• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Time and Energy Dependence of the Vela Pulsar’s Pulse Profile in γ-Ray

    2022-05-24 08:10:30LinLiYanMingYuGeYouLiTuoLingjunWangandQingyongZhou

    Lin-Li Yan ,Ming-Yu Ge ,You-Li Tuo,Ling-jun Wang ,and Qing-yong Zhou

    1 School of Mathematics and Physics,Anhui Jianzhu University,Hefei,Anhui 230601,China;yan.linli@foxmail.com

    2 Key Laboratory of Architectural Acoustics Environment of Anhui High Education Institutes,Hefei,Anhui 230601,China

    3 Key Laboratory of Advanced Electronic Materials and Devices,Anhui Jianzhu University,Hefei,Anhui 230601,China

    4 Key Laboratory of Particle Astrophysics,Institute of High Energy Physics,Chinese Academy of Sciences,Beijing 100049,China

    5 State Key Laboratory of Geographic Information Engineering,Xi’an Institute of Surveying and Mapping,Xi’an 710054,China

    Abstract We analyze the time and energy dependence of the Vela pulsar’s pulse profile using 13 yr observations from the Large Area Telescope on the Fermi Gamma-ray Space Telescope.It is found that the pulse profile of the Vela pulsar in γ-ray changes with time.We parameterize the pulse profile and find that different shape parameters show fluctuations rather than gradual changes with time.However,these time variation trends are insignificant due to limited statistics.The pulse profile of the Vela pulsar displays clear energy dependence in γ-ray.Different shape parameters are accurately obtained or updated,especially the phase separations among different pulses.Their energy evolution trends are quantified for the first time,which will provide restrictions on current γ-ray emission models.For the Vela pulsar,we also find a turning point at phase.Before and after this phase,the relative intensity of the pulse profile evolves with energy with the opposite trend.

    Key words:stars:neutron–(stars:)pulsars:individual(Vela)–gamma-rays:stars–Pulsars(1306)–Gamma-ray sources (633)

    1.Introduction

    The Vela pulsar (PSR B0833-45) is one of the strongest γray pulsars in the sky.It has a period of about 89 ms,a spin down rate of= 1.25 × 10-13s s-1and an energy loss power of=7 ×1036erg s-1.It is one of the closest pulsars to the Earth at a distance ofd=287 pc (Dodson et al.2003).The Vela pulsar has been comprehensively studied over almost all wavelengths from radio,optical,ultraviolet,and X-ray to γrays (Gouiffes1998;Harding et al.2002;Romani et al.2005;Manzali et al.2007;Abdo et al.2010).These studies indicate that the exact pulse morphology of the Vela pulsar varies as a function of photon energy.From optical to hard X-ray,its pulse profile exhibits a multi-peaked structure,while in radio and γray it is much simpler.In radio band,the pulse profile only has one single pulse,and in γ-ray it consists of two relatively narrow pulses (P1 and P2) with a separation of about 0.42 in phase and a low level “bridge” emission which is usually denoted as P3(Abdo et al.2010).In γ-ray,as energy increases,the intensity ratio of P2 to P1 decreases and the intensity of P3 increases.

    Many models have been proposed to explore the high-energy γ-ray emission mechanism in the Vela pulsar.In traditional models,the acceleration and emission zones are different but all are inside the light cylinder,such as the polar cap model(Daugherty&Harding1994),the outer gap model(Cheng et al.1986a,1986b,2000),the slot gap model(Dyks&Rudak2003)and the annular gap model (Du et al.2011).For some recent global magnetospheric models such as the force-free inside and dissipative outside (FIDO) model (Brambilla et al.2015),the current sheet models (Bai &Spitkovsky2010;Contopoulos &Kalapotharakos2010),and the kinetic/particle-in-cell simulations(Cerutti et al.2016;Philippov&Spitkovsky2018).They postulate that the high-energy emission originates outside the light cylinder.Almost all these studies focus on modeling the pulse profile of the Vela pulsar to test their models.In Du et al.(2011),the pulse profile of the Vela pulsar in γ-ray could be modeled well by using a three-dimensional magnetospheric model,where P1 and P2 are generated in the annular gap region while P3 is from the core gap.The shape differences of the profile in different energy bands depend on the emission altitude.A two-layer outer gap model in Wang et al.(2011)also compared their modeling pulse profile with Fermi observations,which reveals the existence of P3 between two main pulses,and the energy-dependent movement of P3 is from the azimuthal structure of the outer gap.In this model,the phases of P1 and P2 are determined by the magnetic field structure rather than the energy band.A slot gap which reaches up to two light cylinder radii gives a prediction that the morphology of the pulse profile is related to the radius of curvature of magnetic field lines (Venter et al.2018),and the modeling results for the pulse profile in a FIDO model also confirm this (Yang &Cao2021).However,these current simulations do not give a judgment on the change trend of the separation of P1 and P2 for the Vela pulsar’s pulse profile,and they only compared modeling pulse shape with observations qualitatively due to the lack of quantitative energy evolution results.All these models are constructed to give time-stable emissions and lack considering the time dependence of the pulse profile.As we know,the shape of a pulse profile of the Vela pulsar is changing with time in the radio band(Palfreyman et al.2016),but its time-dependence in the γ-ray band has not been studied.Because of the limits of statistics,the quantitative energy evolution of the Vela pulsar’s pulse profile is not given in Abdo et al.(2010).

    Since various models make predictions concerning the shape of the pulse profile,better measurement of the pulsed emission will help to explore the radiation properties and physical conditions on the Vela pulsar,and may provide the key to distinguishing different models.The Fermi-Large Area Telescope (LAT) has now collected data since 2008 August 4,gathering 13 yr of observations,and we are able to study the time and energy behaviors of the Vela pulsar’s pulse profile in detail in γ-ray.In this paper,we give an analysis of pulse morphology for the Vela pulsar using Fermi-LAT observations with significantly improved statistics.The new results would provide further constraints on current models of pulsar’s γ-ray emission.The organization of this paper is as follows:data processing and reduction are presented in Section2,analysis methods and results are described in Section3,and discussions on the physical implications of our results are provided in Section4.Throughout the paper,errors of the parameters are at the one standard deviation level.

    2.Observations and Data Reductions

    The Fermi Gamma-ray Space Telescope is an international and multi-agency space mission that studies the cosmos in the energy range 10 keV–300 GeV.It has two main instruments:the LAT and the Gamma-ray Burst Monitor.The purpose of LAT is to detect γ-rays in the energy range from 20 MeV to 300 GeV,with an effective area of about 8000 cm2.It consists of a high-resolution converter tracker,a CsI(Tl) crystal calorimeter and an anti-coincidence detector,which can measure the direction and energy of the γ-rays,and at the same time discriminate the particle background events(Atwood et al.2009).

    The LAT data analysis is accomplished by using the Fermi Science Tools (v11r5p3).First,we use the commandsgtselectandgtmktimeto select the events in good time intervals.Then,in order to reduce the contamination from neighboring sources and get pulse profiles with good signal to noise ratio over a broad energy range,photon events in the region of θ < Max [1 .6 - 3Log10(EGeV),1.3]deg of the pulsar position are selected(Abdo et al.2009).The selected photon events are corrected to the solar system barycenter(SSB)and then used to fold pulse profiles in different time epochs and energy bands using the commandgtbarywith the solar system ephemerides DE405 and the pulsar position of R.A.=128°.836,decl.=-45°.1764 (J2000).The γ-ray events from Modified Julian Date (MJD) 54,683–59,466 (UTC 2008 August 05–2021 September 09) in 0.03–300 GeV are analyzed in this paper.

    3.Data Analysis

    3.1.Timing Analysis

    When folding the pulse profile of the Vela pulsar,a long time timing model is needed.We perform a segmented timing analysis for the Vela pulsar.The 13 yr observations of Fermi-LAT in MJD 54,683–59,466 are divided into 85 epochs,and each epoch is approximately 40–60 days.We search for a best spin frequency and use it to fold the pulse profile using events in one day,and a series of pulse times-of-arrival(TOAs)would be obtained in every epoch,then the rotation frequencies and their derivatives could be calculated using these TOAs in different epochs by the software TEMPO2(Hobbs et al.2006).The detailed timing procedure can be found in Ge et al.(2019).

    The timing analysis of the Vela pulsar in MJD 54,683–58,826 was performed in detail by Gügercino?lu et al.(2020),and the analysis in MJD 58,826–59,466 is added by this work.The 85-segment timing model is used to fold the pulse profile in different epochs and energy bands.

    3.2.Shape Parameters of Pulse Profile

    The integrated pulse profiles in 0.03–300 GeV in different epochs all have two obvious pulses.As shown in Figure1,the higher pulse at phase 0.15 is denoted as P1,and the other significant pulse at phase 0.58 is signified as P2.When examining the shape of pulse profiles in different energy bands,another pulse between P1 and P2 becomes notable,whose intensity increases as energy increases,and it is denoted as P3,as depicted in Figure2.To compare these profiles in different energy bands clearly,all the original profiles are normalized by subtracting the mean count rate of the off-pulse region (phase 0.8–1.0) (Grondin et al.2013) and then divided by the background-subtracted peak intensity of P1.With this normalization method,the peak count rate of P1 is fixed at 1,as displayed in Figure2(a).The other normalization method is also applied in this work:each profile is subtracted by its offpulse count rate and then divided by the mean photon count rate in the whole period.The profiles normalized by the second method make it easy to observe the overall energy evolution trend.All the profiles in different epochs or energy bands are normalized by utilizing the second normalization method before fitting them.

    Figure 1.The γ-ray profiles of the Vela pulsar in 0.03–300 GeV in different time periods and their difference curves.Every profile in panel(a)is subtracted by its offpulse count rate and then divided by the mean photon count rate in the whole period.The off-pulse region in phase 0.8–1.0 is selected as background.In order to show them clearly,profiles 2,3 and 4 are shifted upward by 2,4 and 6,respectively.Panels(b),(c)and(d):difference curves between profiles in different time periods.The red lines with a constant intensity of 0 are plotted in order to show the change trend of the difference curves.The two vertical lines mark the peak positions of the two pulses.

    Figure 2.The γ-ray profiles of the Vela pulsar in different energy bands.In panel(a),profiles are normalized by the peak intensity of P1 with the off-pulse emission subtracted;In panel (b),profiles are normalized by the mean count rates of each phase bin with the off-pulse emission subtracted.The inset (c) shows the partial enlargement of profiles in phase 0.55–0.60 in panel (b).The gray bar (phase 0.584–0.588) marks the turnover phase interval of pulse intensity change.

    Figure 3.The fitting results and residuals of two pulses when using an asymmetric Lorentzian function in Abdo et al.(2010).The pulse profile is in MJD 54,683–59,466 in energy range 0.03–300 GeV,i.e.,the sum of profiles 1,2,3 and 4 in Figure 1 with background subtracted and normalization.The two vertical lines mark the peak positions of the two pulses which are obtained from the fitting results,and red lines are the fitting curves for two pulses.

    Figure 4.The fitting results and residuals of two pulses when using the Gauss4 function.The pulse profile is in MJD 54,683–59,466 in energy range 0.03–300 GeV,i.e.,the sum of profiles 1,2,3 and 4 in Figure 1 with background subtracted and normalization.The two vertical lines mark the peak positions of the two pulses which are obtained from the fitting results,and red lines are the fitting curves for two pulses.

    In order to investigate the time and energy dependence of a pulse profile in a quantitative way,it is necessary to fit profiles using a suitable function.In Abdo et al.(2010),they relied on an asymmetric Lorentzian function to fit the Vela pulsar’s pulse profile.We find that this Lorentzian function cannot describe the shape of a high-precision pulse profile well,especially around peaks P1 and P2,as displayed in Figure3.We start to build the fitting function for P1 and P2 from two Gaussian functions and increase the number of Gaussian functions to make the fitting residuals uniformly distributed.As shown in Figure4,we find that a combination function of four Gaussian functions(denoted as Gauss4) can fit the shape of two pulses well.The fitting residuals are uniformly distributed and their root mean square errors are 0.021 and 0.016 for P1 and P2 respectively when utilizing Gauss4.The uncertainty of intensity for P1 and P2 is comparable to these two root mean square errors,so there is no need to increase the number of Gaussian functions.In the following,we use Gauss4 to fit P1 and P2.As for P3,its shape changes greatly with energy and it is not easy to find a good function to describe it due to the limits of statistics.We only use one Gaussian function to fit P3 to get its peak position.

    Figure 5.The shape parameters of the Vela pulsar’s pulse profile in different periods.The blue data points represent shape parameters of profiles which are over a duration of about 300 days,while the red data points signify parameters of profiles which are over a duration of about 600 days.Panels (a)–(d) feature the peak intensity ratio of P2 to P1 (RI),the phase separation between the two maxima of P1 and P2 (ΔΦ21),and the FWHMs of P1 and P2 (W1 and W2),respectively.

    We use four parameters to characterize the γ-ray pulse profile in different epochs.They are the phase separation between the two maxima of P1 and P2(ΔΦ21),peak intensity ratio of P2 to P1 (RI),and full widths at half maximum(FWHMs) of P1 and P2 (W1andW2respectively) after subtracting the pulse background.When studying the energy evolution of pulse profiles,several additional parameters have been considered.They are the integrated flux ratio within the FWHM of P2 to P1 (RF),the phase separation between the two maxima of P2 and P3 (ΔΦ23),and the half widths at half maximum (HWHMs) of P1 and P2,which are used to check whether the pulse width changes symmetrically with energy.The left side and right side of P1 are denoted as LP1 and RP1,respectively.The left side and right side of P2 are signified as LP2 and RP2,respectively.We use the same method as that in Ge et al.(2016) to estimate the errors of every shape parameter.

    3.3.Pulse Profiles in Different Epochs

    In this section,the time dependence of the γ-ray profile is studied in two ways:using the profile difference curve and the shape parameters of pulse profile respectively.The profile difference is the difference between two normalized profiles in different epochs,which can exhibit the profile variation directly if the profile changes with time.As shown in Figure1,the difference curves are not constant in the whole phase.It is clear that the separation between P1 and P2 changes with time,and its change trend is not monotonic.

    Figure 6.The shape parameters of the Vela pulsar’s pulse profile in different energy bands.The blue data points in panels(a)–(d)represent the peak intensity ratio of P2 to P1(RI),the FWHMs of P1 and P2(W1 and W2),and the integrated flux ratio within the FWHM of P2 to P1 (RF),respectively.The black dashed lines are the fitting curves for blue data points.

    To explore the time dependence of the shape of the Vela pulsar’s profile in a quantitative manner,all the observations are divided into 16 periods.The integrated pulse profile in every period is over a duration of about 300 days and is fitted by using function Gauss4 (described in Section3.2).All the observations are also divided into eight periods (each period has a time span of about 600 days) to explore the long term evolution trend of pulse shape.As affirmed in Figure5,all the four shape parameters do not show stable evolution trends,but present different fluctuations over time,which are different with the behavior of the Crab pulsar(Ge et al.2016).We use a reduced χ2(,Equation (1)) to evaluate the significance of time variations for different parameters,

    whereyirepresents a shape parameter in one period,σiis the uncertainty ofyiandNis the number of periods.All thefor different shape parameters are lower than 1,so their time variations are not significant considering the uncertainties of shape parameters.

    3.4.Pulse Profiles in Different Energy Bands

    In previous studies(Abdo et al.2009,2010),it is found that the pulse profile of the Vela pulsar in γ-ray shows a clear energy dependence.With the analysis of 13 yr Fermi-LAT observations,it is convenient to study the energy evolution of the Vela pulsar’s pulse profile in detail in this work.As displayed in Figure2,the overall distribution of γ-ray photons in phase changes with energy(Panel(b)).The intensities of P2 and P3 increase with increasing energy and this trend turns over at phase about 0.586.Before and after phase 0.586,the energy evolution trend of pulse intensity is opposite,i.e.,the intensity of the right side of P2 decreases as energy increases.There is only one turning point at phase for the energy evolution of the pulse profile.The γ-ray photons higher than 20 GeV are only 0.2%over the total photons in 0.03–300 GeV,so we only calculate the shape parameters for the pulse profiles in 0.03–20 GeV.

    Figure 7.The phase separations among three pulses of the Vela pulsar’s pulse profile in different energy bands.The blue circle symbols in panels(a)–(b)are the separations between P2 and P1,and P2 and P3,respectively,and they are obtained in this work.The red square data points are from the results in Abdo et al.(2010).

    The quantitative evolution results would be obtained after fitting pulse profiles in different energy bands(Figures6,7,8).Both the peak intensity ratio and flux ratio of P2 to P1(RI,RF)increase as energy is increasing,while the widths of P1 and P2(W1,W2),the phase separations between P1 and P2 (ΔΦ21),and P2 and P3(ΔΦ23)display opposite energy evolution trends withRI,as depicted in Figures6and7.When energy is larger than 0.7 GeV,the intensity of P2 begins to be stronger than P1,and their ratio is about 3.0 when energy reaches 20 GeV.From 0.03 to 20 GeV,the width of P1 drops by~0.01 while P2 drops by~0.025,i.e.,the width of P2 changes faster than that of P1.The following energy evolution trend fitting results forW1andW2also confirmed this.

    Figure 8.The HWHMs of P1 and P2 for the Vela pulsar’s pulse profile in different energy bands.The blue hollow circle symbols in panel (a) represent the HWHM of the left side of P1 (LP1),while the red filled circle symbols signify the HWHM of the right side of P1(RP1).In panel (b),the blue hollow square symbols correspond to the HWHM of the left side of P2 (LP2),while the red filled square symbols represent the HWHM of the right side of P2 (RP2).

    Because of using an unsuitable function when fitting the pulse profile of the Vela pulsar,results in Abdo et al.(2010) are different from ours,especially the separation of P1 and P2(Figure7).We only study the parameter ΔΦ23in 0.2–20 GeV given that P3 becomes clear when energy is higher than 0.2 GeV.The phase separation of P1 and P2 decreases gradually from 0.03 to 20 GeV with a drop of about 0.003,which is very small and hard to detect when using an unsuitable fitting function or with short-time observations.In Abdo et al.(2010),the authors relied on asymmetric Lorentzian functions to fit two pulses.These Lorentzian functions cannot fit the shape around the peak of two pulses well,as shown in Figure3.The difference between our results and those in Abdo et al.(2010)comes from the choice of fitting function.Although the phase separation of P2 and P3 decreases significantly with increasing energy,the trend is consistent with the results in Abdo et al.(2010).The drop of ΔΦ23in 0.2–20 GeV is about 0.36,which is much larger than ΔΦ21.The phase deviation caused by the selection of the fitting function does not affect the energy evolution trend of ΔΦ23.The symmetry of P1 and P2 is also considered in this work.As displayed in Figure8,we find that the shape of P1 is almost symmetrical,while the shape of P2 is asymmetric in the whole γ-ray bands.The evolution trend of the left half-width and right half-width of P1 and P2 is basically the same.

    In order to quantify the evolutionary trends of pulse shape,we use a power function Y=c1* E (P keV)c2to fit different shape parameters except forW1andW2.It is necessary to add an extra constantc3to obtain acceptable fitting results for the parametersW1andW2.HereYrepresents different shape parameters,andc1,c2,c3are coefficients of the evolution.The best-fitting parameters of energy evolution trends are listed in Table1.The fitting results ofW1have large uncertainties,but the other shape parameters feature clear energy evolution trends.

    Table 1 The Fitting Results of Shape Parameters

    4.Discussion

    In this work,we find that the pulse profile of the Vela pulsar in γ-ray is changing with time,and its change behavior is different from the Crab pulsar.The shape parameters of the Crab pulsar exhibit gradual changes with time both in radio and X-ray bands(Lyne et al.2013;Ge et al.2016),while the shape parameters of the pulse profile for the Vela pulsar display fluctuations over time rather than gradual changes (Figure5),and fluctuations among different shape parameters are not synchronous.However,these time variation trends of shape parameters in γ-ray are insignificant and may just be statistical fluctuations in the data.Collecting more data over a longer period of time may enable the acquisition of exact time variation results for the Vela pulsar’s pulse profile in the future.

    In the radio band,the pulse profile of the Vela pulsar changes with time by analyzing its pulse width and bright pulse rate (Palfreyman et al.2016).If the pulse profile in γ-ray also shows a significant time variation trend,the pulse changes with time may arise from the same activity from the Vela pulsar.In X-ray,Durant et al.(2013) studied the jet’s shape and found that it has a helical structure.They thought that the free precession of the neutron star may lead to this observation result.If the Vela pulsar is indeed precessing,the long-term timing may be able to detect it and the pulse shape in multiwavelength would change with time.However,the long-term timing detection is complicated by glitching,and the study on the time dependence of the pulse profile relies on statistics.In this work,the time variation trends for different shape parameters in γ-ray are not significant due to the limit of statistics.Gathering more observations,it may be easy to find a clear time dependence for the Vela pulsar’s pulse profile in the future.

    The pulse profile of the Vela pulsar shows clear energy dependence in γ-ray.As energy increases,the intensities of P2 and P3 increase over P1,and the widths of P1 and P2 decrease.All these results are consistent with some previous observational and simulation results(Abdo et al.2010;Du et al.2011;Venter et al.2018;Yang &Cao2021).The phase separations among three pulses are not determined well in previous studies,but accurate values and evolutionary trends for them are obtained in this work.As shown in Figure7,the phase separations between P1 and P2,and P2 and P3 decrease as energy increases.The phase separation reflects the relative position of the radiation regions.The energy dependence of phase separations and widths for three pulses may originate from the “stratified” structure of the radiation region (Cheng et al.1986a,1986b;Du et al.2011),i.e.,photons of different energies are produced in emission regions with different sizes at different latitudes.Different high energy emission models could predict the general energy evolution trend of pulse shape,and the quantitative evolutionary results(Table1)will provide restrictions on these models and help to improve them.

    For the Vela pulsar,as displayed in Figure2,we also find a turning point at phase~0.586 where the energy evolution trends of the pulse intensity experience a reversal.At this turning phase,the derivative of spectral index with respect to energy would reach a local minimum (Yan et al.2022).A detailed research effort on the phase-resolved spectrum is required to verify this in the future.

    Acknowledgments

    We thank the referee for his/her very helpful suggestions and comments.We thank the High Energy Astrophysics Science Archive Research Center for maintaining its online archive service that provided the data used in this research.This work is supported by the National Natural Science Foundation of China (NSFC,Grant Nos.11903001,U1938109,U1838201,U1838202 and 42004004),the Key Research Foundation of Education Ministry of Anhui Province(KJ2019A0787) and the Doctor Foundation of Anhui Jianzhu University 2019 (2019QDZ14).

    ORCID iDs

    99re在线观看精品视频| 夜夜躁狠狠躁天天躁| 18美女黄网站色大片免费观看| 丰满人妻一区二区三区视频av | 国产v大片淫在线免费观看| 大型av网站在线播放| 色噜噜av男人的天堂激情| 免费看日本二区| 黄色片一级片一级黄色片| 亚洲免费av在线视频| 色尼玛亚洲综合影院| 亚洲精品国产一区二区精华液| 亚洲avbb在线观看| 1024视频免费在线观看| 99热这里只有精品一区 | 亚洲av美国av| 亚洲精品一卡2卡三卡4卡5卡| 国产高清videossex| 18禁黄网站禁片午夜丰满| 成人亚洲精品av一区二区| 1024视频免费在线观看| 老鸭窝网址在线观看| 亚洲中文日韩欧美视频| 亚洲人成伊人成综合网2020| a在线观看视频网站| 制服诱惑二区| 亚洲五月婷婷丁香| 午夜精品久久久久久毛片777| 在线观看免费日韩欧美大片| 后天国语完整版免费观看| 国产亚洲欧美98| 亚洲天堂国产精品一区在线| 欧美另类亚洲清纯唯美| 日本三级黄在线观看| 高潮久久久久久久久久久不卡| 啦啦啦观看免费观看视频高清| 国产成人啪精品午夜网站| 国产av又大| 亚洲精品一区av在线观看| 性欧美人与动物交配| 国产精品一区二区三区四区免费观看 | 欧美在线一区亚洲| 精品第一国产精品| 午夜福利成人在线免费观看| 国产高清有码在线观看视频 | 国产男靠女视频免费网站| 国产乱人伦免费视频| 动漫黄色视频在线观看| 老司机在亚洲福利影院| 日本五十路高清| 天天躁狠狠躁夜夜躁狠狠躁| 中文字幕人成人乱码亚洲影| 女生性感内裤真人,穿戴方法视频| 亚洲中文av在线| 亚洲五月天丁香| 可以在线观看的亚洲视频| 久久午夜亚洲精品久久| 久久久久久久久久黄片| 成人国产一区最新在线观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品一卡2卡三卡4卡5卡| 亚洲真实伦在线观看| 免费看a级黄色片| 国产av在哪里看| 1024香蕉在线观看| 成在线人永久免费视频| 久久久久久久午夜电影| 亚洲18禁久久av| 国产av一区二区精品久久| 禁无遮挡网站| 欧美成人性av电影在线观看| 1024视频免费在线观看| 97超级碰碰碰精品色视频在线观看| 亚洲在线自拍视频| 黄色a级毛片大全视频| 精品久久久久久久久久久久久| 级片在线观看| 欧美人与性动交α欧美精品济南到| 欧美乱色亚洲激情| 757午夜福利合集在线观看| 久久久久国产精品人妻aⅴ院| 岛国在线观看网站| 日本熟妇午夜| 国产亚洲精品久久久久久毛片| 午夜日韩欧美国产| 日日摸夜夜添夜夜添小说| 国内精品久久久久精免费| 一区二区三区国产精品乱码| 国产亚洲精品综合一区在线观看 | 精品第一国产精品| 国产欧美日韩一区二区三| 91老司机精品| 美女午夜性视频免费| 男人舔女人的私密视频| 村上凉子中文字幕在线| 少妇粗大呻吟视频| 国产69精品久久久久777片 | 亚洲成av人片在线播放无| 久久久精品欧美日韩精品| 精品乱码久久久久久99久播| 可以免费在线观看a视频的电影网站| 青草久久国产| www.www免费av| 国产亚洲av嫩草精品影院| 免费人成视频x8x8入口观看| 日本精品一区二区三区蜜桃| 欧美极品一区二区三区四区| www.www免费av| 别揉我奶头~嗯~啊~动态视频| 高清毛片免费观看视频网站| 欧美极品一区二区三区四区| 精品一区二区三区av网在线观看| 久久精品国产综合久久久| 久久人妻av系列| 深夜精品福利| 亚洲成av人片在线播放无| 日本黄色视频三级网站网址| 欧美av亚洲av综合av国产av| 国产私拍福利视频在线观看| 无遮挡黄片免费观看| 伦理电影免费视频| 精品久久久久久成人av| 男女那种视频在线观看| 国产精品免费一区二区三区在线| 欧美日韩一级在线毛片| 国产av一区在线观看免费| 又黄又粗又硬又大视频| 日韩国内少妇激情av| 国产三级中文精品| 女生性感内裤真人,穿戴方法视频| tocl精华| 亚洲国产精品久久男人天堂| 淫妇啪啪啪对白视频| 欧美日韩精品网址| av在线播放免费不卡| av视频在线观看入口| 麻豆av在线久日| 别揉我奶头~嗯~啊~动态视频| 黄色丝袜av网址大全| 久久久久国产精品人妻aⅴ院| 欧美+亚洲+日韩+国产| 欧美日韩中文字幕国产精品一区二区三区| 麻豆国产av国片精品| √禁漫天堂资源中文www| 国产99久久九九免费精品| 又紧又爽又黄一区二区| 久久亚洲精品不卡| 99国产精品一区二区蜜桃av| 久久精品国产99精品国产亚洲性色| 看片在线看免费视频| 国产1区2区3区精品| 我要搜黄色片| 国产蜜桃级精品一区二区三区| 深夜精品福利| 日韩三级视频一区二区三区| 久久久国产成人免费| 窝窝影院91人妻| 天天躁夜夜躁狠狠躁躁| 90打野战视频偷拍视频| 免费在线观看亚洲国产| 国产又黄又爽又无遮挡在线| 亚洲国产精品合色在线| 成人av一区二区三区在线看| 在线国产一区二区在线| 成人国产一区最新在线观看| or卡值多少钱| 成人国语在线视频| 国产精品一区二区三区四区免费观看 | av福利片在线观看| 午夜a级毛片| 国产精品久久久久久人妻精品电影| 欧美3d第一页| 岛国在线观看网站| 亚洲精品中文字幕在线视频| 哪里可以看免费的av片| 黄频高清免费视频| 十八禁人妻一区二区| av片东京热男人的天堂| 丁香六月欧美| ponron亚洲| 国产精品免费一区二区三区在线| 国产亚洲精品久久久久5区| 岛国在线免费视频观看| 看黄色毛片网站| 亚洲欧美日韩高清在线视频| 又黄又爽又免费观看的视频| 女人高潮潮喷娇喘18禁视频| 国产一区二区在线av高清观看| 69av精品久久久久久| 一边摸一边抽搐一进一小说| 欧美极品一区二区三区四区| 亚洲欧美日韩东京热| 国产视频一区二区在线看| 亚洲av成人精品一区久久| 中文字幕久久专区| 视频区欧美日本亚洲| 亚洲国产精品成人综合色| 国产成人av教育| 国产伦一二天堂av在线观看| 久久天堂一区二区三区四区| 琪琪午夜伦伦电影理论片6080| 亚洲精华国产精华精| 男女那种视频在线观看| av免费在线观看网站| 一级a爱片免费观看的视频| 久久人妻福利社区极品人妻图片| 香蕉久久夜色| 日韩精品免费视频一区二区三区| 少妇人妻一区二区三区视频| 精华霜和精华液先用哪个| 亚洲国产看品久久| 黄片小视频在线播放| 亚洲五月天丁香| 久久久久性生活片| 国内精品久久久久精免费| 又黄又粗又硬又大视频| 久久久国产欧美日韩av| 丰满的人妻完整版| 国产蜜桃级精品一区二区三区| 色综合亚洲欧美另类图片| 国产99白浆流出| 久9热在线精品视频| 91成年电影在线观看| 亚洲一码二码三码区别大吗| 日本 欧美在线| 久久婷婷成人综合色麻豆| 日本在线视频免费播放| 日韩欧美国产在线观看| 成人一区二区视频在线观看| 日日摸夜夜添夜夜添小说| 日本黄色视频三级网站网址| 国产三级中文精品| 午夜影院日韩av| 国产亚洲欧美98| 日韩欧美免费精品| 免费在线观看黄色视频的| 视频区欧美日本亚洲| 大型av网站在线播放| 午夜精品久久久久久毛片777| 首页视频小说图片口味搜索| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美精品综合一区二区三区| 国产三级在线视频| 女生性感内裤真人,穿戴方法视频| 久久精品91无色码中文字幕| 午夜激情福利司机影院| 成人18禁在线播放| 免费无遮挡裸体视频| 日韩欧美 国产精品| 他把我摸到了高潮在线观看| 亚洲精品久久国产高清桃花| 91麻豆av在线| 亚洲最大成人中文| 精品国产超薄肉色丝袜足j| 91字幕亚洲| 久久久久久久久久黄片| 亚洲熟妇熟女久久| 国产成人av激情在线播放| 成人国语在线视频| 在线观看舔阴道视频| 亚洲国产欧美人成| 中国美女看黄片| 色尼玛亚洲综合影院| 婷婷精品国产亚洲av| 免费高清视频大片| 禁无遮挡网站| 欧美极品一区二区三区四区| xxx96com| 国产精品一区二区三区四区免费观看 | 亚洲成av人片免费观看| 欧美一级毛片孕妇| 欧美最黄视频在线播放免费| 亚洲第一电影网av| av视频在线观看入口| 人人妻,人人澡人人爽秒播| 欧美av亚洲av综合av国产av| 女生性感内裤真人,穿戴方法视频| 又大又爽又粗| 伦理电影免费视频| 超碰成人久久| 又粗又爽又猛毛片免费看| 色噜噜av男人的天堂激情| 99精品欧美一区二区三区四区| 九九热线精品视视频播放| 亚洲国产高清在线一区二区三| 18禁黄网站禁片免费观看直播| 亚洲精品美女久久久久99蜜臀| 亚洲欧美激情综合另类| 窝窝影院91人妻| 一区二区三区高清视频在线| 国产高清视频在线观看网站| 91国产中文字幕| 法律面前人人平等表现在哪些方面| 欧美性长视频在线观看| 亚洲真实伦在线观看| 一个人免费在线观看电影 | 欧美性猛交╳xxx乱大交人| 国产精品久久视频播放| 老司机福利观看| 一本大道久久a久久精品| 婷婷精品国产亚洲av在线| 欧美成人性av电影在线观看| 欧洲精品卡2卡3卡4卡5卡区| 少妇熟女aⅴ在线视频| 宅男免费午夜| 香蕉国产在线看| 天堂影院成人在线观看| 久久精品亚洲精品国产色婷小说| 国产精品国产高清国产av| 亚洲电影在线观看av| 草草在线视频免费看| 国产亚洲精品久久久久5区| av视频在线观看入口| 蜜桃久久精品国产亚洲av| 亚洲精品在线美女| 草草在线视频免费看| 中国美女看黄片| e午夜精品久久久久久久| 亚洲午夜精品一区,二区,三区| 国产三级在线视频| 国产又色又爽无遮挡免费看| 日韩av在线大香蕉| bbb黄色大片| 九九热线精品视视频播放| 亚洲aⅴ乱码一区二区在线播放 | 这个男人来自地球电影免费观看| 99热这里只有是精品50| 天天躁夜夜躁狠狠躁躁| 嫩草影院精品99| 精品免费久久久久久久清纯| 精品日产1卡2卡| 国产午夜精品论理片| 久久久久久九九精品二区国产 | 在线观看日韩欧美| 女人爽到高潮嗷嗷叫在线视频| 少妇人妻一区二区三区视频| 两个人视频免费观看高清| 99久久精品国产亚洲精品| 国产黄片美女视频| 午夜免费观看网址| 日韩高清综合在线| 亚洲第一电影网av| 成人国产一区最新在线观看| 亚洲精品粉嫩美女一区| 精品熟女少妇八av免费久了| 欧美极品一区二区三区四区| 大型黄色视频在线免费观看| 18禁裸乳无遮挡免费网站照片| 日本熟妇午夜| 亚洲国产欧美人成| 中出人妻视频一区二区| 欧美av亚洲av综合av国产av| 国产真实乱freesex| 亚洲国产高清在线一区二区三| 国产黄色小视频在线观看| 国产成人av激情在线播放| 国产真人三级小视频在线观看| 国产真实乱freesex| 欧美日韩黄片免| 国产成人精品无人区| 亚洲一区二区三区不卡视频| 亚洲国产欧美人成| 91大片在线观看| 少妇被粗大的猛进出69影院| www国产在线视频色| 亚洲美女黄片视频| 精品熟女少妇八av免费久了| www.自偷自拍.com| 真人一进一出gif抽搐免费| 黑人操中国人逼视频| 国产精品日韩av在线免费观看| 高清在线国产一区| 国产精品av视频在线免费观看| 老司机午夜十八禁免费视频| av福利片在线观看| 男插女下体视频免费在线播放| 亚洲专区字幕在线| 国产精品自产拍在线观看55亚洲| 亚洲在线自拍视频| av欧美777| 精品无人区乱码1区二区| 熟女电影av网| 99riav亚洲国产免费| 无限看片的www在线观看| 丝袜美腿诱惑在线| 看黄色毛片网站| 琪琪午夜伦伦电影理论片6080| 国产片内射在线| 亚洲自拍偷在线| 免费在线观看亚洲国产| 欧美一区二区精品小视频在线| 好男人在线观看高清免费视频| 老司机在亚洲福利影院| or卡值多少钱| 欧美乱色亚洲激情| 女生性感内裤真人,穿戴方法视频| 免费在线观看日本一区| 亚洲男人天堂网一区| 国产成人av激情在线播放| 2021天堂中文幕一二区在线观| 日韩高清综合在线| 又黄又粗又硬又大视频| or卡值多少钱| 搞女人的毛片| 亚洲中文av在线| 波多野结衣巨乳人妻| 亚洲男人天堂网一区| 精品国内亚洲2022精品成人| 日韩欧美三级三区| 啦啦啦韩国在线观看视频| 他把我摸到了高潮在线观看| 成人18禁高潮啪啪吃奶动态图| 午夜福利欧美成人| 午夜福利成人在线免费观看| 久久国产乱子伦精品免费另类| 欧美人与性动交α欧美精品济南到| 国产高清视频在线播放一区| 午夜精品在线福利| 亚洲精品中文字幕在线视频| 两性夫妻黄色片| 国产精品综合久久久久久久免费| 一本一本综合久久| 久久精品人妻少妇| 成人手机av| 香蕉久久夜色| 狠狠狠狠99中文字幕| 搡老熟女国产l中国老女人| 黄频高清免费视频| 9191精品国产免费久久| 听说在线观看完整版免费高清| 国产激情偷乱视频一区二区| 中文字幕熟女人妻在线| 亚洲人成网站高清观看| 国内揄拍国产精品人妻在线| 亚洲精品久久国产高清桃花| 看片在线看免费视频| av天堂在线播放| 后天国语完整版免费观看| 国产午夜精品论理片| 老汉色∧v一级毛片| 欧美日韩黄片免| 久久精品人妻少妇| 在线观看午夜福利视频| 亚洲一区中文字幕在线| 久久久久久久午夜电影| 怎么达到女性高潮| 91麻豆精品激情在线观看国产| 免费看日本二区| 国产三级中文精品| 久久精品国产亚洲av高清一级| 99热这里只有是精品50| 脱女人内裤的视频| 99热只有精品国产| 19禁男女啪啪无遮挡网站| 国产亚洲欧美在线一区二区| 最新在线观看一区二区三区| e午夜精品久久久久久久| 国产伦在线观看视频一区| 999久久久精品免费观看国产| 久久精品影院6| 女人被狂操c到高潮| 国语自产精品视频在线第100页| 亚洲国产精品999在线| 精品一区二区三区四区五区乱码| 欧美不卡视频在线免费观看 | 一个人免费在线观看的高清视频| 女警被强在线播放| 亚洲欧美日韩东京热| 老汉色av国产亚洲站长工具| 精品久久蜜臀av无| 亚洲欧美精品综合一区二区三区| 国产精品久久视频播放| 亚洲欧美精品综合一区二区三区| cao死你这个sao货| 精品不卡国产一区二区三区| 18美女黄网站色大片免费观看| 亚洲精品在线美女| 欧美色视频一区免费| 此物有八面人人有两片| 国产成人aa在线观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲全国av大片| 最近在线观看免费完整版| 伊人久久大香线蕉亚洲五| 亚洲人成电影免费在线| 久久久久久人人人人人| 午夜精品久久久久久毛片777| 少妇熟女aⅴ在线视频| 18禁裸乳无遮挡免费网站照片| 午夜两性在线视频| 精品熟女少妇八av免费久了| 此物有八面人人有两片| 亚洲av电影不卡..在线观看| 日本 av在线| 中文字幕久久专区| 变态另类丝袜制服| 韩国av一区二区三区四区| 亚洲人成77777在线视频| 麻豆一二三区av精品| 久久精品综合一区二区三区| 国产99久久九九免费精品| 国产精品自产拍在线观看55亚洲| 不卡av一区二区三区| 久久久久国内视频| 亚洲熟女毛片儿| 18禁黄网站禁片午夜丰满| 亚洲专区中文字幕在线| 国产v大片淫在线免费观看| 国产不卡一卡二| 50天的宝宝边吃奶边哭怎么回事| 国产精品日韩av在线免费观看| 特级一级黄色大片| 一夜夜www| 精品不卡国产一区二区三区| 午夜福利视频1000在线观看| 国产高清视频在线播放一区| 午夜老司机福利片| av在线播放免费不卡| 午夜福利成人在线免费观看| 国产主播在线观看一区二区| 亚洲男人的天堂狠狠| 在线观看一区二区三区| 级片在线观看| 日韩精品免费视频一区二区三区| 久久午夜综合久久蜜桃| 18禁国产床啪视频网站| 最近最新中文字幕大全电影3| 国产一区二区激情短视频| 亚洲av成人一区二区三| av超薄肉色丝袜交足视频| 国产亚洲av高清不卡| 非洲黑人性xxxx精品又粗又长| 欧美日本亚洲视频在线播放| 黄色丝袜av网址大全| 国产91精品成人一区二区三区| 看黄色毛片网站| 91av网站免费观看| 成人特级黄色片久久久久久久| 久9热在线精品视频| 男人舔奶头视频| 两人在一起打扑克的视频| 久久这里只有精品中国| 亚洲欧洲精品一区二区精品久久久| 欧美日韩中文字幕国产精品一区二区三区| 在线播放国产精品三级| 亚洲国产欧洲综合997久久,| 成人18禁高潮啪啪吃奶动态图| 久久天堂一区二区三区四区| 50天的宝宝边吃奶边哭怎么回事| 亚洲av第一区精品v没综合| 特级一级黄色大片| 一本一本综合久久| 一二三四在线观看免费中文在| 好男人在线观看高清免费视频| 日韩免费av在线播放| 色av中文字幕| 91麻豆精品激情在线观看国产| 久久精品国产综合久久久| 国产亚洲精品久久久久5区| 动漫黄色视频在线观看| 亚洲精华国产精华精| 中文亚洲av片在线观看爽| 69av精品久久久久久| 91大片在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国内毛片毛片毛片毛片毛片| 国产99久久九九免费精品| 精品乱码久久久久久99久播| 99热只有精品国产| 热99re8久久精品国产| 91字幕亚洲| 国产精品久久视频播放| netflix在线观看网站| 亚洲精品美女久久久久99蜜臀| 啦啦啦观看免费观看视频高清| 在线免费观看的www视频| 黄色a级毛片大全视频| 少妇被粗大的猛进出69影院| 人妻久久中文字幕网| 99热只有精品国产| 亚洲国产中文字幕在线视频| 草草在线视频免费看| 99热这里只有精品一区 | 欧美黑人巨大hd| 精品国产超薄肉色丝袜足j| 在线观看午夜福利视频| 搞女人的毛片| 一夜夜www| 成人欧美大片| 黄频高清免费视频| 久久精品亚洲精品国产色婷小说| 夜夜爽天天搞| 久久国产精品影院| av超薄肉色丝袜交足视频| 久久婷婷成人综合色麻豆| 中国美女看黄片| 老熟妇仑乱视频hdxx| 99精品久久久久人妻精品| 亚洲国产高清在线一区二区三| 别揉我奶头~嗯~啊~动态视频| 午夜视频精品福利| 两性夫妻黄色片| 国产精品亚洲一级av第二区| 国模一区二区三区四区视频 | 亚洲精品av麻豆狂野| 久久精品影院6| 国内精品久久久久精免费| 久久天堂一区二区三区四区| 免费一级毛片在线播放高清视频| 色综合站精品国产| 不卡av一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 一区二区三区高清视频在线| xxxwww97欧美|