• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Performance Evaluation of Baseline-dependent Averaging Based on Full-scale SKA1-LOW Simulation

    2022-05-24 08:10:34QingWenDengFengWangHuiDengYingMeiJingLiOlegSmirnovandShaoGuangGuo

    Qing-Wen Deng ,Feng Wang ,Hui Deng ,Ying Mei ,Jing Li ,Oleg Smirnov ,and Shao-Guang Guo

    1 Center for Astrophysics,School of Physics and Materials Science,Guangzhou University,Guangzhou 51006,China;fengwang@gzhu.edu.cn

    2 Great Bay Center,National Astronomical Data Center,Guangzhou,510006,China

    3 Department of Physics and Electronics,Rhodes University,PO Box 94,Makhanda,6140,South Africa

    4 Shanghai Astronomical Observatory,Chinese Academy of Sciences,Shanghai,200030,China

    Abstract The Square Kilometre Array(SKA)is the largest radio interferometer under construction in the world.Its immense amount of visibility data poses a considerable challenge to the subsequent processing by the science data processor(SDP).Baseline dependent averaging (BDA),which reduces the amount of visibility data based on the baseline distribution of the radio interferometer,has become a focus of SKA SDP development.This paper developed and implemented a full-featured BDA module based on Radio Astronomy Simulation,Calibration and Imaging Library(RASCIL).Simulated observations were then performed with RASCIL based on a full-scale SKA1-LOW configuration.The performance of the BDA was systematically investigated and evaluated based on the simulated data.The experimental results confirmed that the amount of visibility data is reduced by about 50% to 85% for different time intervals (Δtmax).In addition,differentΔtmax have a significant effect on the imaging quality.The smallerΔtmax is,the smaller the degradation of imaging quality.

    Key words: instrumentation:radio interferometers–methods:analytical mathematics–techniques:astronomical simulations

    1.Introduction

    The Square Kilometre Array (SKA) (Braun1996) is an ongoing international project to build the world’s largest radio interferometric telescope with more than one square kilometer potential collection area.With detailed design and preparation well underway,the SKA represents a giant leap forward in engineering to deliver a unique instrument.

    Theuvdistribution of a radio interferometer generally has a dense center and a sparse edge.With the rotation of the Earth,each sampling point of the radio interferometer draws an arcshaped trajectory around the phase center on theuvplane.Short baselines have denser data than long baselines for the same track length,and the difference can be even greater for a larger array.Decorrelation can be avoided on the longer baselines when more samples are averaged at the center than at the outer edges.At the same time,data compression can be carried out on shorter baselines.

    Baseline dependent averaging (BDA) was proposed by Cotton (1986,1999) to reduce the visibility data volumes,which has been used by the Murchison Widefield Array(MWA,Mitchell et al.2008)and is also used to shape the field of interest (Atemkeng et al.2018).However,averaging visibilities over time and frequency will cause image distortion,also called the smearing effect.Bandwidth smearing is manifested as a position-dependent and radial convolution effect in the image field.Time smearing is similar to bandwidth smearing but more complicated,described as a loss in amplitude (Cotton1986,1999).Bridle &Schwab (1999)conducted a mathematical analysis of these two smearing effects and found that they cannot be effectively corrected by calibration or self-calibration methods.It is recommended to design a comprehensive observation strategy to reduce the impact to an acceptable level.Therefore,the short integration time and small channel width are necessary for the long baselines utilized in a radio interferometer to suppress the smearing effect.In contrast,the resolution requirement for time and frequency is relatively low on short baselines.

    The BDA does not change the channel bandwidth and integration time for long baseline visibility data,but averaging of short baseline visibility data corresponds to an increase in integration time and channel bandwidth.Wijnholds et al.(2018)obtained the Cramer–Rao bound of averaged visibilities by estimating the number of raw visibilities and comparing it with the covariance obtained by the error transfer formula.It is proven that BDA will not cause other effects except for the approximately obtainable decorrelation loss.Salvini &Wijnholds (2017) proposed the Compress-Expand-Compress method to expand the visibilities to the required time resolution for calibration after the first compression,and then perform the second compression,and finally achieve a high compression ratio (CR) of the visibilities in time.However,few previous literature works presented the quantitative analysis of BDA on the final image quality and storage costs.

    As the SKA enters its construction phase and the SKA Regional Centers (SRCs) construction white paper has been released,it becomes imperative to research the BDA technique further and analyze its usability for the SKA1 scale.We wish to analyze and discuss this study systematically:1.How much space would be saved by using BDA technology for SKA1-LOW observations? 2.Is there a significant degradation of the final dirty image with the BDA?

    In the rest of this study,we first introduce the BDA algorithm and its implementation.We then simulate full-scale SKA1-LOW observations and investigate the BDA performance in Section3.The discussions are described in Section4.The conclusions and future work are presented in the last section.

    2.The Algorithm and Implementation of BDA

    2.1.The BDA Algorithm

    For a radio interferometer,a visibility function is obtained by correlating the signal collected by two antennas of each baseline with the same time interval δtand frequency sampling interval δf.According to the mathematical definition of BDA(Wijnholds et al.2018),we can average the raw visibilities and thus obtain the averaged visibilities.In data processing,fromPreceiving antennasP2correlations are assumed to be collected inKshort-term integrations,either over time,frequency,or both.The raw visibility data vector can be defined as

    whereC denotes the complex matrix.The averaging process can be described as

    Suppose we ignore the correlation effects and assume that the values of the visibility data averaged together are the same.In that case,the raw visibilities can be obtained approximately from the averaged visibilities by

    The selection matrix Isis related to the averaging intervals of time and frequency in the BDA.For a selected baselineD,the averaging intervals can be calculated by the rounding ratio of that baseline to the longest baselineBmaxas

    We used the rounding ratio ofBmaxtoDto determine whether BDA processing is needed.On partial long baselines,when,the data will not be averaged.While on the short baselines,,indicating that more sampling data can be averaged.In addition,tis limited by the calibration timescale determined by the environment and instrument for the interferometer.A larger averaging scale will also make the smearing effects more serious.Therefore,it is necessary to set reasonable upper limits fortandfin the implementation.

    2.2.Implementation

    We implemented a full-featured BDA module based on the Radio Astronomy Simulation,Calibration and Imaging Library(RASCIL).5https://gitlab.com/ska-telescope/external/rascilRASCIL is a pure Python software package suite for radio interferometer calibration and imaging algorithms,especially for SKA data processing.Since the public release of RASCIL,it has been widely used in data processing for some radio interferometers (e.g.,Wei et al.2021and so on).We developed a BDA module based on RASCIL,which has been released online.6https://github.com/astronomical-data-processing/ska-bda

    The flowchart of the implementation is displayed in Figure1.Figure2shows an example of the averaging process on a baseline,where the data will be reduced from the original 21×14 to 5×3,by assuming that bothtandfare 5 according to Equation(4).In the case of the shortest baselines,tandfare also equal to the upper limits of the time-frequency interval used in the BDA,defined asΔtmaxandΔfmax.In the averaging process,we first calculate the position of the raw visibilities corresponding to the flattened averaged visibilities.We then average the visibilities based on the positions and number of visibilities.

    Figure 1.The flow chart of the BDA implementation.

    Figure 2.The averaging of visibility data at a baseline when applying BDA.

    Figure 3.The uv distribution of the SKA1-LOW observed in a single channel at 100 MHz for 12 minutes.

    We used the BlockVisibility class defined in RASCIL.The visibility data were stored using a multi-dimensional array,with dimensions including baseline,polarization,time and frequency.To meet the requirements of BDA performance profiling,we implemented BDA by using three underlying packages,i.e.,pure Python,Pandas and Numba,respectively.

    In the pure Python implementation,we grouped the data for averaging based on Numpy.To optimize the performance,we tried to use Pandas,put all the parameter data into a table when preprocessing and then performed group-by operations to complete all the calculations.

    We also used Numba(Lam et al.2015) to speed up the function and further improved the processing performance.Numba is an on-the-fly compiler that translates a subset of the Python and Numpy code used in the function into efficient machine code,which can effectively improve the speed of the program.

    3.Performance Assessments For BDA

    3.1.Observational Configuration

    To more accurately evaluate the performance of the BDA,we used RASCIL to simulate single-channel and one polarization visibility data observed by the full scale SKA1-LOW telescope.During simulation,we use all SKA1-LOW 512 stations and set up 12 minutes of observations,of which 6 minutes were on each side of the zenith.The integration time is set to 0.9 s as required by the array structure.The observing frequency is 100 MHz with the channel bandwidth of 1 MHz,and the phase center in the observation points to R.A.15° and decl.-45°.We finally obtained 800 temporal sampling points on each baseline.Theuvdistribution of the simulated observation is shown in Figure3.

    3.2.Observation Simulation

    With the observational configuration described above,we simulated observations of point and extended sources separately.We selected the corresponding sources from the GaLactic and Extragalactic All-sky Murchison Widefield Array(GLEAM) survey catalog (Hurley-Walker et al.2017) with an imaging size of 32,768 × 32,768 pixels.The other is the M31 image that is observed by the Very Large Array.The image has a pixel size of 512×512 and a resolution of 1 arcsecond.We used the transform.resize() function in skimage (van der Walt et al.2014) to scale the M31 image to the same pixel scale as the image generated by the GLEAM model for this study.It should be clear here that such a magnification of the original image is only necessary for the simulation of the observation.Two dirty images for the cases are shown in Figure4.

    Figure 4.Dirty images of the raw visibilities observed from the GLEAM model and the M31 model images.

    Figure 5.The distribution of visibilities with baseline length,and the effect curves of the CR.

    Figure 6.The trend chart of the CR with the maximum number of samples in averaging Δtmax.

    3.3.Evaluation Results

    We invoke the BDA module to perform visibility compression,decompression and imaging processing.Since BDA processing at frequency series yields similar results as time series,we only simulate and analyze temporal BDA in this study.Also,the effects on visibility data and dirty images are investigated by setting different upper limits on time integration in the BDA.

    3.3.1.The Compression Ratio

    The CR is calculated by comparing the data volumes between the averaged and raw visibilities,as×100%.

    We set different upper limits(Δtmax),i.e.,1,2,4,8,12,16,32,48,64,128 and 256,to evaluate the CR of the BDA.Δtmaxalso means the maximum number of samples being averaged together on the shortest baselines.These different upper limits lead to different CRs over the baseline length range,and some of these variation curves are shown in Figure5.Since the shorter baselines have larger data volumes,we want to average the amount of data over the shorter baselines as much as possible.We can also find that the increase ofΔtmaxonly further compresses the data on the shorter baselines,while the volume proportion of these data is decreasing in the total.

    The final result of the CR with differentΔtmaxis displayed in Figure6.With the increasing value ofΔtmax,the CR reduces quickly and then becomes slow.Finally,a largerΔtmaxdoes not significantly improve the final CR.It changes very little after the CR reaches 15%,whereΔtmax=48.To avoid the more severe errors that may arise from a biggerΔtmax,it is worth considering using aΔtmaxless than 48 in subsequent studies.

    Figure 7.The distribution of the absolute value of the residual with brightness,corresponding to the dirty image results of GLEAM(left)and M31(right)as observed model images,and Δtmax =48.

    Figure 8.Distribution of the absolute value of the residual with brightness for the pure noise model results,and Δtmax =48.

    3.3.2.Imaging Quality Evaluation

    In addition to the CR,the impact on the image quality after applying BDA is a significant issue.We defined the visibility data of the simulated observations as raw visibilities,the visibility data processed by the BDA as the averaged visibilities and the final decompressed visibility data as recovered visibilities.We first decompressed the averaged visibilities by using a method similar to linear interpolation and then used the recovered visibilities for the subsequent image processing.

    To exclude the possible effects of different deconvolution methods on the imaging results,we used dirty images to analyze the imaging quality.Due to the difference between the recovered visibilities and the raw visibilities,the brightnesses in the dirty images are not the same.The deviations may be positive or negative relative to the dirty image of the raw visibilities.For convenience,the absolute value of the deviation is used here,and its distribution with the brightness is displayed in Figure7,whereΔtmaxof the recovered visibilities is equal to 48.

    The brightness distribution of the dirty images is mainly concentrated around 0,and the lower limit of deviation increases with brightness,but the upper limit does not change excessively.At the same time,the maximum value of the residuals is small.

    We used a pure noise image as a sky model for simulated observations and performed the same BDA processing.In generating this noisy model image,the same image size as the previous model was used,filled only with Gaussian noise with a mean of 0 and a standard deviation of 0.1.Figure8shows the result of the dirty image whenΔtmaxis equal to 48,where the maximum error is 0.0698.Moreover,whenΔtmaxis equal to 2,the maximum error is 0.0162.During this experiment,we tried to reduce the overall amplitude of the noisy model image by a certain ratio.The corresponding change in the dirty image was that both deviation and brightness values were reduced by the same ratio,while the contours of Figure8did not change much.

    The statistical distribution of the residuals exhibits a Gaussian-like distribution in the dirty image results when displayed in logarithmic form.The mean and standard deviation of the residuals in this form are expressed in Table1,where Case 1 refers to the results of dirty images for GLEAM,and Case 2 refers to the ones for M31.

    The standard deviations of these two cases are approximately the same and do not change significantly withΔtmax.This indicates that the change in residual is more like an overall shift,while the mean is the distance of the shift.

    Figure9plots the relationship between the means andΔtmaxfor these two cases,fitted with a logarithmic function for each.The same is that a smallΔtmaxcorresponds to a small imagingerror,while case 2 has a larger variation range of the means than case 1.This difference is probably due to the different characteristics of the amplitude intensity distribution of visibilities on theuvplane in these two cases.Case 1 is relatively uniform,while case 2 is more concentrated in the low-frequency part.

    Figure 9.The trend of the different mean values with Δtmax in two groups.

    Considering both the CR and dirty image quality,a small Δtmax(e.g.,Δtmax=12) could meet the requirements for common use.We also found that further compression over short baselines is the cause of the relative error in dirty images.A largeΔtmaximplies large deviations in the recovered visibilities on short baselines.In practice,it is difficult to invert a suitableΔtmaxfrom the imaging results,while choosing a small one is feasible and safe.

    3.4.The Processing Performance

    The processing performance of BDA is a fundamental metric.A series of tests was performed on a Centos 7 server equipped with 32 processors (Intel Xeon Gold 6226R),2.9 GHz core frequency and 1024 GB of RAM.The version of RASCIL utilized to obtain the simulation data in the testswas v.0.1.11.Using 12 minute single-channel simulation data of SKA1-LOW with a data volume of 12.5 GB,we profile the BDA module optimized by Numba,pure Python code and Pandas.The performance results are presented in Table2.The BDA module implemented using Numba has the best performance.

    Table 2 The Performance of the BDA Implementation with Different Data Volumes

    Therefore,we further tested the processing performance of the Numba optimized code with a series of simulated data of different observation times and four channels.The maximum observation time was 48 minutes and the data volume obtained was 143.75 GB.During the process of BDA,Δtmaxwas set to 6,12 and 24,andΔfmaxwas 1.The performance result is depicted in Figure10,fitted with an exponential function.

    From the results shown in Figure10,the time consumption of BDA processing is essentially linear with the amount of data to be processed.The processing speed of BDA in the case of a single process is about 13 GB per minute.Further improvements are expected under parallel computing conditions.This speed is acceptable for data pre-processing at SRCs.In addition,the processing speed has little to do with the amount ofΔtmax.

    Figure 10.The performance of the BDA implementation optimized with Numba at different data volumes.

    4.Discussions

    Experimental results indicated a significant decrease in the capacity of the visibility data with differentΔtmax,which indicates that BDA is very valuable for SKA data processing,especially for the construction of subsequent SRCs.The annual storage capacity of SRCs will be at least 5 petabytes (PB) per year in the beginning,which will increase to at least 1.7 exabytes by 2028,with at least 700 PB online (Bolton2019).BDA can compress at least 50%of the short baseline visibility data,which is valuable for reducing the cost of SRC construction.

    This study also examined the variation of the imaging quality at differentΔtmax.The experimental results provided an essential reference for SKA1-LOW to carry out Epoch of Reionization and cosmic dawn research.The MWA data were averaged (Mitchell et al.2008),but no specific details were given.

    5.Conclusions

    We implemented a new BDA module based on RASCIL,and this implementation was created by designing functions using Numba.It has not introduced excessive memory usage in the tests and completes the computation tasks faster than the other modules.The speed of a single process is around 13 GB per minute.It also performed well during the BDA processing of the simulation data.

    Through the simulation of observing the GLEAM and M31 model images with SKA1-LOW,we evaluate the performance of BDA.According to the subsequent analysis,the error due to BDA increases with the maximum upper limit of the averaging interval on short baselines.In contrast,the CR does not improve all the time,and the reduction in data volume remains at a maximum ratio of approximately 85%.The smaller upper limit is sufficient for the CR,and the imaging error is reasonable.Overall,the BDA technology will have applications in the face of massive SKA observation data processing.The BDA can effectively reduce the storage space of visibility data,as it is also valuable for the future construction and application of SRCs.

    Acknowledgments

    This work is supported by the National SKA Program of China (2020SKA0110300),the Joint Research Fund in Astronomy (U1831204,U1931141) under cooperative agreement between the National Natural Science Foundation of China (NSFC) and the Chinese Academy of Sciences (CAS),the Funds for International Cooperation and Exchange of the National Natural Science Foundation of China (11961141001)and the National Science Foundation for Young Scholars(11903009).This work is also supported by the Astronomical Big Data Joint Research Center,co-founded by National Astronomical Observatories,Chinese Academy of Sciences and Alibaba Cloud.

    We sincerely appreciate the anonymous referee for valuable and helpful comments and suggestions.

    国产1区2区3区精品| 波多野结衣高清无吗| 亚洲自拍偷在线| 一进一出抽搐gif免费好疼| 一进一出抽搐动态| 大型av网站在线播放| 午夜福利免费观看在线| 哪里可以看免费的av片| 国产亚洲精品第一综合不卡| 亚洲色图 男人天堂 中文字幕| 日韩av在线大香蕉| 一级片免费观看大全| av超薄肉色丝袜交足视频| 国产成人精品久久二区二区91| 18禁美女被吸乳视频| 日韩欧美免费精品| 欧美成人性av电影在线观看| 日本 欧美在线| 一本一本综合久久| 老司机午夜十八禁免费视频| 欧美3d第一页| 成熟少妇高潮喷水视频| 国内精品久久久久精免费| 中文字幕久久专区| 91九色精品人成在线观看| 亚洲最大成人中文| 每晚都被弄得嗷嗷叫到高潮| 久久人人精品亚洲av| 免费电影在线观看免费观看| 丝袜美腿诱惑在线| 欧美在线一区亚洲| 日本在线视频免费播放| 国产精品久久久久久久电影 | 色尼玛亚洲综合影院| 国产精品一区二区三区四区免费观看 | www国产在线视频色| 久久精品国产综合久久久| 好男人电影高清在线观看| 久久天堂一区二区三区四区| 给我免费播放毛片高清在线观看| 怎么达到女性高潮| 又粗又爽又猛毛片免费看| 天堂√8在线中文| 一本一本综合久久| 一级毛片高清免费大全| 色在线成人网| 两个人视频免费观看高清| 一进一出抽搐动态| 最近在线观看免费完整版| 男人舔女人下体高潮全视频| 久久久精品国产亚洲av高清涩受| √禁漫天堂资源中文www| 亚洲 欧美一区二区三区| 女同久久另类99精品国产91| 亚洲成人中文字幕在线播放| АⅤ资源中文在线天堂| 日韩欧美免费精品| 亚洲五月婷婷丁香| 久久精品国产99精品国产亚洲性色| 天堂av国产一区二区熟女人妻 | 日韩欧美国产一区二区入口| 久久人人精品亚洲av| 草草在线视频免费看| 欧美在线黄色| 国产精品98久久久久久宅男小说| 亚洲中文字幕一区二区三区有码在线看 | 免费在线观看成人毛片| 亚洲欧美激情综合另类| 欧美中文综合在线视频| 日日夜夜操网爽| 熟妇人妻久久中文字幕3abv| 欧美日韩精品网址| 日韩精品青青久久久久久| 一进一出好大好爽视频| 久久久精品欧美日韩精品| 亚洲精品久久国产高清桃花| x7x7x7水蜜桃| 国产精品一区二区免费欧美| 好看av亚洲va欧美ⅴa在| 精品少妇一区二区三区视频日本电影| 午夜福利在线在线| 黄色女人牲交| 中文字幕熟女人妻在线| 一边摸一边抽搐一进一小说| 非洲黑人性xxxx精品又粗又长| 国产精品永久免费网站| 看免费av毛片| 此物有八面人人有两片| 99国产精品一区二区蜜桃av| 久久热在线av| 精品人妻1区二区| 亚洲九九香蕉| 欧美成人免费av一区二区三区| www日本在线高清视频| 亚洲国产看品久久| 桃红色精品国产亚洲av| 国产成人精品久久二区二区免费| 美女午夜性视频免费| 成人午夜高清在线视频| 两个人看的免费小视频| 国产三级中文精品| 99国产精品一区二区蜜桃av| 怎么达到女性高潮| 午夜福利18| 国产黄色小视频在线观看| 欧美成人免费av一区二区三区| 国产黄片美女视频| 丰满人妻一区二区三区视频av | 日本五十路高清| 小说图片视频综合网站| 欧美成人免费av一区二区三区| 久久午夜综合久久蜜桃| 精品高清国产在线一区| 精品少妇一区二区三区视频日本电影| 亚洲真实伦在线观看| 亚洲熟妇中文字幕五十中出| 国产精品久久久久久人妻精品电影| 可以在线观看的亚洲视频| 正在播放国产对白刺激| 欧美 亚洲 国产 日韩一| 少妇粗大呻吟视频| 国产精品一及| 国产亚洲精品久久久久5区| 久久久国产成人免费| 国产又黄又爽又无遮挡在线| 老熟妇乱子伦视频在线观看| 国产真人三级小视频在线观看| 亚洲av第一区精品v没综合| 久久这里只有精品19| 亚洲欧美日韩高清在线视频| 三级男女做爰猛烈吃奶摸视频| 欧美中文综合在线视频| 亚洲中文日韩欧美视频| 婷婷精品国产亚洲av| 亚洲熟女毛片儿| 男女下面进入的视频免费午夜| 床上黄色一级片| 一本久久中文字幕| 丰满人妻熟妇乱又伦精品不卡| 国产精品久久久久久人妻精品电影| 成熟少妇高潮喷水视频| 国产激情欧美一区二区| 老司机午夜福利在线观看视频| 一区二区三区国产精品乱码| 日韩中文字幕欧美一区二区| 婷婷六月久久综合丁香| 亚洲欧美一区二区三区黑人| 亚洲免费av在线视频| 精品高清国产在线一区| 两个人的视频大全免费| 国产欧美日韩一区二区三| 亚洲av第一区精品v没综合| 久9热在线精品视频| 国产人伦9x9x在线观看| 亚洲色图av天堂| 久久国产乱子伦精品免费另类| 欧美日韩中文字幕国产精品一区二区三区| 午夜福利视频1000在线观看| 久久伊人香网站| 国产精品乱码一区二三区的特点| 亚洲国产精品999在线| 黄色视频,在线免费观看| 在线观看免费午夜福利视频| 久久久久国产精品人妻aⅴ院| 91麻豆精品激情在线观看国产| 18禁黄网站禁片免费观看直播| 日韩高清综合在线| 香蕉久久夜色| 五月玫瑰六月丁香| 精品午夜福利视频在线观看一区| 黄色 视频免费看| 久久人妻福利社区极品人妻图片| 黑人欧美特级aaaaaa片| 精品久久久久久,| 久久天躁狠狠躁夜夜2o2o| 国产成人av激情在线播放| 91字幕亚洲| 亚洲欧美一区二区三区黑人| 亚洲精品av麻豆狂野| 少妇人妻一区二区三区视频| 精品欧美国产一区二区三| 在线国产一区二区在线| 欧美午夜高清在线| 欧美丝袜亚洲另类 | 免费在线观看日本一区| 人人妻人人看人人澡| 成人特级黄色片久久久久久久| 18禁黄网站禁片免费观看直播| 叶爱在线成人免费视频播放| 美女 人体艺术 gogo| 成人欧美大片| 免费在线观看影片大全网站| 亚洲精品美女久久久久99蜜臀| 亚洲成av人片免费观看| 亚洲av成人精品一区久久| 亚洲熟女毛片儿| 美女黄网站色视频| 午夜福利视频1000在线观看| 久久人妻av系列| 在线观看www视频免费| 亚洲男人天堂网一区| 桃红色精品国产亚洲av| 久久人妻av系列| 亚洲精品中文字幕在线视频| 草草在线视频免费看| 久久人妻福利社区极品人妻图片| 亚洲精品久久成人aⅴ小说| av在线天堂中文字幕| 桃色一区二区三区在线观看| 成人欧美大片| 免费在线观看影片大全网站| 天堂√8在线中文| 久久精品成人免费网站| 亚洲人成网站高清观看| 999精品在线视频| 国产精品一及| 久久天躁狠狠躁夜夜2o2o| 黄色丝袜av网址大全| av免费在线观看网站| 草草在线视频免费看| 久久天躁狠狠躁夜夜2o2o| 日本在线视频免费播放| 一二三四在线观看免费中文在| 日韩欧美一区二区三区在线观看| 国产精品久久久久久人妻精品电影| 亚洲国产中文字幕在线视频| 成人国产综合亚洲| 黄色女人牲交| 18禁裸乳无遮挡免费网站照片| 在线播放国产精品三级| 国产精品久久久久久亚洲av鲁大| 91国产中文字幕| 天天一区二区日本电影三级| 国产一区在线观看成人免费| 19禁男女啪啪无遮挡网站| 亚洲全国av大片| 久久婷婷人人爽人人干人人爱| 久久中文字幕人妻熟女| 亚洲一区高清亚洲精品| 日韩国内少妇激情av| 日韩 欧美 亚洲 中文字幕| 国产高清有码在线观看视频 | 一级毛片高清免费大全| av天堂在线播放| 国内毛片毛片毛片毛片毛片| 精品欧美一区二区三区在线| 国产精品国产高清国产av| 国产免费av片在线观看野外av| 俺也久久电影网| 精品国产乱子伦一区二区三区| 999久久久国产精品视频| 狠狠狠狠99中文字幕| 国产av麻豆久久久久久久| 亚洲精品久久成人aⅴ小说| 国内精品久久久久久久电影| 少妇粗大呻吟视频| 黄片大片在线免费观看| 亚洲精品一卡2卡三卡4卡5卡| 久久久精品欧美日韩精品| 黄色a级毛片大全视频| 美女午夜性视频免费| 美女 人体艺术 gogo| 亚洲 欧美 日韩 在线 免费| www.www免费av| 熟妇人妻久久中文字幕3abv| 听说在线观看完整版免费高清| 亚洲欧美日韩高清在线视频| 亚洲av美国av| 色尼玛亚洲综合影院| 久久国产乱子伦精品免费另类| av福利片在线| 精品少妇一区二区三区视频日本电影| 老鸭窝网址在线观看| 一本综合久久免费| 嫩草影院精品99| 亚洲av成人精品一区久久| 国产主播在线观看一区二区| 精品欧美一区二区三区在线| 天天躁狠狠躁夜夜躁狠狠躁| 18禁黄网站禁片午夜丰满| 亚洲国产高清在线一区二区三| 亚洲国产精品成人综合色| 国产亚洲精品综合一区在线观看 | 午夜日韩欧美国产| 久久精品综合一区二区三区| 成人欧美大片| 国产午夜精品久久久久久| 国产又黄又爽又无遮挡在线| 午夜免费观看网址| 国产精品 欧美亚洲| 亚洲国产精品999在线| 美女 人体艺术 gogo| 亚洲精品中文字幕在线视频| 午夜精品在线福利| 动漫黄色视频在线观看| a在线观看视频网站| 手机成人av网站| 国产亚洲精品久久久久5区| 一级毛片高清免费大全| 亚洲av日韩精品久久久久久密| 亚洲在线自拍视频| 亚洲18禁久久av| 日本在线视频免费播放| 黄色女人牲交| 丰满人妻熟妇乱又伦精品不卡| 巨乳人妻的诱惑在线观看| 免费在线观看亚洲国产| 日韩欧美国产一区二区入口| 很黄的视频免费| 一进一出抽搐gif免费好疼| 成人手机av| 国产精品98久久久久久宅男小说| 亚洲真实伦在线观看| 成年人黄色毛片网站| 小说图片视频综合网站| 99riav亚洲国产免费| 色老头精品视频在线观看| 日韩欧美免费精品| 日韩国内少妇激情av| 俄罗斯特黄特色一大片| 国产精品亚洲美女久久久| 91成年电影在线观看| 高潮久久久久久久久久久不卡| 国产欧美日韩一区二区三| 欧洲精品卡2卡3卡4卡5卡区| 两个人免费观看高清视频| 老司机福利观看| 亚洲国产精品999在线| xxxwww97欧美| 久久人人精品亚洲av| 亚洲人成伊人成综合网2020| 国产男靠女视频免费网站| 狂野欧美白嫩少妇大欣赏| 国产高清视频在线播放一区| 亚洲成人久久爱视频| 久久婷婷成人综合色麻豆| 国产精华一区二区三区| 不卡一级毛片| 1024手机看黄色片| 午夜视频精品福利| bbb黄色大片| 一进一出抽搐gif免费好疼| 精品欧美国产一区二区三| 在线观看www视频免费| 高清毛片免费观看视频网站| 国产午夜福利久久久久久| 嫁个100分男人电影在线观看| 三级男女做爰猛烈吃奶摸视频| 男女视频在线观看网站免费 | 成年人黄色毛片网站| 成人特级黄色片久久久久久久| 久久精品成人免费网站| 亚洲电影在线观看av| 又大又爽又粗| 亚洲中文字幕日韩| 麻豆国产av国片精品| 动漫黄色视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲 国产 在线| 操出白浆在线播放| av天堂在线播放| 国产日本99.免费观看| 人人妻,人人澡人人爽秒播| 国产精品美女特级片免费视频播放器 | 国产99白浆流出| 午夜免费激情av| 夜夜看夜夜爽夜夜摸| 午夜福利视频1000在线观看| 老司机靠b影院| 好男人在线观看高清免费视频| 757午夜福利合集在线观看| 中文字幕人妻丝袜一区二区| 成人一区二区视频在线观看| 变态另类丝袜制服| 国产av麻豆久久久久久久| 亚洲精品国产精品久久久不卡| 黄色丝袜av网址大全| 午夜福利在线在线| 精品一区二区三区四区五区乱码| av天堂在线播放| 俺也久久电影网| 无限看片的www在线观看| 黄频高清免费视频| 欧美日韩精品网址| 俺也久久电影网| 亚洲国产高清在线一区二区三| 久久性视频一级片| 免费在线观看影片大全网站| 非洲黑人性xxxx精品又粗又长| 婷婷精品国产亚洲av在线| aaaaa片日本免费| 人人妻人人澡欧美一区二区| 亚洲第一欧美日韩一区二区三区| 一区福利在线观看| 国产aⅴ精品一区二区三区波| 精品乱码久久久久久99久播| 50天的宝宝边吃奶边哭怎么回事| 亚洲中文av在线| 波多野结衣巨乳人妻| 90打野战视频偷拍视频| 无限看片的www在线观看| 亚洲av第一区精品v没综合| 日韩精品中文字幕看吧| 99riav亚洲国产免费| 妹子高潮喷水视频| 黄色片一级片一级黄色片| 91字幕亚洲| 欧美色欧美亚洲另类二区| 午夜影院日韩av| 99久久综合精品五月天人人| 久久99热这里只有精品18| 国产aⅴ精品一区二区三区波| 少妇人妻一区二区三区视频| 国产成人av教育| 国语自产精品视频在线第100页| 亚洲av成人av| 1024手机看黄色片| 波多野结衣巨乳人妻| 中文字幕人成人乱码亚洲影| 国产熟女午夜一区二区三区| 老熟妇乱子伦视频在线观看| a级毛片a级免费在线| 淫妇啪啪啪对白视频| 日本 av在线| 国产区一区二久久| 国内少妇人妻偷人精品xxx网站 | 久久精品91蜜桃| 午夜福利免费观看在线| 欧美 亚洲 国产 日韩一| cao死你这个sao货| 日本黄色视频三级网站网址| 一进一出抽搐动态| 丁香欧美五月| 黄色丝袜av网址大全| 日本精品一区二区三区蜜桃| 波多野结衣巨乳人妻| 日韩欧美免费精品| 变态另类成人亚洲欧美熟女| 欧美乱妇无乱码| 午夜福利高清视频| 久久久久久亚洲精品国产蜜桃av| 国产主播在线观看一区二区| 夜夜躁狠狠躁天天躁| 久久久久久国产a免费观看| 亚洲成av人片在线播放无| 国产黄色小视频在线观看| 国产精品99久久99久久久不卡| 禁无遮挡网站| 波多野结衣高清无吗| 可以免费在线观看a视频的电影网站| 国产不卡一卡二| 精品久久久久久成人av| 美女免费视频网站| 成年免费大片在线观看| 在线观看舔阴道视频| 国内精品一区二区在线观看| 淫秽高清视频在线观看| 国产99久久九九免费精品| 99热只有精品国产| 国产激情久久老熟女| 一区二区三区高清视频在线| 99久久无色码亚洲精品果冻| 亚洲av中文字字幕乱码综合| 两个人免费观看高清视频| 在线观看日韩欧美| 国产乱人伦免费视频| 舔av片在线| 成人欧美大片| 久久精品国产清高在天天线| 国内精品久久久久久久电影| 亚洲一区二区三区色噜噜| 最近最新免费中文字幕在线| 9191精品国产免费久久| 19禁男女啪啪无遮挡网站| 欧美久久黑人一区二区| 免费av毛片视频| 欧美一级毛片孕妇| 久久久久亚洲av毛片大全| 男人的好看免费观看在线视频 | 变态另类丝袜制服| 黑人欧美特级aaaaaa片| 丰满的人妻完整版| 成人三级做爰电影| 亚洲一区中文字幕在线| 黄色视频,在线免费观看| 波多野结衣巨乳人妻| 国产精品九九99| 一级毛片女人18水好多| 日韩欧美精品v在线| avwww免费| 国产亚洲欧美98| 日韩欧美国产一区二区入口| 麻豆国产av国片精品| 亚洲人成网站在线播放欧美日韩| 国产激情欧美一区二区| 老汉色av国产亚洲站长工具| 一本精品99久久精品77| 国产精品香港三级国产av潘金莲| 久久久久性生活片| 老熟妇仑乱视频hdxx| 欧美乱妇无乱码| 亚洲熟女毛片儿| 国产精品 国内视频| 在线十欧美十亚洲十日本专区| 精品国产乱码久久久久久男人| 色综合婷婷激情| 久久久国产精品麻豆| 一级毛片高清免费大全| 久久久久久国产a免费观看| 国产av麻豆久久久久久久| 亚洲精品美女久久av网站| 免费在线观看日本一区| 色综合亚洲欧美另类图片| www.熟女人妻精品国产| 国产蜜桃级精品一区二区三区| 日本三级黄在线观看| 草草在线视频免费看| 蜜桃久久精品国产亚洲av| 精华霜和精华液先用哪个| 国产精品永久免费网站| 久久精品综合一区二区三区| 国语自产精品视频在线第100页| 欧美日韩一级在线毛片| 男人舔女人下体高潮全视频| 国产av麻豆久久久久久久| 国产成人精品久久二区二区91| 久久婷婷成人综合色麻豆| 亚洲第一欧美日韩一区二区三区| 波多野结衣高清作品| 国产成+人综合+亚洲专区| 黄片大片在线免费观看| 亚洲成人精品中文字幕电影| 久久久久久久久免费视频了| 欧美日韩乱码在线| 亚洲精品中文字幕在线视频| 色综合欧美亚洲国产小说| 国产欧美日韩精品亚洲av| 欧美性长视频在线观看| 一边摸一边抽搐一进一小说| 女同久久另类99精品国产91| 精品免费久久久久久久清纯| 色精品久久人妻99蜜桃| 国产精品一区二区三区四区免费观看 | 亚洲一区中文字幕在线| 淫秽高清视频在线观看| 男女那种视频在线观看| 国产免费av片在线观看野外av| 精品久久久久久成人av| 丰满的人妻完整版| 国产精品久久电影中文字幕| 国产不卡一卡二| 91麻豆av在线| 日本五十路高清| 操出白浆在线播放| 国产精品综合久久久久久久免费| 国产av又大| 熟女电影av网| 十八禁人妻一区二区| 精品不卡国产一区二区三区| 久久久久国内视频| 小说图片视频综合网站| 午夜精品在线福利| 此物有八面人人有两片| 国产精品亚洲av一区麻豆| 色噜噜av男人的天堂激情| 久久午夜综合久久蜜桃| 日韩三级视频一区二区三区| 亚洲中文日韩欧美视频| 在线观看美女被高潮喷水网站 | 久热爱精品视频在线9| 1024视频免费在线观看| 激情在线观看视频在线高清| 人成视频在线观看免费观看| 久久久久国产精品人妻aⅴ院| 午夜福利在线观看吧| 日本黄大片高清| aaaaa片日本免费| 欧美在线黄色| 国产人伦9x9x在线观看| 国产亚洲精品一区二区www| 亚洲精品久久成人aⅴ小说| 国产久久久一区二区三区| 精品乱码久久久久久99久播| 国产成人av激情在线播放| 久久久水蜜桃国产精品网| 天堂影院成人在线观看| 国产av不卡久久| 好看av亚洲va欧美ⅴa在| 亚洲aⅴ乱码一区二区在线播放 | 亚洲午夜理论影院| 99精品欧美一区二区三区四区| 亚洲在线自拍视频| 午夜福利免费观看在线| 老司机深夜福利视频在线观看| 啪啪无遮挡十八禁网站| av福利片在线观看| 国产亚洲av嫩草精品影院| 午夜视频精品福利| 亚洲免费av在线视频| 亚洲美女视频黄频| 久久久精品大字幕| 一个人免费在线观看的高清视频| 亚洲自偷自拍图片 自拍| 一级片免费观看大全| 国产一级毛片七仙女欲春2| 亚洲色图 男人天堂 中文字幕| 大型黄色视频在线免费观看| xxxwww97欧美| 草草在线视频免费看| 夜夜躁狠狠躁天天躁| 久久久久久大精品| 欧美性长视频在线观看| 一本久久中文字幕| 此物有八面人人有两片| 亚洲精品国产一区二区精华液|