supported in part by the National Natural Science Foundation of China (NSFC,Grant Nos.U1838203 and 11333005)and the National Program on Key Research and Development Project (Grant No.2016YFA0400804).We acknowledge the support of the staff of the Lijiang 2.4 m telescope funded by the Chinese Academy of Sciences (CAS)and the People's Government of Yunnan Province.This work also used the data from the Insight-HXMT mission,which is funded by China National Space Administration and the CAS.J.Z.is supported by the NSFC (Grant Nos.12173082 and 11773067),by the Youth Innovation Promotion Association of the CAS (Grant No.2018081),and by the Ten Thousand Talents Program of Yunnan for Top-notch Young Talents.Z.Y.was supported by the NSFC (Grant Nos.11773055 and U1938114),Youth Innovation Promotion Association of CAS(ids.2020265).X.W.is supported by NSFC grants (12033003 and 11633002) and the Scholar Program of Beijing Academy of Science and Technology (DZ:BS202002).

    ORCID iDs

    最近最新中文字幕大全电影3 | 国产在线视频一区二区| 飞空精品影院首页| 黄色怎么调成土黄色| 精品久久久久久电影网| 99香蕉大伊视频| 免费观看a级毛片全部| 日韩大码丰满熟妇| 精品国产乱码久久久久久男人| 91成年电影在线观看| 欧美日本中文国产一区发布| 国产一区有黄有色的免费视频| 色在线成人网| 在线观看一区二区三区激情| 国产野战对白在线观看| 久久久国产欧美日韩av| 91成人精品电影| 在线观看人妻少妇| 亚洲伊人色综图| 黑人巨大精品欧美一区二区蜜桃| 极品少妇高潮喷水抽搐| 午夜精品国产一区二区电影| 黑人巨大精品欧美一区二区mp4| 一边摸一边抽搐一进一出视频| 中文亚洲av片在线观看爽 | 人人妻,人人澡人人爽秒播| 免费少妇av软件| 国产淫语在线视频| avwww免费| avwww免费| 一本一本久久a久久精品综合妖精| 亚洲成人国产一区在线观看| 国产欧美日韩一区二区三| 久久久久久久国产电影| 超碰97精品在线观看| 丰满饥渴人妻一区二区三| 变态另类成人亚洲欧美熟女 | 一本综合久久免费| 中文字幕精品免费在线观看视频| 女性被躁到高潮视频| 色婷婷久久久亚洲欧美| 亚洲一区中文字幕在线| 一区二区三区国产精品乱码| 怎么达到女性高潮| 777米奇影视久久| 色尼玛亚洲综合影院| 黄色片一级片一级黄色片| 国产麻豆69| 国产国语露脸激情在线看| 成人三级做爰电影| 国产精品一区二区免费欧美| 欧美乱码精品一区二区三区| 国产精品熟女久久久久浪| 下体分泌物呈黄色| 亚洲精品中文字幕在线视频| 侵犯人妻中文字幕一二三四区| 欧美成人午夜精品| 悠悠久久av| 日韩欧美国产一区二区入口| 在线观看一区二区三区激情| 国产又色又爽无遮挡免费看| 18禁国产床啪视频网站| 亚洲成av片中文字幕在线观看| 国产三级黄色录像| 岛国毛片在线播放| 精品人妻熟女毛片av久久网站| 亚洲av电影在线进入| 18禁美女被吸乳视频| 亚洲av国产av综合av卡| a在线观看视频网站| 男人操女人黄网站| 99久久国产精品久久久| 亚洲伊人久久精品综合| 亚洲精品乱久久久久久| 久久久精品94久久精品| 一级毛片女人18水好多| 午夜日韩欧美国产| 亚洲一区中文字幕在线| 欧美成人午夜精品| 国产亚洲精品第一综合不卡| av天堂在线播放| 岛国在线观看网站| 免费高清在线观看日韩| 久热爱精品视频在线9| 欧美久久黑人一区二区| 国产国语露脸激情在线看| 国产免费现黄频在线看| 亚洲少妇的诱惑av| 超碰成人久久| 午夜激情久久久久久久| 又大又爽又粗| 国产精品久久久人人做人人爽| 日韩免费av在线播放| 午夜福利影视在线免费观看| 人妻久久中文字幕网| 亚洲黑人精品在线| 亚洲精品粉嫩美女一区| 黄网站色视频无遮挡免费观看| 国产在线精品亚洲第一网站| 国产精品秋霞免费鲁丝片| 日本wwww免费看| 国产成人免费观看mmmm| 18禁黄网站禁片午夜丰满| 国产97色在线日韩免费| 国产精品免费大片| 高清在线国产一区| 亚洲精品av麻豆狂野| 色播在线永久视频| 国产精品国产高清国产av | 欧美精品亚洲一区二区| 日本黄色视频三级网站网址 | 精品亚洲乱码少妇综合久久| 国产成人系列免费观看| av视频免费观看在线观看| 欧美黄色片欧美黄色片| 国产男女超爽视频在线观看| 精品国产一区二区三区久久久樱花| 国产成人精品无人区| 精品免费久久久久久久清纯 | 国产男女超爽视频在线观看| 欧美在线一区亚洲| 青草久久国产| 女警被强在线播放| 一本色道久久久久久精品综合| 国产激情久久老熟女| svipshipincom国产片| 黄色丝袜av网址大全| 成人影院久久| 午夜日韩欧美国产| 亚洲欧美精品综合一区二区三区| 成人av一区二区三区在线看| 男女午夜视频在线观看| tube8黄色片| 午夜福利一区二区在线看| 亚洲视频免费观看视频| 久久中文字幕人妻熟女| 欧美在线一区亚洲| 波多野结衣一区麻豆| 国产精品美女特级片免费视频播放器 | 亚洲av片天天在线观看| 又黄又粗又硬又大视频| 黄色成人免费大全| 男女午夜视频在线观看| 国产不卡av网站在线观看| 精品少妇黑人巨大在线播放| 亚洲av电影在线进入| 久久毛片免费看一区二区三区| 日本精品一区二区三区蜜桃| 黑丝袜美女国产一区| av网站免费在线观看视频| 一区二区三区精品91| 夜夜夜夜夜久久久久| 国产日韩一区二区三区精品不卡| 青青草视频在线视频观看| 色老头精品视频在线观看| 欧美 日韩 精品 国产| 亚洲欧美色中文字幕在线| 高清视频免费观看一区二区| 色94色欧美一区二区| 中文欧美无线码| 国产麻豆69| 色视频在线一区二区三区| 欧美 亚洲 国产 日韩一| 成人特级黄色片久久久久久久 | 俄罗斯特黄特色一大片| 久久天躁狠狠躁夜夜2o2o| 视频区图区小说| 免费久久久久久久精品成人欧美视频| 精品少妇内射三级| 国产精品久久久久久精品古装| 亚洲第一av免费看| 少妇被粗大的猛进出69影院| 日韩视频一区二区在线观看| 久久久久国内视频| 日韩中文字幕视频在线看片| 日本精品一区二区三区蜜桃| 国产在线视频一区二区| 天堂中文最新版在线下载| 国产极品粉嫩免费观看在线| 多毛熟女@视频| 香蕉久久夜色| 一边摸一边做爽爽视频免费| av线在线观看网站| 国产高清激情床上av| 大陆偷拍与自拍| 桃红色精品国产亚洲av| 老司机午夜福利在线观看视频 | 日韩一区二区三区影片| 久久精品国产a三级三级三级| 亚洲视频免费观看视频| 狠狠婷婷综合久久久久久88av| 欧美精品一区二区免费开放| 亚洲国产欧美在线一区| 91精品国产国语对白视频| 久久国产精品影院| 巨乳人妻的诱惑在线观看| 日本黄色日本黄色录像| 久久久久久久精品吃奶| 十分钟在线观看高清视频www| 中文字幕av电影在线播放| 岛国在线观看网站| 丝瓜视频免费看黄片| 国产精品久久久人人做人人爽| 丝袜美腿诱惑在线| tocl精华| 久久热在线av| 变态另类成人亚洲欧美熟女 | 中文字幕人妻丝袜一区二区| 一级,二级,三级黄色视频| 久久精品亚洲精品国产色婷小说| 无限看片的www在线观看| 91字幕亚洲| 国产成人精品在线电影| 嫁个100分男人电影在线观看| 免费久久久久久久精品成人欧美视频| 精品久久久精品久久久| 动漫黄色视频在线观看| 国产淫语在线视频| 一夜夜www| 国产欧美日韩一区二区精品| 国产人伦9x9x在线观看| 精品第一国产精品| 美女扒开内裤让男人捅视频| 精品久久蜜臀av无| e午夜精品久久久久久久| 久久九九热精品免费| 大香蕉久久成人网| 桃红色精品国产亚洲av| 最新的欧美精品一区二区| 黄频高清免费视频| 久久人妻福利社区极品人妻图片| 国内毛片毛片毛片毛片毛片| 老司机影院毛片| 99国产精品一区二区蜜桃av | 美女视频免费永久观看网站| 丁香六月欧美| 日本vs欧美在线观看视频| 极品人妻少妇av视频| 午夜福利一区二区在线看| 91大片在线观看| 久久久国产成人免费| 久久青草综合色| 日韩欧美一区视频在线观看| 老司机靠b影院| 国产aⅴ精品一区二区三区波| 精品久久久久久电影网| 后天国语完整版免费观看| 国产xxxxx性猛交| 老司机在亚洲福利影院| 制服诱惑二区| 男女下面插进去视频免费观看| 国产又爽黄色视频| 久热这里只有精品99| 亚洲第一青青草原| 国产在线观看jvid| 免费看a级黄色片| 国产又色又爽无遮挡免费看| 午夜福利乱码中文字幕| 一级a爱视频在线免费观看| 精品高清国产在线一区| 久久人人爽av亚洲精品天堂| 欧美日韩福利视频一区二区| 国产一区二区三区综合在线观看| 美女高潮喷水抽搐中文字幕| 国产精品二区激情视频| 一进一出好大好爽视频| 欧美午夜高清在线| 一区福利在线观看| 欧美性长视频在线观看| 亚洲av第一区精品v没综合| 满18在线观看网站| 久久午夜亚洲精品久久| 久久午夜亚洲精品久久| 亚洲国产av新网站| 最新在线观看一区二区三区| 久久ye,这里只有精品| 亚洲国产av新网站| 日韩三级视频一区二区三区| 亚洲熟妇熟女久久| av有码第一页| 亚洲熟妇熟女久久| 成在线人永久免费视频| 在线观看人妻少妇| 热re99久久精品国产66热6| 黑人巨大精品欧美一区二区mp4| 午夜激情久久久久久久| 午夜福利免费观看在线| 中文亚洲av片在线观看爽 | 9191精品国产免费久久| 下体分泌物呈黄色| 嫩草影视91久久| 亚洲中文av在线| 免费看十八禁软件| 操出白浆在线播放| 欧美一级毛片孕妇| 一区二区三区国产精品乱码| 黑人巨大精品欧美一区二区蜜桃| 国产精品久久久人人做人人爽| 亚洲av成人一区二区三| 一区二区三区激情视频| 在线观看免费视频网站a站| 亚洲精品自拍成人| 2018国产大陆天天弄谢| 亚洲 欧美一区二区三区| 后天国语完整版免费观看| √禁漫天堂资源中文www| 午夜91福利影院| 黑人巨大精品欧美一区二区蜜桃| 亚洲成av片中文字幕在线观看| 日本av免费视频播放| 国产成人av激情在线播放| 波多野结衣av一区二区av| 国产熟女午夜一区二区三区| 亚洲成人免费电影在线观看| 1024视频免费在线观看| 免费日韩欧美在线观看| 免费观看人在逋| 精品卡一卡二卡四卡免费| 国产欧美日韩精品亚洲av| 在线播放国产精品三级| 欧美黑人精品巨大| 国产亚洲欧美精品永久| 久久狼人影院| 欧美一级毛片孕妇| 久久国产精品男人的天堂亚洲| 久久久精品国产亚洲av高清涩受| 中文字幕制服av| 欧美日韩成人在线一区二区| 亚洲精品成人av观看孕妇| 狠狠狠狠99中文字幕| 亚洲欧美一区二区三区久久| 国产精品一区二区在线观看99| 亚洲欧美日韩高清在线视频 | 性少妇av在线| av线在线观看网站| 精品一区二区三区四区五区乱码| 亚洲精品在线观看二区| 亚洲国产av影院在线观看| 老汉色∧v一级毛片| 国产黄色免费在线视频| 亚洲熟女毛片儿| 一级片免费观看大全| 国产精品久久久久成人av| 国产精品一区二区在线观看99| 一级毛片精品| 成人亚洲精品一区在线观看| 在线观看免费高清a一片| 少妇被粗大的猛进出69影院| 成人影院久久| 久久av网站| www.熟女人妻精品国产| 国产免费av片在线观看野外av| 亚洲国产中文字幕在线视频| avwww免费| 日韩中文字幕视频在线看片| 欧美亚洲日本最大视频资源| 中国美女看黄片| 国产精品一区二区精品视频观看| 中亚洲国语对白在线视频| www日本在线高清视频| 中文字幕人妻丝袜制服| 一本大道久久a久久精品| 精品久久久久久久毛片微露脸| 久久午夜综合久久蜜桃| 午夜福利一区二区在线看| 国产精品免费大片| 国产日韩欧美在线精品| 美女扒开内裤让男人捅视频| avwww免费| 亚洲国产中文字幕在线视频| 日韩欧美一区二区三区在线观看 | 两个人看的免费小视频| 欧美激情 高清一区二区三区| 免费av中文字幕在线| 人妻 亚洲 视频| 人妻久久中文字幕网| 亚洲国产毛片av蜜桃av| 久久久久国产一级毛片高清牌| 国产精品麻豆人妻色哟哟久久| 性少妇av在线| 国产精品麻豆人妻色哟哟久久| 亚洲精品乱久久久久久| 在线观看一区二区三区激情| 777米奇影视久久| 国产一区有黄有色的免费视频| 一本色道久久久久久精品综合| 97在线人人人人妻| 国产区一区二久久| 国产一区有黄有色的免费视频| 成年女人毛片免费观看观看9 | av视频免费观看在线观看| 熟女少妇亚洲综合色aaa.| 一区福利在线观看| 久久影院123| 免费在线观看完整版高清| 久久久久精品国产欧美久久久| 国产欧美日韩一区二区三| 久久久久国产一级毛片高清牌| 国产真人三级小视频在线观看| 国产成人欧美在线观看 | 久久中文字幕一级| 免费在线观看视频国产中文字幕亚洲| 国产av精品麻豆| 一级毛片精品| videosex国产| 久久人人爽av亚洲精品天堂| 高清视频免费观看一区二区| 午夜免费鲁丝| 国产精品二区激情视频| 精品少妇久久久久久888优播| 人人妻人人爽人人添夜夜欢视频| 丰满迷人的少妇在线观看| 国产av一区二区精品久久| 国产成人啪精品午夜网站| 精品国产一区二区三区四区第35| 亚洲第一欧美日韩一区二区三区 | 狠狠狠狠99中文字幕| 高清欧美精品videossex| 丝袜美腿诱惑在线| 天天躁日日躁夜夜躁夜夜| 黑丝袜美女国产一区| 99久久99久久久精品蜜桃| 国产三级黄色录像| 黄色毛片三级朝国网站| 美女高潮到喷水免费观看| 久久久久久久久免费视频了| 91麻豆精品激情在线观看国产 | 亚洲精品中文字幕一二三四区 | 最近最新中文字幕大全免费视频| 国产精品国产高清国产av | 在线观看免费日韩欧美大片| 亚洲三区欧美一区| 黄片大片在线免费观看| 国产亚洲欧美在线一区二区| 母亲3免费完整高清在线观看| 91成人精品电影| 十八禁网站免费在线| 亚洲国产av新网站| 国产1区2区3区精品| 成人国产一区最新在线观看| 老司机在亚洲福利影院| 久久中文看片网| 久久ye,这里只有精品| 两个人免费观看高清视频| 亚洲一卡2卡3卡4卡5卡精品中文| 一区在线观看完整版| 黑人操中国人逼视频| 日本精品一区二区三区蜜桃| 国产激情久久老熟女| 午夜精品国产一区二区电影| 亚洲精华国产精华精| 欧美性长视频在线观看| 露出奶头的视频| 18在线观看网站| 亚洲成国产人片在线观看| 老司机靠b影院| 欧美精品人与动牲交sv欧美| 亚洲色图综合在线观看| 午夜福利欧美成人| 亚洲伊人久久精品综合| 97人妻天天添夜夜摸| 欧美黑人精品巨大| 国产成人一区二区三区免费视频网站| 在线观看www视频免费| 欧美国产精品va在线观看不卡| 一本一本久久a久久精品综合妖精| 在线av久久热| 国产亚洲av高清不卡| 99国产精品免费福利视频| 首页视频小说图片口味搜索| 咕卡用的链子| 在线 av 中文字幕| 大陆偷拍与自拍| 国产成人av激情在线播放| 国产淫语在线视频| 三级毛片av免费| 一级黄色大片毛片| 日韩人妻精品一区2区三区| 免费一级毛片在线播放高清视频 | 午夜福利视频在线观看免费| 精品熟女少妇八av免费久了| 9热在线视频观看99| 国产成人精品久久二区二区91| 午夜91福利影院| 国产欧美亚洲国产| av国产精品久久久久影院| 90打野战视频偷拍视频| 下体分泌物呈黄色| 欧美人与性动交α欧美精品济南到| 成人影院久久| 免费少妇av软件| 日韩大片免费观看网站| 国产精品影院久久| 黄色片一级片一级黄色片| 国产精品久久久久久精品电影小说| 人人妻人人澡人人爽人人夜夜| 人人妻人人添人人爽欧美一区卜| 国产精品国产av在线观看| 亚洲欧洲精品一区二区精品久久久| 久久精品熟女亚洲av麻豆精品| 色综合欧美亚洲国产小说| 精品亚洲乱码少妇综合久久| 亚洲国产av新网站| videos熟女内射| 法律面前人人平等表现在哪些方面| 欧美老熟妇乱子伦牲交| 男男h啪啪无遮挡| 天天操日日干夜夜撸| 亚洲欧美激情在线| 最黄视频免费看| 男女午夜视频在线观看| 性少妇av在线| 侵犯人妻中文字幕一二三四区| 国产三级黄色录像| 高潮久久久久久久久久久不卡| 国产免费av片在线观看野外av| 久久久国产一区二区| 久久狼人影院| 男女高潮啪啪啪动态图| 国产精品国产av在线观看| 成人影院久久| 国产91精品成人一区二区三区 | 巨乳人妻的诱惑在线观看| 国产亚洲欧美精品永久| 亚洲熟妇熟女久久| 国产老妇伦熟女老妇高清| 久久精品亚洲av国产电影网| 亚洲av成人不卡在线观看播放网| 成人国语在线视频| 蜜桃在线观看..| 王馨瑶露胸无遮挡在线观看| 69av精品久久久久久 | 色婷婷av一区二区三区视频| 国产av一区二区精品久久| 99国产精品99久久久久| av超薄肉色丝袜交足视频| 欧美激情久久久久久爽电影 | 老司机午夜十八禁免费视频| 中文字幕制服av| 一区二区av电影网| 男女午夜视频在线观看| 在线av久久热| 巨乳人妻的诱惑在线观看| 国产精品 欧美亚洲| 欧美激情 高清一区二区三区| 国产一区二区 视频在线| 十八禁网站免费在线| 久久 成人 亚洲| 欧美黄色片欧美黄色片| 免费久久久久久久精品成人欧美视频| 久久精品aⅴ一区二区三区四区| 免费av中文字幕在线| 久久天堂一区二区三区四区| 99久久99久久久精品蜜桃| 中国美女看黄片| 十八禁高潮呻吟视频| 91大片在线观看| 91av网站免费观看| 蜜桃国产av成人99| 国产亚洲欧美精品永久| 女性生殖器流出的白浆| 一级黄色大片毛片| 国产97色在线日韩免费| 亚洲成av片中文字幕在线观看| 不卡av一区二区三区| 午夜精品久久久久久毛片777| 男女午夜视频在线观看| 人人澡人人妻人| 在线看a的网站| 国产欧美日韩一区二区三区在线| 亚洲欧洲日产国产| 欧美日韩中文字幕国产精品一区二区三区 | 午夜福利视频精品| 国产精品自产拍在线观看55亚洲 | 成年动漫av网址| 久久香蕉激情| 99国产极品粉嫩在线观看| 国产国语露脸激情在线看| 涩涩av久久男人的天堂| 精品熟女少妇八av免费久了| 国产高清国产精品国产三级| 国产高清激情床上av| 国产麻豆69| 一边摸一边做爽爽视频免费| 建设人人有责人人尽责人人享有的| 久久久精品国产亚洲av高清涩受| 国产不卡av网站在线观看| 国产在视频线精品| 欧美精品一区二区大全| 日韩一区二区三区影片| 一级片免费观看大全| 一级毛片女人18水好多| 精品国产亚洲在线| 男人操女人黄网站| 18禁观看日本| bbb黄色大片| 色在线成人网| 亚洲免费av在线视频| 在线观看一区二区三区激情| 国产精品久久电影中文字幕 | 成年人午夜在线观看视频| 无人区码免费观看不卡 | √禁漫天堂资源中文www| 亚洲成av片中文字幕在线观看| 亚洲成人手机| av网站免费在线观看视频| 老汉色∧v一级毛片| 成人国语在线视频| 国产免费av片在线观看野外av| 人人妻人人添人人爽欧美一区卜| 国产在线免费精品| 大片免费播放器 马上看| 母亲3免费完整高清在线观看| 免费看a级黄色片| 脱女人内裤的视频|