• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Self-gravity on Mass-loss of the Post-impact Super-Earths

    2022-05-24 08:10:00JiangHuangWeiZhongandCongYu

    Jiang Huang ,Wei Zhong ,and Cong Yu

    1 School of Physics and Astronomy,Sun Yat-Sen University,Zhuhai 519082,China; yucong@mail.sysu.edu.cn

    2 CSST Science Center for the Guangdong-Hong Kong-Macau Greater Bay Area,Zhuhai 519082,China

    3 State Key Laboratory of Lunar and Planetary Sciences,Macau University of Science and Technology,Macau,China

    Abstract Kepler’s observations show most of the exoplanets are super-Earths.The formation of a super-Earth is generally related to the atmospheric mass loss that is crucial in the planetary structure and evolution.The shock driven by the giant impact will heat the planet,resulting in the atmosphere escape.We focus on whether self-gravity changes the efficiency of mass loss.Without self-gravity,if the impactor mass is comparable to the envelope mass,there is a significant mass-loss.The radiative-convective boundary will shift inward by self-gravity.As the temperature and envelope mass increase,the situation becomes more prominent,resulting in a heavier envelope.Therefore,the impactor mass will increase to motivate the significant mass loss,as the self-gravity is included.With the increase of envelope mass,the self-gravity is particularly important.

    Key words: planets and satellites:atmospheres–planets and satellites:physical evolution–methods:numerical

    1.Introduction

    The observation of the Kepler reveals a large number of short-period planets with size between Earth and Neptune,referred to as the super-Earth and mini-Neptune(Howard et al.2010;Borucki et al.2011,2013;Fressin et al.2013;Petigura et al.2013;Morton et al.2016).The atmospheric mass of these super-Earth is about 10%of that of the core mass(Adams et al.2008;Lopez &Fortney2014),implying the evolution is undergoing a significant mass loss.Therefore,some feasible mechanisms are required to explain the formation of gas giant or super-Earth.

    Super-Earths may be formed by migrating inwardly for the gravitational interaction of the protoplanetary disk(Terquem&Papaloizou2007;Raymond et al.2008;McNeil &Nelson2010;Schlaufman et al.2010),or super-Earths are formed in situ by various mechanisms.We focus on the in situ formation of super-Earth.The super-Earth may be formed by the entropy advection (Ali-Dib et al.2020),pebble accretion and isolation(Liu et al.2019;Chen et al.2020;Liu&Ji2020)and tidally forced turbulence(Yu2017).In the dispersing disk,the planet’s core may be in the magma ocean stage(Kite et al.2019).The ultra-hot core heats the envelope and then forces the atmosphere to escape(Misener&Schlichting2021).If the core energy is large enough,a bare core can be reminded.However,the entire envelope cannot be stripped without enough energy.Thus,a gas-rich sub-Neptune will be formed (Ginzburg et al.2016).In addition,the atmosphere of the close-in planet will be strongly affected by photoevaporation (Owen &Wu2013,2017) and the magnetorotational instability (MRI,Bai &Stone2013).A Parker wind will blow off the atmosphere.

    The photoevaporation and core-powered effect are sensitive in a dispersing disk instead of a gas-rich phase (Lopez &Fortney2013;Jin et al.2014;Fulton et al.2017).However,the evolutionary timescale of the photoevaporates is much long for several Gyr.Thus,the effect of a giant impact is even more significant(Inamdar&Schlichting2015).In the final stages of planetary formation,the giant impact can significantly or even completely remove the atmospheric envelope (Liu et al.2015;Schlichting et al.2015;Inamdar&Schlichting2016).A shock will be induced by the giant impact (Inamdar &Schlichting2015;Schlichting et al.2015;Ginzburg et al.2016;Biersteker&Schlichting2019),which will heat the planet resulting in a significant mass loss.However,the thermal structure of Biersteker &Schlichting (2019) neglected the effect of the self-gravity.

    In the core-accretion frame,self-gravity can be ignored in the initial stages of planetary accretion(Béthune&Rafikov2019).But as planets enter a runway accretion process,the effects of self-gravity cannot be ignored (Béthune2019).The close-in planets can form the low-frequency nonradial oscillations by the dynamic tide,more precisely called the gravito-inertial waves (i.e.,g-mode).Taking the tides into account,the competition between the self-gravity and tides will introduce tidal disruption (Dhouib et al.2021).Planetary rotation produces r-mode.Considering self-gravity,the interplay between the two waves would alter the planet’s shape (Lee&Murakami2019).Self-gravity,therefore,is crucial in the formation of planets.

    We investigate the effect of self-gravity on the giant impact.During impact,the kinetic energy of the impactor is converted to heat the planet.Thus,the envelope is heated and inflated,resulting in mass loss.Self-gravity increases with the atmospheric mass.The thermal structure may be changed by the self-gravity,in which the radiative-convective boundaries(RCBs) may be shifted inward (Yu2017).Compared with the case of ignoring self-gravity,the corresponding impactor mass would be increased to support significant mass loss.

    This work is listed as follows:Section2shows that a model of the planet after a major impact was constructed and evolved with consideration of envelope’s self-gravity.In Section3,we calculate the atmospheric loss results under different parameters.The conclusions and discussion are listed in Section4.

    2.The Planetary Structure after the Giant Impact

    In general,giant impact processes involve the loss of atmospheric mass on planets.In addition,the post-impact planetary structure depends on the thermal state of the envelope.In this work,we investigate how self-gravity changes the thermal structure.We construct a post-impact model with self-gravity for the time-dependent evolution of the planet.In Sections2.1–2.3,we list the structure functions,outer boundaries and energy as follows.

    2.1.H/He Envelope Structure Model

    We construct a two-layer model with an interior adiabatic convective zone and an exterior radiative zone (Rafikov2006;Piso &Youdin2014;Inamdar &Schlichting2015).The atmospheric envelope is roughly homogeneous around the core,which is approximately spherically symmetric for calculation.The H/He envelope structure is governed by the following equations of mass conservation,hydrostatic equilibrium,and the temperature gradient (Kippenhahn et al.2012;Yu2017):

    whereMris the total mass with core massMcand the envelope massMenv.r,ρ,P,Tand ?represent the radius,density,pressure,temperature,and temperature gradient,respectively.Meanwhile,the gas satisfies the ideal gas law,P=RρT/μ with molar gas constantR,the mean molecular weight μ.We set μ=2.3.Through the above equation,the convective profile can be determined.In particular,temperature gradient depends on the radiative and adiabatic gradient,i.e.,?=min(?rad,?ad).The structure is divided into the radiative and convective parts.

    2.1.1.The Radiative Structure

    The radiative layer is approximately treated as an isothermal zone,in which the temperature seems equal to the outer boundary.To simplify the simulation,we neglect the radiative gradient.The temperature at the radiative-convective boundary(RCB) relates to the outer temperature,i.e.,which is approximately the equilibrium temperature (Biersteker &Schlichting2019):

    whereABis the Bond albedo,Rstaris the stellar radius,andTstaris the star’s effective temperature.The radius and temperature of the host star areRstar=R⊙,Tstar=5.77×103K,respectively.In this layer,we chooseras the independent variable,and Equation (3) will be removed.We will solve Equations (1)–(2) withr=Rout.

    2.1.2.The Adiabatic Structure

    The temperature at RCBs is determined by the outer temperature since the radiative temperature isTRCB=Teq.We set temperature as the argument,thus,Equations (1)–(3) will satisfy

    where ?adis determined by the adiabatic index,and γ is the adiabatic index of the gas (Rafikov2006).For monatomic gas?ad=2/5,and for diatomic,e.g.,H2,?ad=2/5,which is γ=7/5.

    2.2.The Outer Boundary Conditions

    The outer boundary is determined by the lesser of the Bondi radius and the Hill radius (Yu2017):

    whereMcis the mass of the core,ais orbital semimajor axis of planet,GCR=Menv/Mcis the mass ratio of envelope to core.

    2.3.The Energy for the Giant Impact

    The total energy including the thermal and potential energy determines the planetary evolution.The planet model we construct is a young planet with a significant H/He envelope.Under such conditions,the planet still retains much thermal energy.Thus,the base temperature of the planetary envelope is higher than the melting point of silicon.Assuming that the core is in a completely molten state,and the heat conduction is effective between the core and the base of the envelope,so that the core temperature and the base temperature is approximate,Tc≈Tb.

    For the terrestrial planets,the internal adiabatic core is at a depth of several thousand kilometers,and the temperature change is slight (Katsura et al.2010).Therefore,we consider an isothermal core,and estimate core energy:

    wherecv,c~5–10×106erg g-1K-1describes the specific heat capacity of the planet’s core (Alfè et al.2001;Lopez et al.2012).We employkB/[μc(γc-1)]to estimate the value ofcv,c.Note that μcand γcare the mean molecular weight and adiabatic index of the core,respectively.In this work,we setcv,c=7.5×106erg g-1K-1.

    The envelope mass is mainly distributed in convective zone,and the mass of radiative zone is negligible.Therefore,we mainly discuss the gravitational potential and thermal energy of the convective zone,in which can be shown as follows:

    After a giant impact,the envelope will be heated and inflated,resulting in significant mass-loos.As it gradually cools and shrinks,the outer density and mass loss rate will be decreased.The mass-loss rate is approximately (Owen &Wu2016):

    The planetary evolution is a cooling process.The corresponding luminosity atRrcbcan be determined by the radiative gradient,and can be written as follows:

    where σ is the Stefan-Boltzmann constant,κRis the Rosseland mean opacity of the envelope atRrcb.We set κR=0.1 cm2g-1(Freedman et al.2008).When the mass is lost from the outer edge of an envelope,the energy is required to support the same thermal profile.The luminosity at the RCBLrcbgives the upper limit of the evolution,so that the maximum mass-loss rate can be determined by

    We ignore the energy losses of radiative process,and mass-loss is derived by the cooling luminosity.Thus,the mass-loss rate can be regarded as the absolute upper limit.

    3.Results

    We have constructed a planetary model after a giant impact and explored their evolution.The giant impact will heat the core and atmospheric envelope,resulting in a significant mass loss.We have shown the planetary structure with the selfgravity in Section3.1,and the effect of the self-gravity on the mass-loss in Section3.2

    3.1.The Structure after the Giant Impact

    Following Sections2.1.2and2.1.1,we can obtain the radial profile of the envelope shown in Figure1.We employ the odeint function provided by Scipy to integrate the structural equations from the outer boundary to the interior layer.The core mass and radius are set toMc=3M⊕andRc=1.32R⊕,respectively.The planet is located at 0.1 au.

    The density ρb,pressurePb,and temperatureTbat the base of the envelope would change the planetary structure.As shown in the top panel of Figure1,the envelope masses at the RCBs increase with the total mass (gas-to-core ratio,GCR).Besides,the RCB also shifts inward because the self-gravity increases with the envelope mass.In addition,the RCB will be pushed outward when the base temperature increases,which means the evolutionary timescale will be reduced,and the internal pressure pushes the materials to escape the Hill radius.Therefore,a significant mass loss will occur in the higher base temperature.

    According to Section2.3,the evolution of mass,temperature and the radius at RCBs are also shown in Figure1.The massloss rate refers to the initial gas-to-core ratio GCR0and temperatureTb,0at the base of the envelope.Under the sameTb,0,self-gravity increases with the initial GCR.Thus,the mass-loss rate is reduced (the second panel),and then,the evolutionary profiles of the temperature will be flatten.However,the location of the RCBs was pushed outward (the third panel).In addition,when a planet with the same initial GCR,the efficiency of the mass-loss would increase withTb,0.In particular,the tendency of the decrease in the base temperature flattens (the bottom panel).The RCBs will be pushed inward.

    Figure 1.(Top)Radial mass profile.Solid and dashed lines represent the cases of Tb=6000 K and 10,000 K,respectively.The blue and red lines correspond to the case of GCR=6% and 18%,respectively.(Second from top) The evolution of the atmospheric mass.(Bottom two) The evolutions of temperature and radius at the RCBs from left to right.Solid and dashed lines represent the cases of GCR0=6%and 18%,respectively.Green,red and blue lines correspond to the initial temperatures of Tb,0=6000,8000,and 10,000 K at the base of the envelope,respectively.

    Figure 2.(Top) The location of RCB (Rrcb) is a function of gas-to-core ratio GCR.Blue and red lines correspond to initial base temperatures of 8000 and 10,000 K,respectively.The location of the RCB depends on the base temperature for the case without self gravity.(Bottom) Mass fraction of H/He envelope loss (X) is a function of impactor mass (Mimp/Mc).Different colors indicate an increase in the initial GCR from left to right.The solid and dashed lines represent the evolution with/without self-gravity,respectively.

    3.2.The Effect of the Self-gravity

    Self-gravity is essential in the formation of planets.In Section3.2.1,we focus on the effects of self-gravity on the evolution of the position of the RCB.The effects of self-gravity on the mass of the impact object are listed in Section3.2.2.

    3.2.1.The Locations of the RCBs

    If the self-gravity of the envelope is not included,the location of the RCB is completely determined by the base temperatureTb.Taking the self-gravity of the envelope into account,the RCB will move inward.The radius at RCB decreases with the increasing in the initial temperature at the base of the envelope or the initial GCR(as seen in the top panel of Figure2).

    Figure 3.Mass fraction of H/He envelope loss (X) is a function of impactor mass (Mimp/Mc).The top panel is under the different orbital radius.Solid and dashed lines correspond to the cases for GCR=6% and 18%.The bottom panel is under the different initial GCR and the planets are located at 0.5 au.

    3.2.2.The Mass of the Impactor

    The essence of giant impact is to inject energy into the planet.The planetary energies will be derived with a given impactor mass.The impactor mass and speed are represented byMimpandvimp,respectively.The efficiency of energy conversion is described by η.The energy,induced by the impactor,is written as follows:

    The efficiency of energy conversion η approximates one as the kinetic energy for the impactor is completely transferred to the planet.Asvimp≈vesc(vescis is the escape velocity of the planet),the above Equation will change to Biersteker &Schlichting (2019)

    The escape velocity changes with the atmospheric mass.In order to eliminate the effects of escape velocity,here,the atmospheric mass is neglected in our calculations,Mp≈Mc.Equation (18) will switch into

    When the impactor hits the planet with massMimp,the energy transferred to the planet can be ensured.This energy will heat the planet and determine a new initial state of planet.

    The mass fraction of H/He envelope loss(X),which is the ratio of the retained envelope mass to the initial mass when the planetary evolution time is 2 Gyr,is a function of the impactor mass and shown in the bottom panel of Figure2.The initial core temperature isTb,0=Tc,0=4000 K.The adiabatic index and the mean molecular weight of the planetary envelope satisfy γ=7/5,μ=2.3u.If the impactor mass approximates the envelope mass,the atmospheric mass for the planet without the self-gravity will be lost a lot (Biersteker &Schlichting2019).It is well known that self-gravity increases with the atmospheric mass and the core mass.In this section,the core mass is fixed.When the initial atmospheric mass is small (GCR <0.1),the influence of self-gravity is weak.When GCR >0.1,a larger impactor mass is required for the significant mass loss.As mentioned above,the RCB will be pushed inward by the self-gravity,implying the initial temperature required to produce significant mass loss is higher.

    3.3.The Effect of the Orbital Radius

    In general,the close-in planets are more likely to form super-Earths because the host star affects them.We investigate the effects of orbital radius on the mass loss for the planets with self-gravity (seen in Figure3).Following Equation (4),the equilibrium temperature will decrease with the orbital radius,resulting in the inwardly decrease inRRCB.The outer boundary will obtain stronger constrains by the greater self-gravity.A higher temperature is needed for the significant mass loss of the envelope with the larger impact mass.In addition,the whole envelope may be blown away.With the increase ofa,atmospheric loss is quite sensitive to the change of impactor mass.There is a significant difference in mass-loss when the impactor mass changes slightly.

    4.Discussion and Conclusions

    We construct a post-impact envelope model with an interior adiabatic convective zone and an exterior radiative zone.The thermal structure is governed by base temperatureTband gasto-core ratio GCR.The envelope self-gravity move the RCB inward,changing the envelope distribution.With the increase ofTband GCR,the signature becomes more prominent.WhenTbis relatively large,the atmosphere will have a significant mass-loss.Thus,self-gravity has a greater effect on large massloss,which helps the atmosphere retain more mass.

    Giant impact is a process of recharging the planet.In the process,the kinetic energy of the impactor is converted into heat transferred to the planet.The core and envelope will be heated,determining a new planet state.This state works as the initial value of the evolutionary model constructed in Section2,and different impactor mass corresponds to different initial values and evolutionary results.For the case with/without envelope self-gravity,evolutionary results are significantly different,especially in the case of large GCR.When the impactor mass and envelope mass are roughly equal,the envelope can experience a large amount of mass-loss,and even completely remove the envelope.After adding envelope selfgravity,gas is more constrained by the planet,which puts forward a stricter demand on impactor mass.Close-in planets are more prone to mass-loss.However,distant planets are more sensitive to changes in impactor mass.While it is more difficult to experience mass-loss,it is easy to remove the envelope completely once it does.

    In addition to the atmospheric loss caused by thermal aspect,there is an atmospheric loss from impact-generated shocks(Schlichting et al.2015),which will have an effect on the envelope structure in the evolutionary process,but the mass loss caused by the thermal aspect plays a leading role,so in the paper we ignore it.We also ignore the photoevaporation(Owen&Wu2017),because,for planets with larger semimajor axes,photoevaporation is less important,and the effect is negligible compared with the mass-loss rate caused by giant impact.

    Acknowledgments

    We thank the anonymous referee for suggestions that greatly improved this paper.This work has been supported by the National Key R&D Program of China(No.2020YFC2201200),the science research grants from the China Manned Space Project(No.CMS-CSST-2021-B09 and CMS-CSST-2021-A10),and opening fund of State Key Laboratory of Lunar and Planetary Sciences(Macau University of Science and Technology)(Macau FDCT Grant No.SKL-LPS(MUST)-2021-2023).C.Y.has been supported by the National Natural Science Foundation of China(Grant Nos.11373064,11521303,11733010,and 11873103),Yunnan National Science Foundation(Grant No.Q9 2014HB048),and Yunnan Province (2017HC018).

    国产精品精品国产色婷婷| 中文字幕人妻熟人妻熟丝袜美| videossex国产| 日本 av在线| 国产一级毛片七仙女欲春2| 欧美日本视频| 精品欧美国产一区二区三| 久久久精品欧美日韩精品| 老熟妇仑乱视频hdxx| 少妇高潮的动态图| 级片在线观看| 欧美成人免费av一区二区三区| 最近最新免费中文字幕在线| 久久久久久久久久黄片| 亚洲精品亚洲一区二区| 白带黄色成豆腐渣| 九色国产91popny在线| 国产精品嫩草影院av在线观看 | 精品不卡国产一区二区三区| 国产色爽女视频免费观看| 麻豆精品久久久久久蜜桃| 午夜老司机福利剧场| 亚洲最大成人av| 成人精品一区二区免费| 亚洲精品456在线播放app | 亚洲欧美日韩东京热| 别揉我奶头 嗯啊视频| 欧美xxxx性猛交bbbb| 真人一进一出gif抽搐免费| 91在线精品国自产拍蜜月| 十八禁网站免费在线| 黄色女人牲交| 久久婷婷人人爽人人干人人爱| 日韩欧美国产一区二区入口| 国产精品国产高清国产av| 午夜久久久久精精品| 特大巨黑吊av在线直播| 亚洲欧美清纯卡通| 欧美性猛交黑人性爽| 亚洲美女黄片视频| 亚洲中文字幕一区二区三区有码在线看| 久久久久国产精品人妻aⅴ院| 天堂网av新在线| 色av中文字幕| 精品人妻熟女av久视频| 欧美成人一区二区免费高清观看| 国产精品精品国产色婷婷| 精品久久久久久久久av| 久久久久久久久久黄片| 国产主播在线观看一区二区| 欧美一区二区精品小视频在线| 色综合色国产| 淫妇啪啪啪对白视频| 99在线人妻在线中文字幕| 黄色女人牲交| 一进一出好大好爽视频| 亚洲美女视频黄频| 欧美色欧美亚洲另类二区| 欧美性猛交黑人性爽| 哪里可以看免费的av片| 男女下面进入的视频免费午夜| .国产精品久久| 看十八女毛片水多多多| 亚洲欧美日韩东京热| 成人高潮视频无遮挡免费网站| 赤兔流量卡办理| 国产在视频线在精品| 亚洲图色成人| 熟女人妻精品中文字幕| 日韩高清综合在线| 91久久精品国产一区二区成人| 欧美性感艳星| 露出奶头的视频| 精品一区二区免费观看| 色综合亚洲欧美另类图片| 久久精品夜夜夜夜夜久久蜜豆| 我的老师免费观看完整版| 国产老妇女一区| 91在线观看av| 99精品在免费线老司机午夜| 一本精品99久久精品77| 又黄又爽又刺激的免费视频.| 国内精品久久久久久久电影| 人妻少妇偷人精品九色| 最近在线观看免费完整版| 国产淫片久久久久久久久| 性插视频无遮挡在线免费观看| 亚洲av日韩精品久久久久久密| 99久久中文字幕三级久久日本| 国产主播在线观看一区二区| 黄色女人牲交| 国产精品久久久久久精品电影| 欧美日韩精品成人综合77777| 天天躁日日操中文字幕| 婷婷色综合大香蕉| 亚洲成人精品中文字幕电影| 91av网一区二区| 国产精品1区2区在线观看.| 精品一区二区三区人妻视频| 波多野结衣巨乳人妻| 国产aⅴ精品一区二区三区波| 久久草成人影院| 亚洲精品粉嫩美女一区| 国产午夜精品久久久久久一区二区三区 | 国产精品爽爽va在线观看网站| 亚洲经典国产精华液单| 国产亚洲精品av在线| 搞女人的毛片| 91狼人影院| 国产免费男女视频| 人人妻人人看人人澡| 日日摸夜夜添夜夜添小说| 可以在线观看毛片的网站| 老女人水多毛片| 国产高清三级在线| 国产 一区 欧美 日韩| 级片在线观看| 99热这里只有精品一区| 亚洲avbb在线观看| 精品午夜福利视频在线观看一区| 久久久久性生活片| x7x7x7水蜜桃| 国产成人av教育| 欧美xxxx性猛交bbbb| 乱系列少妇在线播放| 国产精品久久视频播放| 成人午夜高清在线视频| 我要搜黄色片| 在线观看美女被高潮喷水网站| 露出奶头的视频| 国产精品人妻久久久影院| 男人舔女人下体高潮全视频| 国产av在哪里看| 成人三级黄色视频| 人人妻,人人澡人人爽秒播| 亚洲美女黄片视频| 男人舔女人下体高潮全视频| 婷婷六月久久综合丁香| 久久久成人免费电影| 草草在线视频免费看| 他把我摸到了高潮在线观看| 免费av毛片视频| 亚洲熟妇熟女久久| 欧美一区二区亚洲| 最近中文字幕高清免费大全6 | 超碰av人人做人人爽久久| 欧美激情国产日韩精品一区| 精品99又大又爽又粗少妇毛片 | 欧美中文日本在线观看视频| 国产真实乱freesex| 一进一出抽搐动态| 在线免费十八禁| 日本撒尿小便嘘嘘汇集6| 91麻豆av在线| 欧美极品一区二区三区四区| 国产av一区在线观看免费| 人妻丰满熟妇av一区二区三区| 国产在线精品亚洲第一网站| 久久久久久久久中文| 亚洲va日本ⅴa欧美va伊人久久| 伦理电影大哥的女人| 999久久久精品免费观看国产| 欧美+亚洲+日韩+国产| av天堂在线播放| 黄片wwwwww| 色吧在线观看| 国产一区二区三区在线臀色熟女| 舔av片在线| 岛国在线免费视频观看| 午夜老司机福利剧场| а√天堂www在线а√下载| 男插女下体视频免费在线播放| 美女cb高潮喷水在线观看| 狂野欧美白嫩少妇大欣赏| 国产精品久久久久久久久免| 亚洲不卡免费看| 久久人妻av系列| 欧美日韩国产亚洲二区| 成年版毛片免费区| 亚洲第一区二区三区不卡| 国产三级中文精品| 午夜a级毛片| 国产黄a三级三级三级人| 一夜夜www| 色精品久久人妻99蜜桃| 毛片女人毛片| 国产亚洲精品久久久com| 91久久精品国产一区二区成人| 五月玫瑰六月丁香| av中文乱码字幕在线| 国产一区二区在线观看日韩| 亚洲美女视频黄频| 亚洲国产欧洲综合997久久,| 国产一区二区三区在线臀色熟女| 综合色av麻豆| 成人特级av手机在线观看| 欧美黑人巨大hd| 精品欧美国产一区二区三| 美女高潮的动态| 国产 一区 欧美 日韩| 国产欧美日韩精品一区二区| 亚洲国产精品合色在线| 麻豆久久精品国产亚洲av| 成人av一区二区三区在线看| 97碰自拍视频| 最新中文字幕久久久久| 国产一区二区激情短视频| 色播亚洲综合网| 三级毛片av免费| 别揉我奶头 嗯啊视频| 国产精品电影一区二区三区| 亚洲,欧美,日韩| 欧美最新免费一区二区三区| 国产高清视频在线播放一区| 午夜福利欧美成人| 男女边吃奶边做爰视频| 亚洲av熟女| 精品无人区乱码1区二区| 欧美国产日韩亚洲一区| 欧美潮喷喷水| av天堂中文字幕网| 久久久久久九九精品二区国产| 日韩中字成人| 久久久久久久久久黄片| 久久精品综合一区二区三区| 欧美zozozo另类| 一进一出抽搐动态| 色尼玛亚洲综合影院| 色综合婷婷激情| 熟女电影av网| 欧美又色又爽又黄视频| 一进一出好大好爽视频| 国产男人的电影天堂91| 草草在线视频免费看| 亚洲无线在线观看| 久久久久久大精品| 免费av毛片视频| 在线观看美女被高潮喷水网站| а√天堂www在线а√下载| 国产真实乱freesex| 欧洲精品卡2卡3卡4卡5卡区| 大又大粗又爽又黄少妇毛片口| 国产黄片美女视频| 成人av一区二区三区在线看| 成人三级黄色视频| 亚洲内射少妇av| 制服丝袜大香蕉在线| 男插女下体视频免费在线播放| 干丝袜人妻中文字幕| 午夜久久久久精精品| 国产精品人妻久久久久久| 免费人成在线观看视频色| 两性午夜刺激爽爽歪歪视频在线观看| 黄色日韩在线| 欧美+亚洲+日韩+国产| 国产精品国产三级国产av玫瑰| 久久精品影院6| 欧美成人a在线观看| 99热这里只有是精品在线观看| 亚洲在线自拍视频| 成人高潮视频无遮挡免费网站| 成人毛片a级毛片在线播放| 日韩中字成人| 天堂√8在线中文| videossex国产| 两人在一起打扑克的视频| 久久国产精品人妻蜜桃| 变态另类成人亚洲欧美熟女| 国产主播在线观看一区二区| 观看美女的网站| 色视频www国产| 中国美白少妇内射xxxbb| 日日啪夜夜撸| 亚洲无线在线观看| 精品人妻熟女av久视频| 日日摸夜夜添夜夜添小说| 麻豆久久精品国产亚洲av| 亚洲av成人av| 一本一本综合久久| 一本精品99久久精品77| 亚洲欧美日韩东京热| 男人舔女人下体高潮全视频| 欧美激情在线99| 亚洲精品456在线播放app | 不卡一级毛片| 亚洲综合色惰| 我要搜黄色片| 热99re8久久精品国产| 欧美3d第一页| 91精品国产九色| 成人av在线播放网站| 国产淫片久久久久久久久| 最近在线观看免费完整版| 别揉我奶头~嗯~啊~动态视频| 久久午夜亚洲精品久久| 精品久久久久久久末码| 亚洲国产欧洲综合997久久,| 搡女人真爽免费视频火全软件 | 两个人视频免费观看高清| 亚洲国产欧美人成| 国产成人福利小说| 久久久久久久久大av| 久久精品国产清高在天天线| 国产精品国产三级国产av玫瑰| 99热网站在线观看| 一进一出好大好爽视频| 久久婷婷人人爽人人干人人爱| 色噜噜av男人的天堂激情| 免费不卡的大黄色大毛片视频在线观看 | 国产淫片久久久久久久久| 久久草成人影院| 国产在线男女| 欧美不卡视频在线免费观看| 最好的美女福利视频网| 亚洲国产欧洲综合997久久,| 最近中文字幕高清免费大全6 | 一区二区三区免费毛片| 两人在一起打扑克的视频| 成人精品一区二区免费| 网址你懂的国产日韩在线| 日韩欧美国产一区二区入口| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品粉嫩美女一区| 最近最新免费中文字幕在线| 最近在线观看免费完整版| 国产在视频线在精品| 伦理电影大哥的女人| 18禁黄网站禁片免费观看直播| 男女边吃奶边做爰视频| 男人的好看免费观看在线视频| 国产精品久久电影中文字幕| 亚洲最大成人中文| 亚洲av中文av极速乱 | 能在线免费观看的黄片| 成人综合一区亚洲| 午夜日韩欧美国产| 国产爱豆传媒在线观看| 亚洲18禁久久av| 欧美精品国产亚洲| a在线观看视频网站| 级片在线观看| 看十八女毛片水多多多| 村上凉子中文字幕在线| or卡值多少钱| 亚洲精品影视一区二区三区av| 人妻久久中文字幕网| 一个人看的www免费观看视频| 91久久精品电影网| 国产欧美日韩精品亚洲av| 一本久久中文字幕| 久久久久精品国产欧美久久久| 国产精品久久久久久久电影| 日日撸夜夜添| 男人的好看免费观看在线视频| 中国美女看黄片| 国产av一区在线观看免费| 在线a可以看的网站| 国内揄拍国产精品人妻在线| 亚洲av一区综合| 成年女人毛片免费观看观看9| 日日摸夜夜添夜夜添av毛片 | 久久久久久久午夜电影| 日韩高清综合在线| 亚洲第一电影网av| 一级黄色大片毛片| 国产不卡一卡二| 九九热线精品视视频播放| 国产日本99.免费观看| 中文字幕高清在线视频| 国产三级中文精品| 少妇的逼好多水| 国产人妻一区二区三区在| 日本a在线网址| 成人av在线播放网站| 人妻丰满熟妇av一区二区三区| 日韩中文字幕欧美一区二区| 免费电影在线观看免费观看| 嫩草影院入口| av黄色大香蕉| 亚洲色图av天堂| 国产精品av视频在线免费观看| 欧美日韩乱码在线| 精品午夜福利视频在线观看一区| 成人永久免费在线观看视频| 18禁黄网站禁片免费观看直播| 日日干狠狠操夜夜爽| 女人被狂操c到高潮| 国产精品不卡视频一区二区| 国产精品无大码| 日本免费a在线| 欧美高清性xxxxhd video| 精品不卡国产一区二区三区| 亚洲精品色激情综合| 成年免费大片在线观看| 在线观看66精品国产| 一a级毛片在线观看| 欧美xxxx黑人xx丫x性爽| 免费一级毛片在线播放高清视频| 国产一区二区三区av在线 | 中文亚洲av片在线观看爽| 俄罗斯特黄特色一大片| 精品久久久久久久久久久久久| 日本免费一区二区三区高清不卡| 一区二区三区四区激情视频 | 五月玫瑰六月丁香| 国产69精品久久久久777片| 变态另类成人亚洲欧美熟女| 久久久久久大精品| 亚洲久久久久久中文字幕| 国产女主播在线喷水免费视频网站 | 又紧又爽又黄一区二区| 欧美精品国产亚洲| 久久精品国产99精品国产亚洲性色| 国产亚洲精品久久久久久毛片| 最近视频中文字幕2019在线8| 99久久成人亚洲精品观看| ponron亚洲| 欧美激情在线99| 国产色爽女视频免费观看| 国产精品无大码| 1024手机看黄色片| 亚洲欧美日韩东京热| АⅤ资源中文在线天堂| 极品教师在线视频| 午夜福利高清视频| 国产精品久久久久久av不卡| 麻豆一二三区av精品| 精品国产三级普通话版| 简卡轻食公司| 国产精品国产高清国产av| 国产欧美日韩精品亚洲av| 亚洲欧美精品综合久久99| 国内精品美女久久久久久| 狠狠狠狠99中文字幕| 亚洲三级黄色毛片| 午夜福利欧美成人| bbb黄色大片| 麻豆成人av在线观看| 免费大片18禁| 精品国内亚洲2022精品成人| 草草在线视频免费看| 99热这里只有是精品在线观看| 九九在线视频观看精品| 中文字幕熟女人妻在线| 久久国产精品人妻蜜桃| 国产 一区精品| 国产真实乱freesex| 女同久久另类99精品国产91| 18禁在线播放成人免费| 国产av麻豆久久久久久久| 久久这里只有精品中国| 麻豆av噜噜一区二区三区| 亚洲一区二区三区色噜噜| 亚洲国产精品成人综合色| 亚洲无线观看免费| 精品久久久久久久久av| 亚洲av电影不卡..在线观看| 神马国产精品三级电影在线观看| 午夜免费激情av| 日韩精品中文字幕看吧| 国产av不卡久久| 亚洲久久久久久中文字幕| 久久香蕉精品热| 国产精品一区二区三区四区久久| 国产国拍精品亚洲av在线观看| 国产av一区在线观看免费| 国产精品久久久久久久久免| 久久精品国产亚洲网站| 亚洲av免费高清在线观看| 午夜福利在线观看吧| 女的被弄到高潮叫床怎么办 | 国产精品三级大全| 亚洲精品乱码久久久v下载方式| 国产av在哪里看| 男人和女人高潮做爰伦理| 婷婷亚洲欧美| 嫩草影院精品99| 免费人成在线观看视频色| 久久久久久久久大av| 免费在线观看成人毛片| 身体一侧抽搐| 欧美成人一区二区免费高清观看| 欧美激情国产日韩精品一区| 亚洲精品粉嫩美女一区| 国产又黄又爽又无遮挡在线| 男人舔女人下体高潮全视频| 久久久国产成人精品二区| 12—13女人毛片做爰片一| 97热精品久久久久久| 少妇熟女aⅴ在线视频| 中文字幕熟女人妻在线| 国产精品电影一区二区三区| 丰满的人妻完整版| 国产单亲对白刺激| 男人舔奶头视频| 真人一进一出gif抽搐免费| 在线观看66精品国产| 一区二区三区四区激情视频 | 两个人视频免费观看高清| 亚洲无线观看免费| 亚洲狠狠婷婷综合久久图片| 亚洲av成人精品一区久久| 久久亚洲精品不卡| 干丝袜人妻中文字幕| 91午夜精品亚洲一区二区三区 | 亚洲精品色激情综合| 日本黄色片子视频| 国产高潮美女av| 免费观看的影片在线观看| 欧美区成人在线视频| 丝袜美腿在线中文| 搞女人的毛片| 99九九线精品视频在线观看视频| 99热这里只有是精品50| 免费看a级黄色片| 日韩精品青青久久久久久| 嫩草影院精品99| 99热这里只有是精品在线观看| 日本熟妇午夜| 久久精品国产自在天天线| 丝袜美腿在线中文| 日韩大尺度精品在线看网址| 日本与韩国留学比较| 最近最新免费中文字幕在线| 色综合色国产| 久久婷婷人人爽人人干人人爱| 日韩欧美精品免费久久| 国产激情偷乱视频一区二区| 成人三级黄色视频| 嫁个100分男人电影在线观看| 人人妻人人看人人澡| 久久精品夜夜夜夜夜久久蜜豆| 男人和女人高潮做爰伦理| 伦精品一区二区三区| 亚洲综合色惰| 国产淫片久久久久久久久| 国产免费男女视频| 日日撸夜夜添| 精品无人区乱码1区二区| 国内精品一区二区在线观看| 亚洲av美国av| 97超级碰碰碰精品色视频在线观看| 亚洲国产精品合色在线| 长腿黑丝高跟| 欧美中文日本在线观看视频| 成人特级黄色片久久久久久久| 国产精品久久久久久av不卡| 黄色一级大片看看| 久久久久久久精品吃奶| 一个人看视频在线观看www免费| 成年女人永久免费观看视频| 午夜视频国产福利| 床上黄色一级片| 尤物成人国产欧美一区二区三区| 精品一区二区免费观看| 午夜久久久久精精品| 国产主播在线观看一区二区| 老司机福利观看| 日韩一本色道免费dvd| 51国产日韩欧美| 久久热精品热| 久99久视频精品免费| 又粗又爽又猛毛片免费看| x7x7x7水蜜桃| ponron亚洲| 51国产日韩欧美| 亚洲精品在线观看二区| 亚洲人成伊人成综合网2020| 国产三级中文精品| 很黄的视频免费| 亚洲乱码一区二区免费版| 国产视频内射| 国产 一区精品| 午夜福利成人在线免费观看| avwww免费| 黄色丝袜av网址大全| 在线免费观看的www视频| 久久久精品大字幕| 国产精品一区二区三区四区久久| 99久久成人亚洲精品观看| 久久久成人免费电影| 男女那种视频在线观看| 高清日韩中文字幕在线| 男女那种视频在线观看| 波多野结衣高清作品| 成人一区二区视频在线观看| 国产成人福利小说| 中文字幕av在线有码专区| 国产一区二区三区在线臀色熟女| 色5月婷婷丁香| 国产黄色小视频在线观看| 伦精品一区二区三区| 91久久精品国产一区二区成人| 白带黄色成豆腐渣| 夜夜爽天天搞| 国产视频一区二区在线看| 国产精品嫩草影院av在线观看 | 成人国产麻豆网| 国产精品永久免费网站| 九九久久精品国产亚洲av麻豆| 老师上课跳d突然被开到最大视频| АⅤ资源中文在线天堂| 国产亚洲精品av在线| 91在线精品国自产拍蜜月| 久久精品国产亚洲av涩爱 | 三级国产精品欧美在线观看| 熟女人妻精品中文字幕| 欧美+亚洲+日韩+国产| 最新在线观看一区二区三区| 少妇丰满av| 中文在线观看免费www的网站| 国产国拍精品亚洲av在线观看| 免费av观看视频| 一个人免费在线观看电影| 国产毛片a区久久久久|