• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Study on Monte Carlo Simulation of the Radiation Environment above GeV at the DAMPE Orbit

    2022-05-24 08:10:28WangZangJiangLeiLuoXuandChang

    S.X.Wang ,J.J.Zang ,W.Jiang ,S.J.Lei ,C.N.Luo ,Z.L.Xu ,and J.Chang

    1 Key Laboratory of Dark Matter and Space Astronomy,Purple Mountain Observatory,Chinese Academy of Sciences,Nanjing 210023,China zangjingjing@lyu.edu.cn,xuzl@pmo.ac.cn

    2 School of Astronomy and Space Science,University of Science and Technology of China,Hefei 230026,China

    3 School of Physics and Electronic Engineering,Linyi University,Linyi 276000,China

    Abstract The Dark Matter Particle Explorer (DAMPE) has been undergoing a stable on-orbit operation for more than 6 yr and acquired observations of over 11 billion events.A better understanding of the overall radiation environment of the DAMPE orbit is crucial for both simulation data production and flight data analysis.In this work,we study the radiation environment at low Earth orbit and develop a simulation software package using the framework of ATMNC3,in which state-of-the-art full 3D models of the Earth’s atmospheric and magnetic-field configurations are integrated.We consider in our Monte Carlo procedure event-by-event propagation of cosmic rays in the geomagnetic field and their interaction with the Earth’s atmosphere,focusing on the particles above GeV that are able to trigger the DAMPE data acquisition system.We compare the simulation results with the cosmic-ray electron and positron (CRE) flux measurements made by DAMPE.The overall agreement on both the spectral and angular distribution of the CRE flux demonstrates that our simulation is well established.Our software package could be of more general usage for simulation of the radiation environment of low Earth orbit at various altitudes.

    Key words: methods:data analysis–instrumentation:detectors–astroparticle physics

    1.Introduction

    The Dark Matter Particle Explorer (DAMPE),launched on 2015 December 17 is a space-borne high-energy particle detector covering an energy range from GeV to TeV (Chang et al.2017;Xu et al.2018;Huang et al.2020).The observation results of DAMPE can be used for scientific research on the origin of cosmic rays (Yuan &Feng2018;An et al.2019;Yuan et al.2021),indirect detection of dark matter (Ambrosi et al.2017;Yuan et al.2017;Alemanno et al.2021;Xu et al.2022) and gamma-ray astronomy (Duan et al.2019).DAMPE has been operating on a solar synchronized orbit of 500 km for more than 6 yr and has acquired observational data of over 11 billion cosmic-ray events.At this low Earth orbit (LEO4https://www.sciencedirect.com/topics/earth-and-planetary-sciences/lowearth-orbit),massive data are collected in a complex cosmic-ray radiation environment mainly formed by the interaction of galactic cosmic rays (GCRs) with the geomagnetic field and Earth’s atmosphere.The charged GCRs propagating in interplanetary space are modulated by solar activities,showing a flux fluctuation with a period of about 11 yr.The transportation of charged GCRs in Earth’s magnetosphere region is mainly affected by the geomagnetic field,forming several well known phenomena,such as the radiation belt,the South Atlantic Anomaly area and the east–west effect.At even closer distance to the Earth,GCRs may interact with atoms in the atmosphere,generating a large amount of secondary particles.As DAMPE keeps operating in such a complex radiation environment,accurate on-orbit simulation of the radiation environment is the basis for fine calibrations of the detector that are crucial to understanding the flight data,such as the minimum ionized particles calibration,the geomagnetic rigidity cutoff measurement,the event rate and data volume estimation of the data acquisition (DAQ) system,and so on.

    Given the critical role played by a correct understanding of the radiation environment at the DAMPE orbit in both the simulation data production and flight data analysis,we study in this work the Monte Carlo (MC) simulation of the radiation environment at the LEO,and the DAMPE orbit in particular.As the inputs of our simulation,we make use of the fluxes of primary cosmic-ray protons,helium nuclei,and electrons and positrons (CREs) above GeV measured by the AMS02(Aguilar et al.2014,2015a,2015b).We then back trace the propagation of these charged particles in the geomagnetic field,obtaining the distribution of primary cosmic-ray particles on the satellite orbital plane.The interaction between these primary cosmic-ray particles and the Earth’s upper atmosphere is simulated to generate secondary particles.All these primary and secondary particles are then connected to the DAMPE official Geant4 package to simulate their interaction with the detectors,and finally produce reconstructed simulation data in the same format as the flight data.Our simulation of the radiation environment focuses on the high-energy GCRs above GeV,as the solar wind particles below hundreds of MeV cannot trigger the DAQ system (Zhang et al.2019).To investigate the accuracy of our on-orbit simulation,several validations on the spectral and spatial distribution are performed in several different radiation regions.Our results show good agreement between flight data and simulation.

    2.Simulation Methods

    The ultimate goal of the software is to generate simulation data in the same format as the flight data by simulating the cosmic-ray environment in the DAMPE orbit and the process of flight DAQ.For this purpose,the on-orbit simulation is separated into four steps as illustrated in Figure1:the event generation,the primary particle determination,the secondary particle generation and the official Geant4 simulation.The first three steps are developed based on the ATMNC3(Honda et al.2004)software framework that was originally developed to calculate atmospheric neutrino flux,but which can also be used to simulate cosmic-ray flux near the Earth with proper modification.In our simulation,the GCR events are uniformly generated on an Earthcentered spherical surface (10 km above the DAMPE orbit,as displayed in Figure2) with an isotropic flux,and then only inward going particles are considered to ensure that they can reach the DAMPE orbit.A so-called back tracing process is then employed to determine if the particle is reasonable.For each event,the charge sign and the momentum direction are reversed,and the particle will propagate along its time-reversed trajectory in the geomagnetic field.If the particle reaches a distance of 10 Earth-radii,it is considered reasonable,otherwise a forbidden trajectory or a primary particle has been counted.During the backtracing,the tracing step length is optimized to balance CPU time consumption and trajectory accuracy.As the inputs of our simulation,we use the measurements of the AMS02 for the incoming fluxes of various GCR components,and only three GCR components of the most interest are considered,namely,protons (Aguilar et al.2015b),helium nuclei (Aguilar et al.2015a) and CREs (Aguilar et al.2014).We consider in our simulation a full 3D description of the Earth’s atmospheric(NRLMSISE00 atmospheric model,Picone et al.2002) and magnetic-field(IGRF-12 geomagnetic field model,Beggan et al.2015) configurations using the latest available models.The NRLMSISE00 model describes the atmospheric density,composition and changes over time from sea level to 1000 km altitude.The IGRF12 is an international geomagnetic reference field model provided by the V-MOD International Cooperative Group of the International Association of Geomagnetism and Aeronomy (IAGA),covering the period of 2015–2020.The relative error of IGRF12 is about 1 nT while the typical field strength is about 40,000 nT.Event-by-event simulation of GCR propagation in the geomagnetic field and their interaction with the Earth’s atmosphere is implemented in the ATMNC3 framework also with the help of the DMPJET3 (Ranft et al.2003)and PHITS(Niita et al.2006)particle interaction models.The DMPJET3 is a new version of the MC event generator DPMJET for air shower simulation,and the PHITS is an MC particle propagation model that applies to particles in the energy range from 1 to 200 GeV.

    Figure 1.The procedure of on-orbit simulation.First,the GCR events are generated isotropically and uniformly on an Earth-centered spherical surface at an altitude of 510 km.Then a time-reversed trajectory backtracing of the particle in a magnetic field described by the IGRF-12 model determines whether it is a primary or unreasonable one.In a third step,the primary particles interact with the atmosphere to generate secondary particles.At last,the simulated primary and secondary particles are imported into the DAMPE official Geant4 simulation and reconstruction package to produce simulation data in the same format as flight data.

    Figure 2.A schematic of the setup of our simulation of the radiation environment at the DAMPE orbit.Particles are uniformly generated on the generation sphere 10 km above the DAMPE orbit at 500 km.The back-tracing method enables the selection of primary particles coming from beyond 10 Earth-radii,and whose interaction with the atmosphere is further simulated to produce the secondaries.

    Figure 3.The CRE fluxes of the MC and flight data (reweighted to AMS02)(Aguilar et al.2014) are compared in the McIlwain L (Hilton 1971) range of 1–1.14.The flight data CRE flux is normalized to the simulated flux above 20 GeV.In that energy range,the primary CRE flux is almost independent of the geomagnetic field.

    After the ATMNC3 simulation,for the validation of our simulation results by comparing to flight data,all the primary and secondary particles generated are imported into the DAMPE official Geant4 simulation and reconstruction package (Jiang et al.2020),where the relativistic inelastic and elastic interaction between a particle and the DAMPE detector is simulated.In the end,the MC data are reconstructed using the same algorithm for the flight data reconstruction,and a simulation data sample in the same format as flight data are generated.

    3.Validation of On-orbit Simulation

    In this section,we validate our on-orbit simulation by comparing the MC results with the CRE flux measurement of DAMPE.The primary CREs nearly isotropically propagating in interplanetary space,however,are deflected by geomagnetic force when entering the Earth’s magnetic field.As a consequence,the energy spectrum of primary CREs near the Earth is no longer a single power-law but rather a broken power-law with a magnetic latitude dependent cutoff,the socalled geomagnetic rigidity cutoff.The isotropic angular distribution is also broken by the rigidity cutoff and the socalled east–west asymmetry in the angular distribution is formed.Meanwhile,some secondary CREs generated in the top-layer of the atmosphere can also trigger the DAQ,so the CREs observed by DAMPE have two origins,one population is from the primary GCRs and the other comes from the interaction between GCRs and the atmosphere.By comparing the spectrum of primary and secondary combined CREs,we can validate both the determination method of the primary particles and their interaction with the Earth’s atmosphere.

    3.1.Primary and Secondary CRE Flux with Geomagnetic Rigidity Cutoff

    In the analysis,we select primary and secondary CRE flux calculated in the magnetic equator region where the geomagnetic field lines are almost parallel to the surface of the Earth.The charged particles are deflected by the Lorentz force,while in the polar region,the magnetic field lines are open and charged cosmic rays can reach the Earth’s surface along field lines.As a consequence,the geomagnetic rigidity cutoff is much higher in the equatorial region,where the typical value is about a few tens of GeV,well in the sensitive energy range of DAMPE.For comparison,we use the CRE fluxes near the geomagnetic equator in DAMPE orbit (Zang et al.2017),and the DAMPE measurement of the CRE fluxes above 1.2 times the rigidity cutoff is normalized to the fluxes published by AMS02 (Aguilar et al.2014).

    As depicted in Figure3,the CRE flux is broken into two parts due to the rigidity cutoff.Above the cutoff,primary CREs dominate the population,while below the cutoff they are almost all secondary ones since few primary CREs with that energy can reach the equator region due to the existence of the Earth and the geomagnetic field.By comparing the spectra of the flight data and MC data,spectral validation has been performed in all regions of DAMPE’s orbit.The primary and secondary flux of simulated CREs agrees well with flight data,especially near the rigidity cutoff region where the contributions from neither primary nor secondary are ignorable.The overall agreement demonstrates that the spectra of both primary and secondary CREs have been described well.

    Figure 4.The CRE azimuthal distribution of MC and flight data are compared for different energy ranges of(a)[8.0,10.3]GeV,(b)[12.1,13.2]GeV,(c)[14.4,15.7]GeV and (d) [17.1,18.6] GeV in the McIlwain L value range of [1,1.14].The CRE azimuthal distribution is averaged over all zenith angles.The flight data CRE azimuthal distribution is from Zang et al.(2017).Quite good agreement between flight data and our simulation could be seen in the figures for the CRE azimuthal distribution in different energy ranges.

    3.2.Angular Distribution of Primary and Secondary CREs

    As mentioned above,the charged GCRs propagating in interplanetary space are highly isotropic in terms of their direction of arrival.Deflected by the Lorentz force while propagating in the geomagnetic field,they are no longer isotropic on LEO,but show an asymmetric angular distribution,i.e.,the so-called east–west effect.That is,more positively charged particles are seen from west moving eastward,and vice versa for negatively charged particles.To describe the asymmetric angular distribution,the azimuth and zenith angle are defined in an Earth-centered coordinate system.In the system,the coordinate origin is at the center of the Earth,the azimuth angle is defined as geographical azimuth,particles from North have an azimuth of 0°,East is at 90°,South is at 180° and West is at 270°.Figure4displays the azimuthal distributions of CREs extracted from flight data of DAMPE and on-orbit simulation in four typical energy bins in anLinterval of 1–1.14.Since DAMPE has no ability to distinguish the origins of CREs,flight data only give the entire azimuth distribution including both primary and secondary.Our on-orbit simulation can trace and distinguish primary and secondary CREs.The overall good agreement of azimuth between flight data and primary+secondary demonstrates that the angular distribution has been described well.Benefiting from this structured azimuth distribution,the method of estimating the fraction of the primary part is developed,and that is the main idea of simultaneous measurement flux of primary and secondary CREs.In the Earth-centered coordinate system,zenith is defined as the angle between the particle motion direction and the line pointing from the satellite to the Earth’s center.Figure5shows the zenithal direction for CREs collected on DAMPE orbit with anLrange of 1–1.14.The distribution is convolved with the DAMPE acceptance.There is no significant discrepancy between real data and simulation,demonstrating zenith direction has been described well too.

    Figure 5.The CRE zenithal distributions of MC and flight data on-orbit are compared.The flight data result here takes account of all the CREs observed by DAMPE,and the MC result is convolved with the DAMPE acceptance.An overall good agreement between flight data and simulation is also seen for the CRE zenithal simulation.

    4.Conclusion

    A software package for the DAMPE on-orbit radiation environment simulation is developed using the ATMNC3 framework,within which state-of-the-art models of the geomagnetic field and the atmosphere are also integrated.By taking delicate consideration of the GCR propagation in the geomagnetic field and their interaction with the atmosphere,the software package is able to simulate the cosmic-ray radiation environment on the DAMPE orbit with sufficient accuracy and reasonable computational consumption.The simulation results are validated by comparing to the real observations for the CREs flux in several energies and geomagnetic latitude ranges.The overall agreements on the spectral and angular distributions demonstrate that the CRE radiation environment is simulated well.Specifically,the structured azimuthal distribution can serve as a tool to estimate the fraction of primary or secondary CREs.Our simulation tool thus could be helpful to the scientists and engineers working on the data analysis of space detectors after launch as well as in their design of a science satellite before launch.The software package can also be used to simulate the radiation environment in other LEOs by simply changing the orbital altitude,so it can also be applied in possible space science projects in the future,such as HERD(Zhang et al.2014) and VLAST.5

    Acknowledgments

    This work is supported in part by the National Key R&D Program of China (2021YFA0718404),the National Natural Science Foundation of China (Grant Nos.11773085,U1738207,and 12173098),the Youth Innovation Promotion Association CAS and the Scientific Instrument Developing Project of the Chinese Academy of Sciences,Grant No.GJJSTD20210009.

    亚洲专区中文字幕在线| 色播亚洲综合网| 亚洲电影在线观看av| av专区在线播放| 亚洲av不卡在线观看| 亚洲国产精品久久男人天堂| 亚洲人成电影免费在线| 搡女人真爽免费视频火全软件 | 在线看三级毛片| 久久性视频一级片| 亚洲黑人精品在线| 啪啪无遮挡十八禁网站| 亚洲黑人精品在线| 亚洲成av人片免费观看| 国产精品美女特级片免费视频播放器| 男人和女人高潮做爰伦理| 午夜免费激情av| 国产精品嫩草影院av在线观看 | 怎么达到女性高潮| 99热6这里只有精品| 日韩亚洲欧美综合| 美女cb高潮喷水在线观看| 国模一区二区三区四区视频| 高清毛片免费观看视频网站| 国产精品久久视频播放| 偷拍熟女少妇极品色| 俄罗斯特黄特色一大片| 日韩av在线大香蕉| 国产精品自产拍在线观看55亚洲| 国产精品三级大全| 欧美黄色片欧美黄色片| 在线免费观看的www视频| 搡女人真爽免费视频火全软件 | 人妻夜夜爽99麻豆av| 国内精品美女久久久久久| 免费在线观看影片大全网站| 在线观看av片永久免费下载| 日本成人三级电影网站| 久久精品91蜜桃| 国产免费一级a男人的天堂| 夜夜看夜夜爽夜夜摸| 亚洲 欧美 日韩 在线 免费| 国产精品亚洲一级av第二区| 国产伦一二天堂av在线观看| 国产熟女xx| 国产av麻豆久久久久久久| 免费在线观看日本一区| 天堂网av新在线| 99精品在免费线老司机午夜| 国产精品野战在线观看| 人妻丰满熟妇av一区二区三区| 日韩免费av在线播放| 国产又黄又爽又无遮挡在线| 国产蜜桃级精品一区二区三区| 18美女黄网站色大片免费观看| 欧美一级a爱片免费观看看| 国产三级中文精品| 亚洲最大成人手机在线| 岛国视频午夜一区免费看| 国产精品一区二区三区四区久久| 九色成人免费人妻av| 天天添夜夜摸| 一边摸一边抽搐一进一小说| 成人性生交大片免费视频hd| 少妇的丰满在线观看| 国产又黄又爽又无遮挡在线| 美女被艹到高潮喷水动态| 伊人久久精品亚洲午夜| 在线a可以看的网站| 国产99白浆流出| 国产午夜福利久久久久久| 久久精品91蜜桃| 亚洲av成人不卡在线观看播放网| 精品人妻1区二区| 成人三级黄色视频| 国产欧美日韩一区二区三| 国产高清视频在线观看网站| 久久久久久国产a免费观看| 超碰av人人做人人爽久久 | 亚洲精品456在线播放app | 国产免费av片在线观看野外av| 亚洲国产欧洲综合997久久,| 国产一区二区亚洲精品在线观看| 香蕉丝袜av| 最近最新免费中文字幕在线| 听说在线观看完整版免费高清| 精品久久久久久久毛片微露脸| 亚洲av熟女| 黄片大片在线免费观看| 欧美色视频一区免费| 女人被狂操c到高潮| 丰满人妻熟妇乱又伦精品不卡| 看片在线看免费视频| 国产精品99久久久久久久久| 成人国产综合亚洲| 亚洲精品在线美女| 免费看a级黄色片| 他把我摸到了高潮在线观看| 一个人免费在线观看的高清视频| 亚洲精品影视一区二区三区av| 午夜激情欧美在线| 亚洲久久久久久中文字幕| 日韩大尺度精品在线看网址| 久久精品国产综合久久久| 久久国产精品影院| 亚洲 国产 在线| 色噜噜av男人的天堂激情| 国产欧美日韩一区二区三| 麻豆国产97在线/欧美| 制服丝袜大香蕉在线| 国模一区二区三区四区视频| 亚洲人成伊人成综合网2020| 欧美大码av| 国产亚洲精品av在线| 婷婷精品国产亚洲av| 91久久精品电影网| 国产真实伦视频高清在线观看 | 中文字幕久久专区| 欧美乱码精品一区二区三区| 亚洲av五月六月丁香网| av在线蜜桃| 亚洲国产精品999在线| 天堂动漫精品| 69人妻影院| 久久亚洲真实| 久久久国产成人精品二区| 99热这里只有是精品50| 亚洲欧美日韩东京热| 日韩欧美 国产精品| 热99在线观看视频| 欧美一区二区亚洲| 好男人在线观看高清免费视频| 法律面前人人平等表现在哪些方面| 啦啦啦观看免费观看视频高清| 内射极品少妇av片p| 精品一区二区三区视频在线观看免费| 精华霜和精华液先用哪个| 麻豆国产97在线/欧美| 欧美成人一区二区免费高清观看| 免费在线观看亚洲国产| 国产在线精品亚洲第一网站| 脱女人内裤的视频| 亚洲av二区三区四区| 国产爱豆传媒在线观看| 3wmmmm亚洲av在线观看| 国产av不卡久久| 99国产精品一区二区蜜桃av| 一级作爱视频免费观看| 精品久久久久久成人av| 小蜜桃在线观看免费完整版高清| 99久久九九国产精品国产免费| 男人舔奶头视频| 88av欧美| 一个人观看的视频www高清免费观看| 老司机午夜十八禁免费视频| 夜夜躁狠狠躁天天躁| 老司机深夜福利视频在线观看| 久久精品91蜜桃| 九九久久精品国产亚洲av麻豆| 亚洲av第一区精品v没综合| 熟女人妻精品中文字幕| 黑人欧美特级aaaaaa片| 欧美精品啪啪一区二区三区| 此物有八面人人有两片| 国产91精品成人一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 一区二区三区免费毛片| 熟女少妇亚洲综合色aaa.| 久久久精品大字幕| 国内精品一区二区在线观看| 色在线成人网| 国产高清视频在线观看网站| 色播亚洲综合网| www国产在线视频色| 日日摸夜夜添夜夜添小说| 变态另类成人亚洲欧美熟女| 搡老岳熟女国产| 亚洲狠狠婷婷综合久久图片| 一级作爱视频免费观看| 两个人看的免费小视频| 欧美激情久久久久久爽电影| 午夜免费成人在线视频| 亚洲av美国av| 中文字幕熟女人妻在线| 精品一区二区三区视频在线 | 男人舔奶头视频| 波多野结衣高清作品| 最近视频中文字幕2019在线8| 国产国拍精品亚洲av在线观看 | 一本久久中文字幕| 国产精品久久电影中文字幕| 一级毛片高清免费大全| h日本视频在线播放| 日韩欧美精品v在线| 亚洲精品粉嫩美女一区| av片东京热男人的天堂| 丰满人妻熟妇乱又伦精品不卡| 99国产精品一区二区三区| 在线观看av片永久免费下载| 五月玫瑰六月丁香| 日韩av在线大香蕉| 最新在线观看一区二区三区| 国产欧美日韩精品一区二区| 夜夜看夜夜爽夜夜摸| 国产伦精品一区二区三区视频9 | aaaaa片日本免费| 啦啦啦韩国在线观看视频| 久久香蕉精品热| 男人舔女人下体高潮全视频| 极品教师在线免费播放| 男人的好看免费观看在线视频| 校园春色视频在线观看| 搡老熟女国产l中国老女人| 精品国产超薄肉色丝袜足j| 少妇丰满av| 十八禁网站免费在线| 成人无遮挡网站| 校园春色视频在线观看| 欧美乱码精品一区二区三区| 一进一出抽搐gif免费好疼| 日韩欧美一区二区三区在线观看| 18禁在线播放成人免费| 美女 人体艺术 gogo| 99热精品在线国产| 麻豆久久精品国产亚洲av| 一进一出好大好爽视频| 久久天躁狠狠躁夜夜2o2o| 夜夜夜夜夜久久久久| 在线播放无遮挡| 亚洲精品亚洲一区二区| 九九热线精品视视频播放| 少妇人妻精品综合一区二区 | 色综合站精品国产| 欧美日韩一级在线毛片| 一级毛片女人18水好多| 精品一区二区三区视频在线观看免费| 国产蜜桃级精品一区二区三区| 日本免费a在线| x7x7x7水蜜桃| 看黄色毛片网站| 国产一区二区三区视频了| 久久久成人免费电影| 男女视频在线观看网站免费| 91麻豆av在线| 欧美日韩国产亚洲二区| 97碰自拍视频| 欧美性猛交╳xxx乱大交人| 中文字幕精品亚洲无线码一区| 亚洲在线观看片| 一区二区三区高清视频在线| 国产国拍精品亚洲av在线观看 | 午夜精品一区二区三区免费看| 国产亚洲精品久久久久久毛片| 国内揄拍国产精品人妻在线| 亚洲精品影视一区二区三区av| 久久伊人香网站| 老司机在亚洲福利影院| av欧美777| 色播亚洲综合网| 成熟少妇高潮喷水视频| 成人高潮视频无遮挡免费网站| 亚洲乱码一区二区免费版| 国内毛片毛片毛片毛片毛片| xxxwww97欧美| 无限看片的www在线观看| 成人三级黄色视频| а√天堂www在线а√下载| 欧美3d第一页| 又黄又粗又硬又大视频| 国产午夜精品久久久久久一区二区三区 | 亚洲av第一区精品v没综合| 欧美3d第一页| 特级一级黄色大片| eeuss影院久久| 免费人成视频x8x8入口观看| 亚洲久久久久久中文字幕| 欧美区成人在线视频| 久久久久久久久大av| 精品熟女少妇八av免费久了| 亚洲国产日韩欧美精品在线观看 | 桃色一区二区三区在线观看| 久久精品国产亚洲av涩爱 | 国产伦在线观看视频一区| 国产男靠女视频免费网站| 成人午夜高清在线视频| 国产精品久久电影中文字幕| 国产精品98久久久久久宅男小说| 国产欧美日韩一区二区三| 亚洲aⅴ乱码一区二区在线播放| 校园春色视频在线观看| 黄色日韩在线| avwww免费| 国产精华一区二区三区| 一级毛片女人18水好多| 91字幕亚洲| 综合色av麻豆| 给我免费播放毛片高清在线观看| 99久久精品一区二区三区| 午夜免费成人在线视频| 亚洲精华国产精华精| 校园春色视频在线观看| 激情在线观看视频在线高清| 国产高清视频在线播放一区| 精品国产美女av久久久久小说| 少妇的丰满在线观看| 一个人看视频在线观看www免费 | 非洲黑人性xxxx精品又粗又长| 亚洲最大成人中文| 免费电影在线观看免费观看| 男人和女人高潮做爰伦理| 亚洲午夜理论影院| 少妇人妻一区二区三区视频| 久久久久久久精品吃奶| 两个人看的免费小视频| 在线观看av片永久免费下载| 日日干狠狠操夜夜爽| 黄色丝袜av网址大全| av在线蜜桃| 久久久精品欧美日韩精品| 国产成人av教育| 老熟妇乱子伦视频在线观看| www.999成人在线观看| 欧美色欧美亚洲另类二区| 99久久九九国产精品国产免费| 国产成年人精品一区二区| 亚洲人与动物交配视频| 国语自产精品视频在线第100页| АⅤ资源中文在线天堂| 国产单亲对白刺激| 在线a可以看的网站| 色综合站精品国产| 狂野欧美激情性xxxx| 网址你懂的国产日韩在线| 久久久久久久久久黄片| 亚洲人成电影免费在线| 午夜日韩欧美国产| avwww免费| 1024手机看黄色片| 特级一级黄色大片| 丰满的人妻完整版| 91在线精品国自产拍蜜月 | 亚洲国产精品sss在线观看| 一区二区三区免费毛片| 脱女人内裤的视频| 亚洲乱码一区二区免费版| 免费搜索国产男女视频| 99久久成人亚洲精品观看| 久久香蕉精品热| 欧美一区二区国产精品久久精品| 久久草成人影院| 亚洲中文字幕一区二区三区有码在线看| 国产一区二区激情短视频| 女人被狂操c到高潮| 亚洲精品在线美女| 叶爱在线成人免费视频播放| 欧洲精品卡2卡3卡4卡5卡区| 一进一出抽搐gif免费好疼| 久久香蕉国产精品| 首页视频小说图片口味搜索| 中文亚洲av片在线观看爽| 亚洲av日韩精品久久久久久密| 精品日产1卡2卡| 免费在线观看影片大全网站| 国产精品女同一区二区软件 | 亚洲18禁久久av| 在线看三级毛片| 国产黄片美女视频| 老汉色av国产亚洲站长工具| 两人在一起打扑克的视频| 在线天堂最新版资源| 亚洲精品国产精品久久久不卡| 老司机福利观看| 老熟妇仑乱视频hdxx| 免费看美女性在线毛片视频| 亚洲国产中文字幕在线视频| 亚洲专区中文字幕在线| 色播亚洲综合网| 免费一级毛片在线播放高清视频| 国产成人系列免费观看| 国模一区二区三区四区视频| 波多野结衣巨乳人妻| 男人舔女人下体高潮全视频| 最近在线观看免费完整版| 一区二区三区国产精品乱码| 色噜噜av男人的天堂激情| 最近在线观看免费完整版| 又黄又粗又硬又大视频| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美日韩高清专用| 两性午夜刺激爽爽歪歪视频在线观看| 九九久久精品国产亚洲av麻豆| 无人区码免费观看不卡| 成年版毛片免费区| 亚洲av美国av| 99精品久久久久人妻精品| 99国产精品一区二区三区| 免费av毛片视频| 97超级碰碰碰精品色视频在线观看| 国产黄片美女视频| 国产高清视频在线观看网站| 老司机午夜十八禁免费视频| 精品不卡国产一区二区三区| 国产一区二区三区在线臀色熟女| 一本精品99久久精品77| 人人妻,人人澡人人爽秒播| 中亚洲国语对白在线视频| 小蜜桃在线观看免费完整版高清| 精品国产三级普通话版| 三级毛片av免费| 熟女电影av网| 欧美日韩乱码在线| 一级毛片女人18水好多| 国产精品av视频在线免费观看| 国产精品美女特级片免费视频播放器| 国产乱人伦免费视频| www.999成人在线观看| 欧美中文日本在线观看视频| 精品不卡国产一区二区三区| 国产一区二区激情短视频| 欧美中文综合在线视频| 亚洲av成人不卡在线观看播放网| 亚洲精华国产精华精| 亚洲一区高清亚洲精品| 国产aⅴ精品一区二区三区波| 村上凉子中文字幕在线| 男插女下体视频免费在线播放| 色精品久久人妻99蜜桃| 中文资源天堂在线| 麻豆国产av国片精品| 国产伦在线观看视频一区| 色吧在线观看| 亚洲精品456在线播放app | 美女 人体艺术 gogo| 日本成人三级电影网站| 极品教师在线免费播放| 黑人欧美特级aaaaaa片| 五月伊人婷婷丁香| 亚洲人与动物交配视频| 国产精品亚洲一级av第二区| 精品免费久久久久久久清纯| 日日夜夜操网爽| 一a级毛片在线观看| 成人性生交大片免费视频hd| 国产精品98久久久久久宅男小说| 哪里可以看免费的av片| 熟女少妇亚洲综合色aaa.| 国产爱豆传媒在线观看| 国模一区二区三区四区视频| 9191精品国产免费久久| 国产高清视频在线观看网站| 特大巨黑吊av在线直播| 久久精品人妻少妇| 青草久久国产| 亚洲色图av天堂| 免费观看人在逋| 国产伦精品一区二区三区四那| 国产91精品成人一区二区三区| 欧美3d第一页| 国产爱豆传媒在线观看| 嫩草影院入口| 欧美日韩国产亚洲二区| 天堂√8在线中文| xxx96com| www日本黄色视频网| 精品无人区乱码1区二区| 精品国产超薄肉色丝袜足j| 亚洲av熟女| 午夜视频国产福利| 久久久成人免费电影| 国产v大片淫在线免费观看| 麻豆久久精品国产亚洲av| 久久精品91无色码中文字幕| 国产亚洲精品av在线| 国产一区二区在线av高清观看| 日本三级黄在线观看| 久久久久亚洲av毛片大全| 毛片女人毛片| 欧美日韩综合久久久久久 | 亚洲久久久久久中文字幕| 男女午夜视频在线观看| 国产真实乱freesex| 一级黄色大片毛片| 欧美成人a在线观看| 99久久九九国产精品国产免费| 国产一区二区三区在线臀色熟女| 成人欧美大片| 亚洲18禁久久av| 亚洲av成人精品一区久久| 色综合亚洲欧美另类图片| 欧美日韩亚洲国产一区二区在线观看| 日本与韩国留学比较| 欧美色欧美亚洲另类二区| 国产乱人视频| 成人性生交大片免费视频hd| 每晚都被弄得嗷嗷叫到高潮| 亚洲欧美日韩高清专用| 国产午夜福利久久久久久| 亚洲五月婷婷丁香| 一区二区三区激情视频| 天天躁日日操中文字幕| 成人国产综合亚洲| 69av精品久久久久久| 亚洲国产精品合色在线| 观看美女的网站| 欧美乱码精品一区二区三区| 九九热线精品视视频播放| 中文字幕av在线有码专区| 亚洲内射少妇av| 免费在线观看日本一区| 久久久久久久久久黄片| 亚洲在线自拍视频| 久久中文看片网| 黑人欧美特级aaaaaa片| 亚洲av免费在线观看| 国产综合懂色| 丰满人妻一区二区三区视频av | 在线天堂最新版资源| 18美女黄网站色大片免费观看| 特级一级黄色大片| 18禁在线播放成人免费| 亚洲无线观看免费| 国产成人福利小说| 国产欧美日韩精品一区二区| 99在线人妻在线中文字幕| 免费在线观看日本一区| 国产国拍精品亚洲av在线观看 | 精品电影一区二区在线| 久久九九热精品免费| 精品国产超薄肉色丝袜足j| 亚洲欧美日韩高清专用| 亚洲国产高清在线一区二区三| 亚洲欧美日韩高清专用| 久久久久久人人人人人| 国产真实乱freesex| 亚洲av成人不卡在线观看播放网| 99热6这里只有精品| 国产男靠女视频免费网站| 性欧美人与动物交配| 精华霜和精华液先用哪个| 成熟少妇高潮喷水视频| 久久精品国产自在天天线| 欧美日韩亚洲国产一区二区在线观看| 18禁黄网站禁片免费观看直播| 亚洲第一欧美日韩一区二区三区| 欧美日本亚洲视频在线播放| 成年免费大片在线观看| av中文乱码字幕在线| 国产69精品久久久久777片| 日本与韩国留学比较| 老司机午夜福利在线观看视频| 午夜福利欧美成人| 99久久综合精品五月天人人| 欧美bdsm另类| svipshipincom国产片| 他把我摸到了高潮在线观看| 亚洲在线观看片| 床上黄色一级片| 人人妻人人看人人澡| 欧美性感艳星| 久久精品国产亚洲av涩爱 | 一a级毛片在线观看| 色综合欧美亚洲国产小说| 日韩 欧美 亚洲 中文字幕| 日本在线视频免费播放| 精品乱码久久久久久99久播| 国产综合懂色| 亚洲精品粉嫩美女一区| 99久久精品一区二区三区| 久久久久久大精品| 一本综合久久免费| 69人妻影院| 国产精品98久久久久久宅男小说| 久久精品91无色码中文字幕| 精品国产超薄肉色丝袜足j| tocl精华| 神马国产精品三级电影在线观看| 99久久精品国产亚洲精品| 美女免费视频网站| 欧美中文综合在线视频| 午夜两性在线视频| 久久精品91无色码中文字幕| 全区人妻精品视频| 精品熟女少妇八av免费久了| 亚洲精品在线观看二区| 美女高潮的动态| 男人舔女人下体高潮全视频| 日韩欧美国产在线观看| 亚洲精品美女久久久久99蜜臀| 看黄色毛片网站| 亚洲七黄色美女视频| 成人国产综合亚洲| 国产亚洲av嫩草精品影院| 亚洲 国产 在线| 女人被狂操c到高潮| 国产蜜桃级精品一区二区三区| 夜夜躁狠狠躁天天躁| 国产成人福利小说| 欧美高清成人免费视频www| 日日干狠狠操夜夜爽| 九九在线视频观看精品| 欧美日韩一级在线毛片| 村上凉子中文字幕在线| 亚洲avbb在线观看| 波多野结衣高清作品| 久久国产精品人妻蜜桃| 国产一区二区亚洲精品在线观看| 成人永久免费在线观看视频| 欧美xxxx黑人xx丫x性爽| 一区二区三区高清视频在线| 国产成人欧美在线观看| 午夜a级毛片| 久久久久久久亚洲中文字幕 | 丰满乱子伦码专区| 日韩国内少妇激情av| 亚洲五月天丁香|