• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions

    2022-05-16 07:10:38ShanxiuXie謝善秀YongChen陳勇JunchenYe葉俊辰
    Chinese Physics B 2022年5期
    關(guān)鍵詞:陳勇見(jiàn)式反應(yīng)釜

    Shanxiu Xie(謝善秀) Yong Chen(陳勇) Junchen Ye(葉俊辰)

    Yugu Chen(陳雨谷)1, Na Peng(彭娜)1, and Chengzhuo Xiao(肖成卓)1,3,?

    1Key Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education,School of Physics and Electronics,

    Hunan University,Changsha 410082,China

    2Institute of Applied Physics and Computational Mathematics,Beijing 100094,China

    3Collaborative Innovation Center of IFSA(CICIFSA),Shanghai Jiao Tong University,Shanghai 200240,China

    Keywords: stimulated Raman scattering,Landau damping,distribution functions

    1. Introduction

    Stimulated Raman scattering(SRS),in which an incident laser decays into a scattered light wave and a Langmuir wave,is one of the most significant instabilities in inertial confinement fusion (ICF). It can not only scatter the pump energy,but also produce hot electrons,[1–3]degrading the implosion of fuel capsule.Therefore,understanding the evolution of SRS in the whole stage of laser plasma interaction, during which the distribution of plasma changes,is crucial for controlling SRS to an acceptable level.

    It is well-known and well-understood that SRS is often triggered in an equilibrium plasma, or the so-called Maxwellian distributed plasma. Research in early years was mostly based on the Maxwellian distribution functions, such as the use of fluid equations.[4–6]However,researchers found that modification of the distribution function due to nonlinear evolution of SRS has non-negligible effects on SRS. Using kinetic simulations, Vuet al.revealed that when particles are trapped, it changes the Landau damping of Langmuir wave, which then leads to an inflation of SRS.[7,8]The trapped-particle distribution function always has an plateau near the phase velocity of Langmuir wave. This modified distribution function can trigger new wave modes other than the Langmuir wave in the Maxwellian distribution, such as the beam acoustic mode(BAM)[9–11]and the electron acoustic wave(EAW),[12–16]and it also evolves to new trapping induced nonlinearities, such as nonlinear frequency shift,[7,17]modulation instability,[18,19]sideband instability,[20–23]wavefront bowing,[24]etc.

    There remain fundamental questions on the evolution of SRS in such phases, e.g., how does SRS response to these modified plasma distribution functions and what is the essential role of Landau damping acting in these processes?For Maxwellian distribution, the SRS growth rate and Landau damping are well-known. For trapped-particle distribution, there are several individual models calculating the Landau damping and explaining its role in the SRS.[36–39]However, they all applied to fluid models and no kinetic simulations are discussed. While for the bi-Maxwellian distribution,its effect on SRS is seldom studied,except that Roseet al.[40]studied the Landau damping under such distribution functions.In addition, collisions are considered to be ignored in many cases for it is always considered small. Nevertheless,in 1958,Lenardet al.were among the first works to study the effect of collisions on Landau damping using a Fokker–Planck-type equations.[41]In 1992,Epperleinet al.have shown that collisions increase the damping.[42]In 2003,Penget al.proposed that the presence of collisions in the high electron density region greatly reduces the growth of SRS.[43]These prompted us to include the collision term in this paper to consider its impact on our research.

    Therefore, in this paper we study the relationship between Raman growth and Landau damping with different distribution functions which occur in three representative stages:Maxwellian distribution representing the very early stage of SRS, flattened distribution aimed at showing effects of particle trapping, and bi-Maxwellian distribution for the very late stage. The Landau damping and growth rate are obtained through analytic solutions and kinetic Vlasov simulations.Since in a fully kinetic laser-plasma simulation,one cannot distinguish the damping from the growth behavior,we numerically solve the Vlasov–Poisson equations to find the Landau damping under different distribution functions and compare with the growth rate of SRS obtained from the Vlasov–Maxwell simulations under the same conditions.

    Generally,the Landau damping prevents SRS from growing, and thus reverse trends of Landau damping and growth rate are observed all over the simulations regardless of which plasma distribution function it is, and in agreements with our theoretical predictions. For specific distribution functions,we obtain the properties of Landau damping or growth rate on their determining quantities. For example, Landau damping decreases when increasing the width of plateau, showing the enhancement of SRS as particle trapping becomes severe.The Landau damping in a bi-Maxwellian distribution function is more complicated, which depends on the choice of hotelectron temperature and hot-electron fraction.It shows a constantly increasing of Landau damping when the hot-electron fraction increases and a maximum damping existing at an optimal hot-electron temperature. In addition, we also study the effect of collisional damping on the whole damping and growth rate.

    This paper is organized as follows. In Section 2,we give the theoretical derivations of Landau dampings and growth rates under three different distribution functions and the basis of our Vlasov simulations. Then we illustrate how to obtain the simulated Landau damping and growth rates in Section 3. In Section 4,the analytic Landau damping is compared with the simulation results from electrostatic Vlasov simulation,and Section 5 shows the numerical studies of the relationship between Landau damping and Raman growth rate under different distribution functions. Effects of collisional damping on the whole damping and growth rate are discussed in Section 6. Lastly,conclusions are given in Section 7.

    2. Theoretical and numerical basis

    2.1. Landau damping

    When a Langmuir wave propagates in the collisionless plasma, particles with velocity close to the phase velocity of Langmuir wave will be resonant with the wave. Those with velocities higher than the phase velocity give excess energy to the wave, while those with velocities lower than the phase velocity gain energy from the wave. Therefore, if more resonant particles have velocities lower than the phase velocity,the total energy of the wave will decrease, which is the so-called Landau damping. Landau damping can be analyzed using the linearized Vlasov–Poisson theory. According to the standard procedure,[44]the dispersion relation of a electrostatic wave in a Vlasov–Poisson plasma is

    whereDRandDIare the real and imaginary parts ofD(ω,k),andωRis the solution ofDR(ωR,k)=0. This shows that Landau damping is related to the derivative of the velocity distribution function. Therefore, we can substitute different distribution functions into the above formula to get their Landau dampings.

    The most common velocity distribution is the Maxwellian distribution, which is seen in the equilibrium plasma. Its distribution function is presented in Eq. (3). Substituting it into Eqs.(1)and(2), the Landau damping under Maxwellian distribution is given by

    2.2. Raman growth rate

    The process of SRS satisfies the three-wave coupling equations. As is well-known, the kinetic dispersion relation of SRS is obtained by solving the linearized three-wave coupling equations in the kinetic regime,[4,10]

    水合物的生成速率R(Rate)表示反應(yīng)釜內(nèi)甲烷水合物生成的快慢程度,可以用單位時(shí)間內(nèi)甲烷的消耗量表征,見(jiàn)式(2)。

    is the undamped growth rate under the Maxwellianian velocity distribution.

    Equation (10) shows that the Raman growth rate is anticorrelated with the magnitude of Landau damping. Moreover,we can substitute the Landau dampings of different distribution functions into the formula to obtain the approximate Raman growth rates.

    2.3. Vlasov solver

    The simulations are performed through a Vlasov code.Considering a one-dimensional case and assuming laser propagates along thexdirection, the following equations can be used to describe the kinetic interactions between laser and plasma. They are the Vlasov equation, Maxwell’s equation,Poisson equation and momentum equation,

    Equation(11)withBz=0 and Eq.(13)form our numerical basis of studying the Landau damping,and Eqs.(11),(12),and(14)constitute the basic equations of SRS.Also,note that although collisional damping is included in the solver (right hand side (RHS) of Eq. (11)), we neglect it during most of the time to study the non-collisional cases. In Section 6, we include this term to discuss the growth and damping with collisional effect under consideration.

    3. Data processing

    Note that in a fully kinetic laser-plasma simulation, one cannot distinguish the damping from the growth behavior.Therefore, two types of Vlasov simulations are implemented to study the relationship between the Landau damping of Langmuir wave and the Raman growth under various distributions. A Vlasov–Maxwell or electromagnetic Vlasov code is used to measure the growth rate of SRS extracted from the reflectivity,and a Vlasov–Poisson or electrostatic Vlasov code is used to obtain the Landau damping of Langmuir wave under the same condition of electromagnetic simulation. Here the same condition means that the Langmuir wave exited by SRS is the right wave in electrostatic Vlasov simulation, sokλDof the Langmuir waves in both simulations must keep the same. There are some fixed parameters in our electromagnetic Vlasov code. The number of total space grids isNx=6000,and L=95.5λpumpis the scale of plasma with the wave length of pump laserλpump=351 nm. The space grids of speed isNυ=256 and the maximum speed of electronυmax=0.8c,step size of time is dt=0.1ω0-1and the total length of time isNt=100000dt.

    Figure 1 shows typical data from our electrostatic and electromagnetic Vlasov simulations. The Landau damping is measured from the slope of the initially decreasing logarithm of the electrostatic field as shown in Fig. 1(a). Similarly, we take a logarithm of the SRS reflectivity and measure the slope of its linear part as shown in Fig. 1(b). Since the reflectivity represents field energy which is the square of the amplitude,the amplitude growth rate is half the slope of logarithm of the reflectivity. Both of the damping and growth rates are measured in the linear stage. In addition, we have also evaluated the average reflectivity through averaging the linear part of reflectivity in Fig.1(b).

    Fig. 1. (a) Plot of logarithmic electrostatic field with bi-Maxwellian distribution at υce =1, kλD =0.2911, Th/Tc =5 and f =0.06. (b)Plot of logarithmic SRS reflectivity with Ipump =2.5×1015 W/cm2,Tc =2.5 keV, ne =0.12nc, kλD =0.2911, Th/Tc =5, and f =0.06.The growth rate is measured from the slope of the red line.

    4. Verification of analytic Landau damping rate through Vlasov simulation

    The comparison of analytic Landau damping and simulated results are shown in Fig.2. Figure 2(a)shows the images of the Maxwellian distribution, flattened distribution, and bi-Maxwellian distribution evaluated from the Eqs.(3), (5), and(7).Compared with the Maxwellian distribution,the other two distributions have a large fraction of electrons with higher velocities.

    Figure 2(b) demonstrates the dependence of Landau damping onkλDunder the Maxwellian distribution. The subscript n, t, and s represent the Landau damping obtained from numerically solving the dispersion relation by using the Hilbert transform (HT) and fast Fourier transform (FFT),[56]analytic formula, and Vlasov simulations, respectively. As is seen, three curves match and show that the Landau damping increases withkλD. The numerical solution is close to the simulated solution, but the theoretical value is slightly higher since the analytic formula(Eq.(4))is not accurate forkλD?0.3.

    Figure 2(d) presents the Landau damping under the bi-Maxwellian distribution varying with differentkλD. The trend that Landau damping increases zigzag is the same as the three curves, while with the increase ofkλD, the gap between the theoretical curve and the other two curves becomes larger since the parameter 12(kλD)2B2now exceeds the limit of being a small parameter.[40]

    Fig.2. (a)Velocity distributions. M means Maxwellian velocity distribution. F means flattened distribution with υp =3.3411υte, Δυ =υte,and Bi-M means bi-Maxwellian distribution with f =0.05,Th/Tc=10.(b)Landau damping under Maxwellian velocity distribution,where νn,νt, and νs represent the numerical solution, theoretical solution, and simulated solution, respectively. (c) Landau damping under flattened distribution with Δυ =υte. (d) Landau damping under bi-Maxwellian velocity distribution with f =0.05,Th/Tc=10.

    5. Relationship between Raman growth and Landau damping

    5.1. Maxwellian distribution

    Both Landau damping and Raman growth in a Maxwellian distribution have been well studied, and here we evaluate these quantities to compare with other distributions.Figure 3 is a plot of analytic and simulated Raman growth rate, obtained from Eq. (10) and the electromagnetic Vlasov code, respectively. Here, the laser intensity isIpump=2.5×1015W/cm2, wavelength is 351 nm, and plasma density isne=0.12nc. In order to show the dependence of growth rate onkλD, we change the electron temperatureTefrom 1.2 keV to 5.3 keV.It is observed that two curves match very well and the growth rate decreases withkλD. This is consistent with Eq. (10) such that the growth rate is reverse to the trend of Landau damping. It also verifies the mitigation effect of Landau damping on the Raman growth.

    Fig. 3. Growth rate: γt means theoretical growth rate, γs means simulated growth rate. The parameters are Ipump = 2.5×1015 W/cm2,ne=0.12nc,and Te,from 1.2 keV to 5.3 keV.

    5.2. Flattened distribution

    For the flattened distribution,we change the width of the plateau to see how the plateau width affects SRS and to reveal the effect of particle trapping. The Landau damping in Fig.4(a)is obtained using the electrostatic Vlasov code. Figures 4(b) and 4(c) show the dependences of Raman growth rate and average reflectivity, respectively, on the width of the plateau using the electromagnetic Vlasov code.

    Fig. 4. (a) The Landau damping, (b) Raman growth rate, and (c)average reflectivity. The electromagnetic parameters used here are Ipump=2.5×1015 W/cm2 and Te=2.5 keV.The densities of the electron are 0.1nc, 0.12nc, 0.14nc and 0.16nc to have kλD =0.33, 0.29,0.26,and 0.23,respectively.

    As the plateau width increases from 0.1υteto 1.4υte, the Landau damping decreases, leading to the increasing growth rate and average reflectivity. The increase of the plateau width essentially comes from the increase of the resonant particles whose velocities are greater than the phase velocity,therefore Landau damping decreases and,according to Eq.(10),the Raman growth increases.WhenkλD?0.26,the Landau damping is too small to measure and is therefore not given here. At the same time, it is observed that the average reflectivity and the growth rate at smallkλDdo not change much because Landau damping at smallkλDhas no significant influence. When we compare these curves with differentkλD, it is shown that in the largekλDregime, the Raman growth is more sensitive to the plateau width, and the trends ofkλDis consistent with Fig.2(c).

    In the cases ofkλD>0.29 and Δυ>0.8υtewith fixedIpumpandTe,we find a strange phenomenon: as the growth rate increases with the width of plateau, the average reflectivity decreases reversely. We present the evolutions of two reflectivities in Fig. 5, where (a)kλD=0.33, Δυ=0.8υte, and (b)kλD=0.33, Δυ=1.4υte. Although growth rate in (b) is indeed higher, it saturates quickly, while the growth in (a) suffers from two-stage growth and it finally has a higher average reflectivities. The behavior reminds us that distribution with larger plateau width would excite new eigenmodes in plasma,[9,12]and can detune the SRS,[9]which may attribute to this quick saturation. The discussion proves the fact that particle trapping can enhance the level SRS,while opposite effects tranquilizing the SRS could set in when the trapping width is large enough.

    Fig. 5. Plot of SRS reflectivity with (a) Δυ =0.8υte, and (b) Δυ =1.4υte. The parameters used here are Ipump =2.5×1015W/cm2, Tc =2.5 keV,ne=0.1nc and kλD=0.33.

    5.3. Bi-Maxwellian distribution

    Next,the effect of bi-Maxwellian distribution on the Raman growth is studied. In Fig. 6(a), the bi-Maxwellian distributions of different hot-to-cold electron temperature ratios are plotted with a fixed hot-electron fraction,f=0.06,and it is observed that the fraction of resonant particles with higher velocity increases with this ratio,but the cold bulk is not sensitive to the quantity. In Fig. 6(b), distributions of different hot-electron fractions are drawn with a fixed hot-to-cold electron temperature ratio,Th/Tc=10,and the fraction of resonant particles with higher velocity increases with hot-electron fraction.

    First, we show the Landau damping and Raman growth with different hot-to-cold electron temperature ratios. Figures 7(a), 7(c), and 7(e) show the dependences of Landau damping, Raman growth rate, and average reflectivity onTh/Tc.The three curves are plotted with differentkλDobtained by changingneat a fixedf=0.06.Figures 7(b),7(d),and 7(f)show the same contents and plot three curves with differentfat a fixedkλD=0.2911. In our Vlasov–Maxwell simulations,Ipump=2.5×1015W/cm2andTc=2.5 keV. Different electron densities are used to changekλDin Figs.7(c)and 7(e).

    Fig. 6. (a) Bi-Maxwellian distributions of different Th/Tc and a fixed f =0.06. (b) Bi-Maxwellian distributions of different f and a fixed Th/Tc=10.

    These curves have similar peak shapes where Landau damping increases rapidly and then decreases slowly with the hot-to-cold electron temperature ratio. Correspondingly, the Raman growth rate and average reflectivity are reverse to the trend of Landau damping.We can also observe that the turning point of the Landau damping and Raman growth rate slightly changes withkλDandfnearTh/Tc≈7. The critical point that makes growth rate or damping reach extreme value can be captured by the analytic formula of Landau damping. Figure 8 shows the derivative of Eq.(8)with different(a)kλDand(b)f. As is shown,the turning point(diff(|ν/ωpe|)=0)slightly decreases withkλD,and is a constant when changingf,which agree with our simulation results. The value of turning point is slightly smaller than the simulated result maybe due to the inaccuracy between theory and simulation. Since there is a negative correlation between the Landau damping and Raman growth rate,this shows that,when hot-electron temperature is about 7 times of the initial temperature, the growth of SRS is minimum. The hot-electron temperature detected by experiments is about 15 keV to 100 keV,[58]which is within the range our discussion, andThwith maximum damping is about 17.5 keV(Tc=2.5 keV),which could be a possible hotelectron temperature in the real experiments.

    Second, we discuss the relationship between Landau damping and growth rate with different hot-electron fractions. Figures 9(a), 9(c), and 9(f) show the dependences of Landau damping,Raman growth rate,and average reflectivity onf,with a fixedTh/Tc=10,while Figs.9(b),9(d),and 9(f)show the corresponding contents with a fixedkλD=0.2911.The electromagnetic parameters used here areIpump=2.5×1015W/cm2andne=0.12nc. We obtain differentkλDby changing the electron temperature in Figs.9(c)and 9(e).

    Fig.7. The Landau damping[(a),(b)],growth rate[(c),(d)],and average reflectivity[(e),(f)]as a function of Th/Tc. We use Ipump=2.5×1015 W/cm2 and Tc=2.5 keV in electromagnetic simulations. In(c)and(e), f =0.06 is a constant. In(d)and(f),we change f,but keep a fixed kλD=0.2911.

    For the general trend,the Landau damping increases with the hot-electron fraction. The growth rate and average reflectivity have the same trend, which decreases with the hotelectron fraction. It can be seen from Figs. 9(c)–9(f) that growth rates and average reflectivities gradually approach to small values with increasing the hot-electron fraction, which indicates that large fraction of the hot electrons is good for mitigation of SRS.

    Fig.8. Derivative of Eq.(10)for different(a)kλD and(b) f.

    Fig.9. The Landau damping[(a),(b)],growth rate[(c),(d)],average reflectivity[(e),(f)]as a function of f. We use Ipump=2.5×1015 W/cm2 and ne=0.12nc in electromagnetic simulations. Th/Tc=10 is a constant in(c)and(e). In(d)and(f),we change Th/Tc,but keep a fixed kλD=0.2911 with Tc=2.5 keV.

    6. Comparison between collisional and noncollisional cases

    So far the simulations above are non-collisional, since collisional damping under these parameters is relatively small.As is well known, the collision damping rate depends on the electron temperature, density, as well as the ion charge state,some studies have found that the effect of the collisional damping is important to SRS at particular parameters.[43,47,48]Therefore, here we turn on the collisional term on the righhand side of Eq.(11)to see if it is important. The results with and without collisional damping are compared in this section.Table 1 lists the dampings and growth rates under three different distribution functions whenTe=2.5 keV,Z=1 andne=0.12nc. Here,νLCandγLCrepresent the damping and growth rates with collisional damping and Landau damping,whileνandγare the non-collisional ones. From the data,we know that under such parameters, the electron-ion collisional damping is on the order of 10-4,which is so small compared with the non-collisional damping and growth rate.

    Table 1. Comparison of damping and growth rate under different distribution functions with or without collision. Ipump = 2.5×1015 W/cm2,Te =2.5 keV, Z =1, ne =0.12nc and lnΛ=9.88 in electromagnetic simulations, kλD=0.2911 in electrostatic simulations. Δυ =0.6υte in flattened distribution,and for bi-Maxwellian distribution Th/Tc=15 and f =0.0.

    Fig. 10. Growth rate of SRS with intensity of Ipump = 2.5×1015 W/cm2, Z = 1 and wavelength of 0.351 μm. (a) The change of growth rate with temperature under the flattened distribution of Δυ=0.6υte.(b)The change of the growth rate with the electron density under the bi-Maxwellian distribution of f =0.06,Th/Tc=30.

    To further illustrate the effects of collisional damping,we change the collision-related quantities, electron temperature and density, and keep the ion charge state beingZ=1. Here only the growth rates of SRS are plotted. Figure 10(a)shows the growth rate with and without collisional damping under the flattened distribution as a function of electron temperature.As temperature goes up, the growth rate decreases due to the increase ofkλDas presented in Fig.2(c). Since the collisional damping is large when electron temperature is small,large decline in the growth rate is observed. Figure 10(b) shows the dependence of growth rate on the electron density under the bi-Maxwellian distribution. The trend of growth rate is precisely reversed to the trend of Landau damping shown in Fig. 2(d)(largenemeans smallkλD). When increasing the electron density, we observe a slightly greater impact on the growth rate due to the increasing collisional damping. Overall, this analysis show that,under our parameters,collisional damping is only responsible for a slight modification on the results.

    7. Conclusions

    In summary, the Vlasov simulation results of Landau damping and Raman growth rate well match with the theory.It is revealed that the distribution function has a great influence on Landau damping,and thus on SRS.The growth rate is basically consistent with the trend of average reflectivity,while the Landau damping is roughly reverse to that trend. This means that we can reduce SRS by increasing the Landau damping.The detailed analyses show us the behavior of Landau dampings on different quantities such as the width of plateau and hot electrons. It gives us not only a deeper understanding of SRS in the whole stage of laser-plasma interaction,but also a possible way to mitigate SRS through manipulating these quantities to a high Landau damping regime.

    Acknowledgements

    This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDA25050700),the National Natural Science Foundation of China(Grant Nos.11805062,11875091 and 11975059),the Science Challenge Project (Grant No. TZ2016005), and the Natural Science Foundation of Hunan Province,China(Grant No.2020JJ5029).

    猜你喜歡
    陳勇見(jiàn)式反應(yīng)釜
    高速公路下穿既有鐵路橋橋墩基底承載力驗(yàn)算*
    低溫下船用鋼材彈塑性曲線研究
    河南科技(2023年1期)2023-02-11 12:17:04
    貴溪冶煉廠臥式反應(yīng)釜自動(dòng)控制方法的研究
    橋(門)式起重機(jī)起升機(jī)構(gòu)高速浮動(dòng)軸設(shè)計(jì)
    二氟乙酰氯在含氟醫(yī)藥中的應(yīng)用進(jìn)展
    改進(jìn)PID在反應(yīng)釜溫度控制系統(tǒng)中的應(yīng)用研究
    對(duì)于反應(yīng)釜機(jī)械密封失效與改造的分析
    Symmetry Analysis and Exact Solutions of the 2D Unsteady Incompressible Boundary-Layer Equations?
    In fluence of Cell-Cell Interactions on the Population Growth Rate in a Tumor?
    某反應(yīng)釜進(jìn)料加熱器管板的應(yīng)力和疲勞分析
    99久国产av精品国产电影| 久久久国产成人精品二区| 亚洲人成网站高清观看| 特级一级黄色大片| 欧美日本亚洲视频在线播放| 亚洲精品国产成人久久av| 欧美xxxx黑人xx丫x性爽| 成人av在线播放网站| 久久精品国产亚洲av天美| 久久精品国产亚洲av涩爱 | 99热网站在线观看| 97热精品久久久久久| 国产精品伦人一区二区| 国产成人freesex在线 | 国产在线精品亚洲第一网站| 婷婷亚洲欧美| 国产精品av视频在线免费观看| 美女xxoo啪啪120秒动态图| 亚洲欧美中文字幕日韩二区| 国产在线精品亚洲第一网站| 国产高清视频在线播放一区| 九色成人免费人妻av| 春色校园在线视频观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲,欧美,日韩| 97碰自拍视频| 最近视频中文字幕2019在线8| 成人av在线播放网站| 亚洲在线观看片| 国产熟女欧美一区二区| 国产高清视频在线观看网站| 一进一出抽搐动态| 亚洲成av人片在线播放无| 欧美一区二区精品小视频在线| 99热只有精品国产| 99久国产av精品国产电影| 久久久a久久爽久久v久久| 插逼视频在线观看| 黑人高潮一二区| 一边摸一边抽搐一进一小说| av在线老鸭窝| 人妻夜夜爽99麻豆av| 亚洲av免费在线观看| 成人无遮挡网站| 国产久久久一区二区三区| 日韩国内少妇激情av| 人人妻人人澡欧美一区二区| 丰满乱子伦码专区| 美女内射精品一级片tv| 国产成人a∨麻豆精品| 久久精品国产亚洲av涩爱 | 波野结衣二区三区在线| 日韩av不卡免费在线播放| 高清日韩中文字幕在线| av在线天堂中文字幕| 国产精品久久视频播放| 中出人妻视频一区二区| 成人美女网站在线观看视频| 看免费成人av毛片| 国产精品伦人一区二区| 国产伦精品一区二区三区视频9| 丰满的人妻完整版| 久久久精品94久久精品| av视频在线观看入口| 国产人妻一区二区三区在| 亚洲美女视频黄频| 变态另类丝袜制服| 亚洲精品国产成人久久av| 久久久久国内视频| 99热6这里只有精品| 天堂影院成人在线观看| 搡老熟女国产l中国老女人| 国产老妇女一区| 亚洲乱码一区二区免费版| 国产精品人妻久久久影院| 性插视频无遮挡在线免费观看| 久久99热6这里只有精品| 青春草视频在线免费观看| 一个人看的www免费观看视频| av中文乱码字幕在线| 免费不卡的大黄色大毛片视频在线观看 | 91狼人影院| 免费观看在线日韩| 美女免费视频网站| 国产精品一区二区三区四区久久| 亚洲精品国产成人久久av| 日韩av在线大香蕉| 国产中年淑女户外野战色| 国产av一区在线观看免费| av专区在线播放| 国产精品一区二区三区四区免费观看 | 亚洲美女视频黄频| 午夜亚洲福利在线播放| 六月丁香七月| 97超级碰碰碰精品色视频在线观看| 亚洲图色成人| 国产精品电影一区二区三区| 亚洲欧美日韩东京热| av天堂中文字幕网| 大型黄色视频在线免费观看| 黄片wwwwww| 国产一区二区亚洲精品在线观看| 91久久精品国产一区二区成人| 日韩欧美精品免费久久| 亚洲成人久久爱视频| 亚洲精品乱码久久久v下载方式| 成人美女网站在线观看视频| 亚洲专区国产一区二区| 蜜臀久久99精品久久宅男| 九九久久精品国产亚洲av麻豆| 国产精品爽爽va在线观看网站| 亚洲欧美清纯卡通| 欧美另类亚洲清纯唯美| 亚洲无线观看免费| 国内少妇人妻偷人精品xxx网站| 精华霜和精华液先用哪个| 亚洲av免费在线观看| 亚洲av一区综合| 亚洲av免费高清在线观看| 亚洲一区高清亚洲精品| 日韩一区二区视频免费看| 午夜福利在线观看免费完整高清在 | 麻豆一二三区av精品| 国产黄片美女视频| 看十八女毛片水多多多| 白带黄色成豆腐渣| 身体一侧抽搐| 18禁黄网站禁片免费观看直播| 麻豆久久精品国产亚洲av| 国产午夜精品久久久久久一区二区三区 | 白带黄色成豆腐渣| 内射极品少妇av片p| 两性午夜刺激爽爽歪歪视频在线观看| 91在线观看av| 成人精品一区二区免费| 在线国产一区二区在线| 亚洲经典国产精华液单| 久久欧美精品欧美久久欧美| 国内揄拍国产精品人妻在线| 日韩精品有码人妻一区| 亚洲综合色惰| 欧美日本亚洲视频在线播放| 91麻豆精品激情在线观看国产| 一个人免费在线观看电影| 一边摸一边抽搐一进一小说| 欧美成人免费av一区二区三区| 看黄色毛片网站| 国产精品久久久久久久电影| 亚洲成人中文字幕在线播放| 国产精品三级大全| 中国美女看黄片| 最近在线观看免费完整版| 日本欧美国产在线视频| 色视频www国产| 国产在线精品亚洲第一网站| 免费av不卡在线播放| 小说图片视频综合网站| 一级黄色大片毛片| 亚洲精品一卡2卡三卡4卡5卡| 2021天堂中文幕一二区在线观| 日韩欧美一区二区三区在线观看| 校园人妻丝袜中文字幕| 久久精品夜色国产| 国产精品人妻久久久久久| 欧美一区二区精品小视频在线| 国产成人福利小说| avwww免费| 校园人妻丝袜中文字幕| 一级av片app| 亚洲性久久影院| 亚洲欧美日韩无卡精品| 深爱激情五月婷婷| 乱系列少妇在线播放| 精品久久久久久久久久久久久| 国产白丝娇喘喷水9色精品| 日韩精品有码人妻一区| 一边摸一边抽搐一进一小说| 欧美国产日韩亚洲一区| 日韩国内少妇激情av| av天堂在线播放| 99热只有精品国产| 免费观看的影片在线观看| 成人二区视频| 国产毛片a区久久久久| 亚洲欧美精品自产自拍| 色噜噜av男人的天堂激情| 亚洲精品国产成人久久av| 久久久久九九精品影院| 亚洲一区高清亚洲精品| 国产伦一二天堂av在线观看| 久久久午夜欧美精品| 亚洲无线在线观看| 亚洲无线在线观看| 国产av不卡久久| 亚洲七黄色美女视频| 久久韩国三级中文字幕| 亚洲美女搞黄在线观看 | 午夜福利在线在线| 高清日韩中文字幕在线| 国产成人a∨麻豆精品| 欧美色视频一区免费| 一级黄片播放器| 亚洲中文日韩欧美视频| 久久热精品热| 亚洲熟妇熟女久久| 国产人妻一区二区三区在| av专区在线播放| 在线免费观看的www视频| 色av中文字幕| 三级经典国产精品| 五月玫瑰六月丁香| 蜜桃亚洲精品一区二区三区| 麻豆久久精品国产亚洲av| 成人漫画全彩无遮挡| 日本三级黄在线观看| 国产亚洲精品久久久久久毛片| 一级毛片电影观看 | 亚洲美女视频黄频| 99热全是精品| 亚洲国产高清在线一区二区三| 亚洲无线在线观看| 又黄又爽又刺激的免费视频.| 久久久国产成人免费| 内射极品少妇av片p| 国产精品国产三级国产av玫瑰| 国产精品一区www在线观看| 亚洲最大成人中文| 国产一区二区亚洲精品在线观看| 午夜久久久久精精品| 久久久午夜欧美精品| 亚洲婷婷狠狠爱综合网| 国产精品亚洲美女久久久| 91麻豆精品激情在线观看国产| 秋霞在线观看毛片| 三级男女做爰猛烈吃奶摸视频| 麻豆国产97在线/欧美| 极品教师在线视频| 在线观看av片永久免费下载| 18禁裸乳无遮挡免费网站照片| 国产伦精品一区二区三区四那| 亚洲成人中文字幕在线播放| 非洲黑人性xxxx精品又粗又长| 色综合色国产| av在线天堂中文字幕| 老师上课跳d突然被开到最大视频| 人人妻,人人澡人人爽秒播| 免费搜索国产男女视频| 91在线观看av| 麻豆国产97在线/欧美| 亚洲久久久久久中文字幕| 欧美一区二区精品小视频在线| 丝袜美腿在线中文| 91狼人影院| 亚州av有码| 亚洲一区高清亚洲精品| ponron亚洲| 丝袜美腿在线中文| 91狼人影院| 精品午夜福利在线看| 精品日产1卡2卡| 亚洲成人久久性| 亚洲欧美日韩卡通动漫| 欧美高清成人免费视频www| www.色视频.com| 国产亚洲欧美98| 永久网站在线| 18禁在线无遮挡免费观看视频 | 成人午夜高清在线视频| 欧美日本视频| 亚洲av成人av| 尤物成人国产欧美一区二区三区| 3wmmmm亚洲av在线观看| 免费在线观看成人毛片| 麻豆久久精品国产亚洲av| 日韩av在线大香蕉| 一个人看视频在线观看www免费| 99热只有精品国产| 欧美国产日韩亚洲一区| www日本黄色视频网| 别揉我奶头~嗯~啊~动态视频| 少妇高潮的动态图| av在线天堂中文字幕| 午夜精品一区二区三区免费看| 精华霜和精华液先用哪个| 能在线免费观看的黄片| 免费看日本二区| 久久久久久久午夜电影| 成人国产麻豆网| 国产一区二区三区av在线 | 精品久久久久久成人av| 国产大屁股一区二区在线视频| 精品久久久久久久久久免费视频| 欧美高清成人免费视频www| 亚洲av五月六月丁香网| 欧美最新免费一区二区三区| 1000部很黄的大片| 男女做爰动态图高潮gif福利片| 精品久久国产蜜桃| 亚洲欧美日韩卡通动漫| 欧美成人一区二区免费高清观看| av女优亚洲男人天堂| 最新在线观看一区二区三区| 国产v大片淫在线免费观看| 人妻丰满熟妇av一区二区三区| 亚洲欧美成人精品一区二区| 搞女人的毛片| 波野结衣二区三区在线| 亚洲自拍偷在线| 十八禁网站免费在线| 夜夜爽天天搞| 波多野结衣高清作品| 麻豆久久精品国产亚洲av| 特大巨黑吊av在线直播| aaaaa片日本免费| 免费不卡的大黄色大毛片视频在线观看 | 中文字幕熟女人妻在线| 日韩成人av中文字幕在线观看 | 日韩在线高清观看一区二区三区| 欧美区成人在线视频| av在线蜜桃| a级一级毛片免费在线观看| 一级av片app| 干丝袜人妻中文字幕| 欧美成人一区二区免费高清观看| 免费观看的影片在线观看| 蜜桃亚洲精品一区二区三区| 老师上课跳d突然被开到最大视频| 可以在线观看毛片的网站| 91在线观看av| 亚洲国产高清在线一区二区三| 国产一区二区三区av在线 | 色综合色国产| 久久久久久久久久成人| 欧美日韩综合久久久久久| 91午夜精品亚洲一区二区三区| 精品免费久久久久久久清纯| 搞女人的毛片| 天美传媒精品一区二区| 搡老熟女国产l中国老女人| 国产一区二区激情短视频| 国产 一区 欧美 日韩| 黄片wwwwww| 性欧美人与动物交配| 日日啪夜夜撸| a级毛色黄片| 久久热精品热| 日韩 亚洲 欧美在线| 亚洲电影在线观看av| 18禁在线无遮挡免费观看视频 | 久久国内精品自在自线图片| 亚洲国产高清在线一区二区三| 一区二区三区免费毛片| 变态另类成人亚洲欧美熟女| 国产成人a∨麻豆精品| 少妇熟女aⅴ在线视频| 免费观看人在逋| 在线播放无遮挡| a级毛片免费高清观看在线播放| 淫妇啪啪啪对白视频| 99热网站在线观看| 最近最新中文字幕大全电影3| 精品一区二区免费观看| 别揉我奶头 嗯啊视频| 最新中文字幕久久久久| 高清毛片免费看| 色噜噜av男人的天堂激情| 中出人妻视频一区二区| 久久精品国产自在天天线| 国产精品久久久久久久久免| 亚洲国产精品sss在线观看| 少妇熟女欧美另类| 亚洲乱码一区二区免费版| 久久久久性生活片| 色在线成人网| 欧美成人免费av一区二区三区| 麻豆一二三区av精品| 国产一级毛片七仙女欲春2| 卡戴珊不雅视频在线播放| 国产免费男女视频| 校园人妻丝袜中文字幕| 日韩精品中文字幕看吧| 91久久精品国产一区二区成人| 亚洲色图av天堂| 日韩成人av中文字幕在线观看 | 嫩草影院入口| 国产精品亚洲一级av第二区| 国产精华一区二区三区| 99久久久亚洲精品蜜臀av| 成人av在线播放网站| 日本免费一区二区三区高清不卡| 最近2019中文字幕mv第一页| av在线观看视频网站免费| 97超级碰碰碰精品色视频在线观看| 神马国产精品三级电影在线观看| 女人被狂操c到高潮| 一级a爱片免费观看的视频| 老司机福利观看| 成人国产麻豆网| 国内久久婷婷六月综合欲色啪| 日日撸夜夜添| 国产探花在线观看一区二区| 国产一区二区在线av高清观看| 成人精品一区二区免费| 免费观看人在逋| 看免费成人av毛片| 久久午夜福利片| 国产视频一区二区在线看| 美女cb高潮喷水在线观看| 日本黄大片高清| 好男人在线观看高清免费视频| 悠悠久久av| 日韩 亚洲 欧美在线| 神马国产精品三级电影在线观看| 国产精品伦人一区二区| 国产伦精品一区二区三区视频9| 国产在视频线在精品| 高清日韩中文字幕在线| 免费人成在线观看视频色| 精品久久久久久久久av| av在线亚洲专区| 最近中文字幕高清免费大全6| 国产精品一区二区三区四区免费观看 | 色av中文字幕| 日本五十路高清| 亚洲精品国产av成人精品 | 成人特级av手机在线观看| 热99re8久久精品国产| 久久久久免费精品人妻一区二区| 久久精品国产自在天天线| 可以在线观看的亚洲视频| 国产激情偷乱视频一区二区| 欧美一区二区国产精品久久精品| 特级一级黄色大片| 日韩成人av中文字幕在线观看 | 国产精品日韩av在线免费观看| 天堂av国产一区二区熟女人妻| 91久久精品国产一区二区三区| 色5月婷婷丁香| 两个人视频免费观看高清| 婷婷精品国产亚洲av| 男人的好看免费观看在线视频| 欧洲精品卡2卡3卡4卡5卡区| 国产蜜桃级精品一区二区三区| 最近最新中文字幕大全电影3| 国产亚洲91精品色在线| 亚洲国产日韩欧美精品在线观看| 亚洲av第一区精品v没综合| 欧美激情久久久久久爽电影| 男插女下体视频免费在线播放| 国内精品美女久久久久久| 简卡轻食公司| 精品人妻视频免费看| 亚洲美女搞黄在线观看 | 中文字幕av在线有码专区| 欧美日韩乱码在线| 女同久久另类99精品国产91| 熟女人妻精品中文字幕| 国产三级在线视频| 如何舔出高潮| 97超视频在线观看视频| 亚洲三级黄色毛片| 亚洲性夜色夜夜综合| 日本熟妇午夜| 日本一二三区视频观看| 天天躁夜夜躁狠狠久久av| 性欧美人与动物交配| 菩萨蛮人人尽说江南好唐韦庄 | 国产淫片久久久久久久久| 神马国产精品三级电影在线观看| 成人亚洲精品av一区二区| 美女黄网站色视频| 18+在线观看网站| 91在线精品国自产拍蜜月| 变态另类成人亚洲欧美熟女| 国产精品一区www在线观看| 亚洲成人精品中文字幕电影| 日韩欧美国产在线观看| 长腿黑丝高跟| 联通29元200g的流量卡| 亚洲成人精品中文字幕电影| 国产私拍福利视频在线观看| 精品午夜福利视频在线观看一区| 天天躁夜夜躁狠狠久久av| 99久国产av精品国产电影| 黄色日韩在线| 91在线精品国自产拍蜜月| 国产精品99久久久久久久久| 俄罗斯特黄特色一大片| 亚洲av中文字字幕乱码综合| 国产精品,欧美在线| 校园春色视频在线观看| 亚洲精品成人久久久久久| 美女高潮的动态| 亚洲真实伦在线观看| 久久精品国产亚洲网站| 22中文网久久字幕| 精品一区二区三区视频在线| 麻豆久久精品国产亚洲av| 午夜精品在线福利| 日本成人三级电影网站| 亚洲五月天丁香| 亚洲av二区三区四区| 美女内射精品一级片tv| 国产黄片美女视频| 亚洲精品影视一区二区三区av| 黄色日韩在线| 99riav亚洲国产免费| 久久久久久九九精品二区国产| 老司机午夜福利在线观看视频| 日韩欧美三级三区| 亚洲,欧美,日韩| 亚洲精品国产av成人精品 | 日韩 亚洲 欧美在线| 少妇丰满av| 联通29元200g的流量卡| 两个人视频免费观看高清| 亚洲欧美精品自产自拍| 国产单亲对白刺激| 亚洲18禁久久av| 搞女人的毛片| 亚洲欧美日韩高清专用| av国产免费在线观看| 亚洲欧美日韩高清在线视频| 搡老妇女老女人老熟妇| 亚洲第一区二区三区不卡| 美女高潮的动态| 亚洲av美国av| 国产伦在线观看视频一区| 男插女下体视频免费在线播放| 人人妻人人澡欧美一区二区| 观看免费一级毛片| 欧美性猛交╳xxx乱大交人| 插逼视频在线观看| 麻豆av噜噜一区二区三区| 亚洲一级一片aⅴ在线观看| 亚洲无线观看免费| 久久国内精品自在自线图片| 不卡一级毛片| 久久草成人影院| 久久精品影院6| 亚洲国产精品合色在线| 国产精品一区www在线观看| 在线观看一区二区三区| 成人一区二区视频在线观看| 少妇猛男粗大的猛烈进出视频 | 噜噜噜噜噜久久久久久91| 亚洲av五月六月丁香网| 热99re8久久精品国产| 日韩欧美一区二区三区在线观看| 亚洲欧美成人精品一区二区| 久久久久九九精品影院| 亚洲国产精品sss在线观看| 午夜精品一区二区三区免费看| 亚洲七黄色美女视频| 国产高清视频在线播放一区| 成熟少妇高潮喷水视频| 97在线视频观看| 一级黄色大片毛片| 成年免费大片在线观看| 天堂动漫精品| 人妻制服诱惑在线中文字幕| 麻豆成人午夜福利视频| 色噜噜av男人的天堂激情| 午夜视频国产福利| 久久天躁狠狠躁夜夜2o2o| 亚洲精品在线观看二区| 日本一本二区三区精品| 一区二区三区四区激情视频 | 久久久精品94久久精品| 一级黄色大片毛片| 欧美3d第一页| 高清日韩中文字幕在线| 不卡视频在线观看欧美| 精品一区二区三区视频在线| 婷婷六月久久综合丁香| 尾随美女入室| 亚洲欧美日韩高清专用| 热99在线观看视频| 午夜免费男女啪啪视频观看 | 日产精品乱码卡一卡2卡三| 亚洲天堂国产精品一区在线| 免费大片18禁| 一区二区三区高清视频在线| 人妻久久中文字幕网| 久久久久久久久久黄片| 亚洲欧美日韩高清在线视频| 色播亚洲综合网| 中文字幕av成人在线电影| 国内久久婷婷六月综合欲色啪| 欧美性感艳星| 国产成人精品久久久久久| 欧美色欧美亚洲另类二区| 香蕉av资源在线| 国产免费男女视频| 精品人妻熟女av久视频| 91麻豆精品激情在线观看国产| 国产探花极品一区二区| 99久国产av精品国产电影| 最新中文字幕久久久久| 欧美日本视频| 精品一区二区三区视频在线| 菩萨蛮人人尽说江南好唐韦庄 | 欧美3d第一页| 精品久久国产蜜桃| 欧美最新免费一区二区三区| 成人二区视频| 有码 亚洲区| 欧美区成人在线视频| 亚洲欧美精品综合久久99| 国产一区二区亚洲精品在线观看| 精品福利观看| 99热6这里只有精品| 波多野结衣高清作品| 在线观看66精品国产| 91精品国产九色|