• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks

    2022-05-16 07:10:02PanZhang張攀YanYanZhang張顏艷MingKunLi李銘坤BingJieRao饒冰潔LuLuYan閆露露FaXiChen陳法喜XiaoFeiZhang張曉斐QunFengChen陳群峰HaiFengJiang姜海峰andShouGangZhang張首剛
    Chinese Physics B 2022年5期
    關鍵詞:李銘群峰海峰

    Pan Zhang(張攀) Yan-Yan Zhang(張顏艷) Ming-Kun Li(李銘坤) Bing-Jie Rao(饒冰潔)Lu-Lu Yan(閆露露) Fa-Xi Chen(陳法喜) Xiao-Fei Zhang(張曉斐) Qun-Feng Chen(陳群峰)Hai-Feng Jiang(姜海峰) and Shou-Gang Zhang(張首剛)

    1National Time Service Center,Chinese Academy of Sciences,Xi’an 710600,China

    2University of the Chinese Academy of Sciences,Beijing 100049,China

    3Innovation Academy for Precision Measurement Science and Technology,Chinese Academy of Sciences,Wuhan 430071,China

    4School of Physics Sciences,University of Science and Technology of China,Hefei 230026,China

    Keywords: optical frequency comb,nonlinear amplifying loop mirror,optical clock,frequency instability

    1. Introduction

    Optical atomic clocks have both relative frequency instability and uncertainty at the 10-18level or even better,[1–6]while state-of-the-art prime Cs fountain clocks have the uncertainty only at the level of 10-16.[7–9]Consequently, optical clocks are considered as candidates to redefine the seconds unit in the International System of Units (SI),[10,11]and the comparisons among at least three different types of optical clocks with uncertainties below 5×10-18have been taken as a mandatory step.[12–14]Recently, NIST and Jila reported a local comparison among optical clocks (Al+, Yb, and Sr)with fractional uncertainties of 8×10-18or less via short free space and optical fibre links. Remote comparison at a similar level on a global scale may require advance satellite-based time and frequency links. Except for metrology applications,comparison clocks with ultra-low instability are also important for others. In comparison with optical clocks at the 10-18level,gravitational potentials can be measured on a centimeter scale on Earth,which provides a precise tool to monitor what happens on Earth and to capture clues about upcoming natural disasters.[15]In the future,more precise clock frequency comparisons may be used to hunt for dark matter and energy and to monitor the cosmos by detecting gravitational waves.[16–18]

    Optical frequency comb (OFC) is a kind of unique tool that is used to synthesize optical frequency with unprecedented high stability and accuracy,[19,20]enabling precise frequency comparisons between different optical atomic clocks and application to precise measurements in the optical domain.The inventors of OFCs won a Nobel Prize in 2005.[21,22]In 2004,the optical frequency synthesis and comparison with uncertainty at a 10-19level was achieved with Ti:sapphire-based OFCs,[23]whose stability was good enough compared with that of the best optical clocks at present. Since the instability of an OFC does not limit the results of optical frequency comparisons, the robustness and the flexibility of OFCs become important features. More Er:fiber-based OFCs exhibiting extraordinary robustness have been used for metrology,ranging,time, and frequency transfers.[24,25]The Er:fiber-based OFCs have been obtained based on different mode-locking lasers,such as nonlinear polarization rotation (NPR),[26]a semiconductor saturable absorption mirror(SESAM),[27]and a nonlinear amplifying loop mirror(NALM).[28]In particular,NALM systems have exhibited outstanding robustness and low noise features; consequently, this technique is preferred for applications in scenarios outside the laboratory,[29]and even in space.[30,31]

    Optical frequency comparison can be performed by using a single branch supercontinuum generation with a broad optical spectrum covering a few target wavelengths,[32]] but it is difficult to produce enough power simultaneously at all wavelengths. Alternatively,multi-branch architecture can easily produce high power OFC signals at specific wavelengths,making the frequency comparison system more flexible.[33,34]However, this results in more uncompensated fiber paths,which degrades the out-of-loop frequency instability of an OFC. Real-time phase tracking technology can be used to compensate for optical phase drift due to thermal drift,which improves an OFC’s relative instability at a low level of 10-20.[35]However,this technique adds complexity to the optical and electronic measurement system.

    In this research, we demonstrate a turnkey erbium fiber laser-based OFC with multi-branch architecture, for which each branch produces a particular wavelength separately at 698 nm, 729 nm, 1068 nm, and 1156 nm, enabling optical beatnotes with a signal-to-noise ratio(SNR)of more than 30 dB at a resolution of 300 kHz.

    2. Experiment setup

    The schematic diagram of the multi-branch Er:fiber frequency comb is shown in Fig. 1. The multi-branch Er:fiber frequency comb consists of a mode-locked laser(part(a)),fceogeneration and detection(part(b)),four branches for application(part(c)),fbeatdetection and out-of-loop observation(part(d)),and electronic control system(part(e)).

    Fig.1. Schematic diagram of five-branch all-PM Er:fiber-based frequency comb and its application to optical clock. Black solid line: single mode PM fiber;black dotted line: electrical signal paths;LD:laser diode;EDF:erbium-doped fiber;WDM:wavelength division multiplexer;ISO:isolator;OC:output coupler;Col: collimator;HWP:half-wavelength plate;PBS:polarization beam splitter;FR:faraday rotator;EOM:electronic optical modulator;PZT: piezoelectric ceramic transducer; HR:high reflector; HNLF: highly nonlinear fiber; EDFA: erbium-doped fiber amplifier; DM: dichroic mirror;BPF:bandpass filter.

    2.1. Mode-locked laser

    The laser source based on an NALM is composed of a fiber loop and a space linear arm. The optical parts of the laser are housed in a small box which sufficiently decouples the laser from perturbations such as variations of the temperature, humidity, and air pressure. All of the fibers are polarization-maintaining(PM)fibers. The fiber loop consists of a WDM, 40-cm highly erbium-doped fiber (Liekki ER80-4/125),and~50-cm single mode PM fiber. A non-reciprocal phase device,[36]consisting of a Faraday rotator (FR) and aλ/8 wave plate (WP), is installed on the space linear arm to ensure the self-starting operation by introducing a phase bias ofπ/2 between the counter-propagating portions of laser pulses in the fiber loop. A bulk EOM and a PZT are installed in the linear arm for the fast and large-scale control offrep(orfbeat). The net dispersion of the cavity is close to zero when all components and fibers in the cavity are considered.The oscillator automatically starts the mode locking operation when the pump power reaches 900 mW. Figure 2(a) shows the output spectrum of the fiber laser. The full width at half maximum (FWHM) of the spectrum reaches 75 nm at a resolution of 0.1 nm, which is the highest width ever known for this type of mode-locked laser, with a corresponding Fourier transform limit pulse duration of 46 fs. This short pulse duration can effectively reduce the inherent noise of the OFC.Figure 2(b) demonstrates the radio frequency (RF) spectrum of the fiber laser, for which the fundamental repetition rate is up to 200 MHz. The power of 6 mW at the output 1 port is equally distributed to five branches.

    Fig.2. (a)Output spectrum of the mode-locked laser;(b)RF spectrum of repetition rate and fceo beat signal;(c)full octave-spanning SC spectrum.

    2.2. Generation and detection of fceo

    The branch in part (b) is designed to generate a oneoctave supercontinuum (SC) and detect thefceosignal. The seed laser of the branch is pre-chirped, amplified, and compressed to generate short pulses with an average value of power greater than 200 mW and a pulse duration of about 80 fs. This high-energy femtosecond pulse is injected into a section of PM highly nonlinear optical fiber (HNLF) to produce an SC containing one octave as shown in Fig. 2(c). A standardf-to-2finterferometer following the PM HNLF is used to obtain thefceosignal.The RF spectrum of the detectedfceobeat is shown in Fig. 2(b). The SNR is 38 dB at a resolution bandwidth(RBW)of 300 kHz. This high SNR enables the system to generate a clean feedback signal for controlling the pumping power and stabilizing thefceoat a reference frequency provided by an RF signal generator.

    2.3. Supercontinuum generation for optical clock comparison

    The other four branches of the OFC, in part (c), are application ports,which compare and measure different types of optical clocks. In detail, the four branches produce signals at wavelengths of 698 nm, 729 nm, 1068 nm, and 1156 nm,which are used for the experiments of Sr, Ca+, Al+(from quadruple 1064 nm), and Yb (from doubled 1156 nm) optical clocks,respectively.

    In order to obtain the target wavelengths for optical clock applications,we transfer the optical spectra using the chirped pulse amplification(CPA)technology and the PM highly nonlinear fiber(HNLF).We divide the remaining power(~4 mW)of the OFC into four equal application branches through a two-stage optical coupler. The laser pulse with an average power value of 1 mW is broadened,amplified,and compressed by using CPA technology. Then the laser pulse with a high peak power (about 15 kW) is input into a section of HNLF and its strong nonlinear effect is used to generate the target wavelength. This method can easily generate any wavelengths in a range between 1 μm to 2 μm. For the desired target wavelength to be less than 1 μm or shorter, a frequency doubling crystal is generally used to multiply the fundamental frequency of the target wavelength.

    Fig.3. Observed frequency comb spectra of the four branches for different optical clock applications. The spectral wavelengths from bottom to top are 1068 nm, 1156 nm, 1396 nm, and 1458 nm. The insert shows its corresponding spectrum of the PPLN output.

    In this experiment, we obtain the target wavelengths of 1068 nm, 1156 nm, 1396 nm, and 1458 nm through the EDFA+HNLF method. The results are shown in Fig. 3. A bulk PPLN crystal is used to obtain the 698-nm and 729-nm wavelengths for Sr and Ca+optical clock applications,as shown in the inset in Fig. 3. For the 1068-nm branch,the first choice is to amplify the 1-mW laser pulse into a more than 200-mW laser pulse through EDFA and to control the length of the PM fiber with negative dispersion to reduce the chirp introduced by the gain fiber with positive dispersion. With this method, the optical pulses with 1.1 nJ in energy and 8.5 kW in peak power can be obtained. Then this high-energy pulse is input into a section of PM-HNLF with a zero-dispersion wavelength(ZDW)of 1545 nm and a dispersion slope of 0.016(ps/nm2)/km at 1550 nm to finally achieve 1068 nm with the single-mode power of 707 nW. Using the same method,a PM-HNLF with a zero-dispersion wavelength of 1405 nm and a dispersion slope of 0.026(ps/nm2)/km,the single-mode power at the target wavelength of 1156 nm is about 891 nW. For the 1458-nm branch, a PM-HNLF with a zero-dispersion wavelength of 1450 nm and a dispersion slope of 0.015(ps/nm2)/km is used to obtain the single-mode power of 992 nW at the target wavelength of 1458 nm.In this branch,we expect to obtain a visible spectrum at 729 nm,which corresponds to the Ca+optical frequency standard wavelength.The extensional comb optical spectrum at 1458 nm is frequencydoubled to 729 nm using a 50-mm bulk PPLN crystal with the temperature sensibility of about 0.3 nm/°C. By using the long PPLN, the single-mode power at the target wavelength can be much higher than that of the pumping laser, while the width of the produced spectrum is narrow, requiring a better temperature control. The single-mode power of 729 nm can reach about 5 μW.By changing the non-linear fiber length and frequency doubling crystal of the 1396-nm branch,we can obtain the target wavelength of 698 nm with a single-mode power value exceeding 1 μW.

    Figure 4 shows the beat frequency results of each branch of the optical comb and the corresponding CW laser. It can be seen from the figure that the SNR of each beat signal is greater than 30 dB at an RBW of 300 kHz, which can meet the requirement for the subsequent frequencies for the locking and counting. The noise floors of the beat signal of the 698-nm and 729-nm branches are both 20 dB lower than those of the other branches. This is because the noise of the silicon-based photodetector is smaller than that of the InGaAs photodetector.

    Fig. 4. Optical heterodyne beat signals shown in 300-kHz RBW between the optical spectra shown in Fig.3 and the Sr clock laser at 698 nm in pink,the Ca+ clock laser at 729 nm in black, the Al+ clock at 1068 nm in red,and the Yb clock laser at 1156 nm in blue.

    3. Frequency instability of OFC

    An OFC can transfer an optical phase between different wavelengths by taking advantage of its frequency control techniques. However, the in-loop and additional frequency instabilities of OFC need evaluating, because this may limit the frequency comparison results.

    3.1. Phase locking of fceo and fbeat

    Part (e) is the PLL electronic system forfceoandfbeatlocking. The hydrogen maser provides a frequency reference forfceolocking,fbeatlocking, and out-of-loop frequency stability counting. Thefceoandfbeatlocking configurations are described in detail in our previous work.[37]

    Fig.5. [(a),(b)]In-loop frequency instabilities of stabilized fceo and fbeat,with red dashed line representing the 1/τ1/2 dependence and insets showing the frequency deviation of stabilized signal. [(c),(d)]Phase noise curves of stabilized fceo and fbeat,with black line denoting phase noise power spectral density(PSD),and blue line referring to integrated phase noise.

    Figures 5(a) and 5(b) show the Allan deviation (scaled to optical frequencies at 1050 nm forfceoand 1550 nm forfbeat) offceoandfbeat, which are 7.4×10-18/τ1/2and 8.5×10-18/τ1/2for the integration timeτ, respectively. The system’s stabilities meet the regulation withτ-1/2because of the dead time of the counter(Agilent 53230A).The stabilities should improve the inverse proportion to the averaging time if a Π-type counter is used to monitor them.[38]The phase noise offceoandfbeatare shown in Figs.5(c)and 5(d).We choose to focus on the phase noise for offset frequencies between 1 Hz and 1 MHz. The results offceoexhibit integrated phase noise of 0.99 rad from 1 Hz to 1 MHz, and the corresponding time jitter is about 0.55 fs. We also measure thefbeatphase noise curves as shown in Fig.5(d).The corresponding integral phase noise is about 0.14 rad in a frequency range from 1 Hz to 1 MHz,and the time jitter is approximately 0.12 fs. Since the feedback bandwidth (about 300 kHz) offbeatis much larger than that offceo(about 40 kHz), the high frequency part offbeatphase noise is better suppressed,so the phase jitter of thefbeatintegration is less than that offceo.

    3.2. Out-of-loop frequency instability

    Figure 1(d)shows the process for testing the instability of the out-of-loop. The SC of the 1068-nm branch is divided into a short-wave part containing 1068 nm and a long-wave part containing 1555 nm with a dichroic mirror.The beat signal between the comb and a 1555-nm ultra-stable laser is controlled by the EOM and PZT in the laser cavity through the electronic control system of part(e)to achieve afbeatlock. The 1156-nm branch undergoes the same operation as the 1068-nm branch to obtain the beat signal of the ultra-stable laser. The beat frequency signal is recorded by a frequency counter to achieve out-of-loop instability. Generally,dual OFCs are used for testing the additional frequency stability.[39,40]However, limited by a single OFC and from Ref.[40],it is known that the main factor affecting the frequency instability of fiber OFCs is environmental disturbance in the out-of-loop fiber. Therefore,we can use an OFC system for simple and approximate evaluation. In order to reduce the non-common mode noise between different branches and improve the out-of-loop frequency stability, we adopt a simple and effective method. That is done to ensure that the length and temperature between the different branch fibers are coincident in the reducing non-common mode noise. In this experiment,we ensure that the fiber length error between different branches is within±1 cm,and the temperature control range is within±0.2°C.

    The out-of-loop frequency instability of the comb is shown in Fig. 6. The black line in the figure represents the frequency instability of the optical comb locked to the ultrastable laser, and the red line denotes the out-of-loop instability result. The relative instability is 9×10-17at an averaging time of 1 s, and decreases to 5.5×10-19with an averaging time of approximately 4000 s,which is an order of magnitude worse than the counterpart of in-loop instability. We select the comparison results between the most stable Sr and Yb optical clocks in the world,[12]represented by the blue line in Fig.6,for the comparison with our results. It can be seen from Fig.6 that the out-loop stability of our OFC system is better than the result of the optical clock comparison. Therefore,no additional errors will be introduced in the optical clock comparison and measurement.

    Fig. 6. Allan standard deviation calculated from measured frequencies of the in-loop(black line),out-of-loop(red line),and frequency ratio between the clock transition of Sr and Yb.[11]

    4. Conclusions

    We demonstrated a turnkey PM Er:fiber laser based on the NALM mode-locking mechanism for the frequency measurement and comparison of Ca+, Al+, Sr, and Yb optical clocks. The laser source exhibits a highly robust feature due to the use of fully PM fibers. The multi-branch approach is used to generate the corresponding comb tooth,which has sufficient power density, enabling optical beatnotes with an SNR of greater than 30 dB for 300-kHz RBW.The in-loop frequency instabilities reach 7.5×10-18/τ1/2and 8.5×10-18/τ1/2. With the careful management of the fiber length and the temperature of each branch,the out-of-loop frequency instability of the OFC is about 9×10-17for 1 s and 5.5×10-19for 4000 s. This homemade OFC system is relatively simple and robust, and its instability is low enough for frequency compensation between optical clocks.

    Acknowledgements

    Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB35030101), the National Natural Science Foundation of China(Grant No.61825505),the Quantum Control and Quantum Information of the National Key Research and Development Program of China(Grant No.2020YFA0309800),and the Natural Science Basic Research Program of Shaanxi Province,China(Grant No.2020JQ434).

    猜你喜歡
    李銘群峰海峰
    以牙還牙
    科教新報(2024年51期)2024-12-11 00:00:00
    活著
    歌海(2022年1期)2022-03-29 21:39:55
    群峰之上
    北方人(2021年11期)2021-12-06 00:59:59
    奇怪的保潔
    故事會(2021年15期)2021-08-04 05:55:24
    Modified scaling angular spectrum method for numerical simulation in long-distance propagation?
    民國銀行家李銘貨幣思想初探
    近代史學刊(2020年2期)2020-11-18 09:12:36
    申曉國
    藝術品(2020年12期)2020-04-28 02:08:26
    群峰之上
    中國詩歌(2019年6期)2019-11-15 00:26:47
    倪海峰
    兒童大世界(2019年3期)2019-04-11 03:33:38
    好時節(jié)
    大江南北(2018年7期)2018-11-21 07:57:18
    熟妇人妻久久中文字幕3abv| 久久精品国产鲁丝片午夜精品| 日韩欧美国产在线观看| 大又大粗又爽又黄少妇毛片口| 欧美不卡视频在线免费观看| 22中文网久久字幕| 亚洲精品乱久久久久久| 最近手机中文字幕大全| 色尼玛亚洲综合影院| 人人妻人人看人人澡| 色网站视频免费| 男女啪啪激烈高潮av片| 国产亚洲91精品色在线| 亚洲四区av| 国产精品国产三级国产专区5o | 国产成人aa在线观看| 在线免费观看不下载黄p国产| 亚洲在线观看片| 国产精品99久久久久久久久| 久久久欧美国产精品| 亚洲av男天堂| 精品久久久久久久久亚洲| 永久免费av网站大全| 精品一区二区免费观看| 欧美一区二区亚洲| 美女高潮的动态| 尤物成人国产欧美一区二区三区| 日本熟妇午夜| 国产午夜精品久久久久久一区二区三区| 日本猛色少妇xxxxx猛交久久| 丰满乱子伦码专区| 中文乱码字字幕精品一区二区三区 | 久久精品国产亚洲av涩爱| 国内少妇人妻偷人精品xxx网站| 亚洲av男天堂| 99久国产av精品国产电影| 亚洲美女搞黄在线观看| 欧美最新免费一区二区三区| 七月丁香在线播放| 欧美xxxx黑人xx丫x性爽| 超碰97精品在线观看| 少妇的逼水好多| 91久久精品电影网| 变态另类丝袜制服| 亚洲欧美日韩高清专用| 看片在线看免费视频| 国产极品精品免费视频能看的| 久久99热这里只有精品18| 最近中文字幕高清免费大全6| 人妻系列 视频| 国产精品野战在线观看| 纵有疾风起免费观看全集完整版 | 日本猛色少妇xxxxx猛交久久| 久久国内精品自在自线图片| av在线老鸭窝| 高清午夜精品一区二区三区| 国产亚洲91精品色在线| 国产真实乱freesex| 午夜精品一区二区三区免费看| 亚洲成人av在线免费| 最新中文字幕久久久久| 能在线免费看毛片的网站| 中文字幕免费在线视频6| 高清视频免费观看一区二区 | 国产亚洲最大av| 国产人妻一区二区三区在| 亚洲av成人精品一区久久| 最近中文字幕2019免费版| 免费播放大片免费观看视频在线观看 | 最近2019中文字幕mv第一页| 国产精品野战在线观看| av播播在线观看一区| 欧美性感艳星| 欧美另类亚洲清纯唯美| 国产成人freesex在线| 国产午夜精品久久久久久一区二区三区| 中国国产av一级| 99热全是精品| 18+在线观看网站| 日韩av在线免费看完整版不卡| 男女边吃奶边做爰视频| 99热这里只有是精品在线观看| 亚洲人成网站在线观看播放| 中文欧美无线码| 美女xxoo啪啪120秒动态图| 热99re8久久精品国产| 秋霞伦理黄片| 91aial.com中文字幕在线观看| 嫩草影院精品99| 国产精品国产三级国产专区5o | 欧美成人a在线观看| 午夜福利高清视频| 91久久精品电影网| 日本猛色少妇xxxxx猛交久久| 久久久国产成人免费| 国产淫语在线视频| 国产爱豆传媒在线观看| 日韩强制内射视频| 老司机福利观看| 免费看光身美女| eeuss影院久久| 18禁在线播放成人免费| 一卡2卡三卡四卡精品乱码亚洲| 少妇熟女aⅴ在线视频| av免费观看日本| 综合色丁香网| 国产av一区在线观看免费| 在线观看66精品国产| 美女国产视频在线观看| 国产精品熟女久久久久浪| 夜夜爽夜夜爽视频| 午夜福利在线在线| 女人十人毛片免费观看3o分钟| 18禁动态无遮挡网站| h日本视频在线播放| 日韩精品有码人妻一区| 丰满少妇做爰视频| 国产 一区 欧美 日韩| 亚洲成人av在线免费| 日本wwww免费看| 亚洲va在线va天堂va国产| 日本一本二区三区精品| 只有这里有精品99| 国产精品久久视频播放| 美女被艹到高潮喷水动态| 22中文网久久字幕| av视频在线观看入口| 一卡2卡三卡四卡精品乱码亚洲| 成年版毛片免费区| 99热这里只有是精品在线观看| 18+在线观看网站| 亚洲成人中文字幕在线播放| 久久久久久久久久黄片| 久久久久久国产a免费观看| 97超视频在线观看视频| 亚洲av免费在线观看| 天天躁日日操中文字幕| 国产精品永久免费网站| 精品一区二区三区人妻视频| 偷拍熟女少妇极品色| 亚洲精品456在线播放app| 伦理电影大哥的女人| 美女大奶头视频| 卡戴珊不雅视频在线播放| 99久久人妻综合| 精品国产露脸久久av麻豆 | 人人妻人人澡欧美一区二区| 精品人妻视频免费看| 激情 狠狠 欧美| 久99久视频精品免费| 国产在线男女| 色噜噜av男人的天堂激情| 午夜老司机福利剧场| 美女被艹到高潮喷水动态| 亚洲成人精品中文字幕电影| 一边摸一边抽搐一进一小说| 欧美一级a爱片免费观看看| 午夜福利高清视频| 一二三四中文在线观看免费高清| 国产精品麻豆人妻色哟哟久久 | 日韩大片免费观看网站 | 亚洲最大成人av| 亚洲欧美精品自产自拍| 男人舔女人下体高潮全视频| ponron亚洲| 汤姆久久久久久久影院中文字幕 | 91精品国产九色| 蜜桃亚洲精品一区二区三区| 免费黄网站久久成人精品| 亚洲精华国产精华液的使用体验| 22中文网久久字幕| 成年女人永久免费观看视频| 亚洲av免费高清在线观看| 久久久精品大字幕| 成人亚洲欧美一区二区av| 五月伊人婷婷丁香| 我要搜黄色片| 午夜爱爱视频在线播放| 又爽又黄a免费视频| 波野结衣二区三区在线| 少妇被粗大猛烈的视频| 校园人妻丝袜中文字幕| 韩国av在线不卡| 啦啦啦观看免费观看视频高清| 久久久国产成人免费| 久久久久久久久久久丰满| 女人久久www免费人成看片 | 国产精品熟女久久久久浪| 国产色爽女视频免费观看| 亚洲国产精品合色在线| 日产精品乱码卡一卡2卡三| 色综合站精品国产| 麻豆成人午夜福利视频| 直男gayav资源| 欧美日韩综合久久久久久| 精品人妻视频免费看| 色吧在线观看| 国国产精品蜜臀av免费| 欧美性猛交╳xxx乱大交人| av视频在线观看入口| 精品一区二区三区视频在线| 99久久人妻综合| 日韩国内少妇激情av| 熟女电影av网| 午夜福利在线在线| 成人国产麻豆网| 综合色丁香网| 男人的好看免费观看在线视频| 嘟嘟电影网在线观看| 赤兔流量卡办理| 成年女人看的毛片在线观看| 久久热精品热| 久久婷婷人人爽人人干人人爱| 色综合亚洲欧美另类图片| av在线播放精品| 极品教师在线视频| 欧美人与善性xxx| 久久久亚洲精品成人影院| 天天躁夜夜躁狠狠久久av| 黄片wwwwww| 久久久久久久久久黄片| 久久综合国产亚洲精品| 禁无遮挡网站| 久久精品夜色国产| 日韩一区二区三区影片| h日本视频在线播放| 插逼视频在线观看| 最新中文字幕久久久久| 99久久无色码亚洲精品果冻| 亚洲国产成人一精品久久久| 午夜精品一区二区三区免费看| 在线观看66精品国产| 久久久久久伊人网av| 日日摸夜夜添夜夜爱| 午夜福利成人在线免费观看| 国产伦一二天堂av在线观看| 成人毛片60女人毛片免费| 国产成人免费观看mmmm| 日日干狠狠操夜夜爽| 精品熟女少妇av免费看| 26uuu在线亚洲综合色| 美女xxoo啪啪120秒动态图| 美女高潮的动态| 欧美激情国产日韩精品一区| 欧美日韩精品成人综合77777| 一个人免费在线观看电影| 插阴视频在线观看视频| 国产精品久久视频播放| 国产高清国产精品国产三级 | 黑人高潮一二区| 午夜福利在线观看吧| 日本一本二区三区精品| 91久久精品电影网| 最近视频中文字幕2019在线8| 午夜福利网站1000一区二区三区| 国产老妇女一区| 自拍偷自拍亚洲精品老妇| 一个人免费在线观看电影| a级毛色黄片| 午夜久久久久精精品| www.av在线官网国产| 日本午夜av视频| 国产免费视频播放在线视频 | 国产片特级美女逼逼视频| 中文字幕久久专区| 国产午夜福利久久久久久| 丰满人妻一区二区三区视频av| 国产亚洲av嫩草精品影院| 级片在线观看| 亚洲国产高清在线一区二区三| 亚洲av免费在线观看| 国产人妻一区二区三区在| 国产精品电影一区二区三区| 大话2 男鬼变身卡| 亚洲av免费在线观看| 大香蕉97超碰在线| 国产乱人偷精品视频| 亚洲av二区三区四区| 亚洲综合色惰| 午夜福利网站1000一区二区三区| 国产精品人妻久久久影院| 国产精品久久久久久精品电影小说 | 亚洲性久久影院| 在线观看66精品国产| 精品人妻偷拍中文字幕| 久久久久久伊人网av| 亚洲最大成人av| 国产在视频线精品| 欧美xxxx性猛交bbbb| 联通29元200g的流量卡| 尾随美女入室| 精品久久久久久久久久久久久| 99久久精品一区二区三区| 女的被弄到高潮叫床怎么办| 欧美97在线视频| 亚洲av中文av极速乱| 成年免费大片在线观看| 久久精品国产鲁丝片午夜精品| 欧美一级a爱片免费观看看| 一级av片app| 黑人高潮一二区| 亚洲精品影视一区二区三区av| 麻豆av噜噜一区二区三区| 亚洲,欧美,日韩| 热99re8久久精品国产| 亚洲美女搞黄在线观看| 桃色一区二区三区在线观看| 国产在线男女| 人人妻人人澡欧美一区二区| 亚洲av成人精品一区久久| 少妇的逼水好多| 国产精品99久久久久久久久| 国语自产精品视频在线第100页| 又爽又黄无遮挡网站| 国国产精品蜜臀av免费| 狠狠狠狠99中文字幕| 99热6这里只有精品| 国产在视频线在精品| 免费观看a级毛片全部| 欧美区成人在线视频| 三级经典国产精品| 午夜日本视频在线| 成年女人永久免费观看视频| 一个人观看的视频www高清免费观看| 男人狂女人下面高潮的视频| 最近手机中文字幕大全| 欧美成人a在线观看| 99热这里只有是精品在线观看| 久久国内精品自在自线图片| 一边摸一边抽搐一进一小说| 亚洲一区高清亚洲精品| 嘟嘟电影网在线观看| 观看美女的网站| 国产老妇伦熟女老妇高清| 18禁裸乳无遮挡免费网站照片| 老司机影院成人| 亚洲人成网站在线播| 久久久久久久国产电影| 婷婷六月久久综合丁香| 哪个播放器可以免费观看大片| 国产成人91sexporn| 国产一区二区亚洲精品在线观看| 国产精品久久视频播放| 午夜福利成人在线免费观看| 国产片特级美女逼逼视频| 成人性生交大片免费视频hd| 亚洲精品456在线播放app| 麻豆精品久久久久久蜜桃| 直男gayav资源| 色5月婷婷丁香| 成人亚洲欧美一区二区av| 欧美激情久久久久久爽电影| 九草在线视频观看| 午夜福利网站1000一区二区三区| 国产精品一区二区性色av| 22中文网久久字幕| 日韩大片免费观看网站 | 日韩在线高清观看一区二区三区| 波野结衣二区三区在线| 久久精品久久久久久噜噜老黄 | 亚洲欧美精品综合久久99| 国产精品野战在线观看| 身体一侧抽搐| 亚洲av免费在线观看| 一区二区三区免费毛片| 日韩欧美国产在线观看| 久久久久久久久久久免费av| 亚洲国产精品sss在线观看| 国产亚洲午夜精品一区二区久久 | 亚洲丝袜综合中文字幕| 三级男女做爰猛烈吃奶摸视频| 亚洲av日韩在线播放| 深夜a级毛片| 久久久精品94久久精品| 最近手机中文字幕大全| 九九爱精品视频在线观看| 国产精品一区二区三区四区免费观看| 日韩av在线免费看完整版不卡| 五月玫瑰六月丁香| 国产精品一区www在线观看| 高清视频免费观看一区二区 | 成人综合一区亚洲| 美女大奶头视频| 欧美激情在线99| 啦啦啦观看免费观看视频高清| 又粗又硬又长又爽又黄的视频| 特大巨黑吊av在线直播| 日本午夜av视频| 三级毛片av免费| 午夜福利在线在线| 久久久色成人| 亚洲中文字幕一区二区三区有码在线看| 麻豆国产97在线/欧美| 午夜福利视频1000在线观看| 欧美成人午夜免费资源| 不卡视频在线观看欧美| 又爽又黄无遮挡网站| 99久久成人亚洲精品观看| 欧美人与善性xxx| 亚洲真实伦在线观看| 精品久久久噜噜| 国产av码专区亚洲av| 99热网站在线观看| 免费大片18禁| 婷婷色av中文字幕| 国产成人精品一,二区| 夜夜看夜夜爽夜夜摸| 听说在线观看完整版免费高清| 久久久国产成人免费| 久久久久久久久中文| 男人舔奶头视频| 国产一区亚洲一区在线观看| 亚洲四区av| 国产免费一级a男人的天堂| 色网站视频免费| 99久久精品热视频| 精品久久久久久久末码| av福利片在线观看| 91aial.com中文字幕在线观看| 国产在视频线精品| 久久人人爽人人爽人人片va| 97热精品久久久久久| 国产探花在线观看一区二区| 日本一二三区视频观看| 亚洲不卡免费看| 久久久久久久久久久免费av| 久久久久久久午夜电影| 精品人妻熟女av久视频| 欧美97在线视频| 黄色日韩在线| 成人漫画全彩无遮挡| 婷婷色av中文字幕| 久久久久久久久久久免费av| 九九久久精品国产亚洲av麻豆| 最近2019中文字幕mv第一页| 中国美白少妇内射xxxbb| 3wmmmm亚洲av在线观看| 三级毛片av免费| 国产成人一区二区在线| 久久99精品国语久久久| 综合色av麻豆| 久久久色成人| 国产精品人妻久久久久久| 只有这里有精品99| 久久综合国产亚洲精品| 热99re8久久精品国产| 人体艺术视频欧美日本| 国产一区亚洲一区在线观看| 一边摸一边抽搐一进一小说| 国产又黄又爽又无遮挡在线| 国内精品美女久久久久久| 日本爱情动作片www.在线观看| 一级av片app| 国产精品.久久久| 亚洲av男天堂| 99热这里只有是精品在线观看| 国产精品av视频在线免费观看| 精品人妻熟女av久视频| 日本熟妇午夜| 亚洲怡红院男人天堂| 偷拍熟女少妇极品色| 午夜免费激情av| 秋霞伦理黄片| 欧美精品一区二区大全| 成人漫画全彩无遮挡| 成年av动漫网址| 亚洲中文字幕一区二区三区有码在线看| 91久久精品国产一区二区成人| 观看免费一级毛片| 亚洲国产高清在线一区二区三| 亚洲国产欧美在线一区| 欧美xxxx性猛交bbbb| 尾随美女入室| 深夜a级毛片| 九色成人免费人妻av| 日韩av在线大香蕉| 日本黄色片子视频| 大香蕉久久网| 成人三级黄色视频| 天天躁日日操中文字幕| 尤物成人国产欧美一区二区三区| 国产白丝娇喘喷水9色精品| www.色视频.com| 国产精品精品国产色婷婷| 中文字幕制服av| 久久久久久久久久久免费av| 99久久中文字幕三级久久日本| 国产老妇伦熟女老妇高清| 看十八女毛片水多多多| 色综合亚洲欧美另类图片| av视频在线观看入口| 亚洲成av人片在线播放无| 村上凉子中文字幕在线| 亚洲人与动物交配视频| 亚洲经典国产精华液单| 久久国产乱子免费精品| 熟女人妻精品中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 少妇人妻一区二区三区视频| 亚洲欧美中文字幕日韩二区| 亚洲欧美成人精品一区二区| 看非洲黑人一级黄片| 日韩一区二区三区影片| 人妻制服诱惑在线中文字幕| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 在线免费观看不下载黄p国产| 日韩欧美在线乱码| 国产精品一区二区三区四区久久| 国产人妻一区二区三区在| 国产毛片a区久久久久| 最近视频中文字幕2019在线8| 久久久a久久爽久久v久久| 亚洲最大成人av| 国产精品1区2区在线观看.| 久久韩国三级中文字幕| 国产爱豆传媒在线观看| 国内精品宾馆在线| 三级男女做爰猛烈吃奶摸视频| 亚洲精品影视一区二区三区av| 亚洲国产日韩欧美精品在线观看| 欧美日韩精品成人综合77777| 一级毛片久久久久久久久女| 如何舔出高潮| 亚洲中文字幕一区二区三区有码在线看| 国国产精品蜜臀av免费| 免费看av在线观看网站| 色综合色国产| 国产不卡一卡二| 国产精品久久久久久av不卡| 国产精品电影一区二区三区| 国产精品国产三级专区第一集| 卡戴珊不雅视频在线播放| 日韩欧美国产在线观看| 久久欧美精品欧美久久欧美| 国产成人91sexporn| 午夜精品在线福利| a级一级毛片免费在线观看| av播播在线观看一区| 丰满少妇做爰视频| 天堂网av新在线| 只有这里有精品99| 久久久精品欧美日韩精品| videos熟女内射| 亚洲成色77777| 亚洲av成人精品一二三区| 亚洲成人久久爱视频| 日韩,欧美,国产一区二区三区 | 爱豆传媒免费全集在线观看| 精品久久久噜噜| 免费av毛片视频| 午夜精品国产一区二区电影 | 欧美成人午夜免费资源| 久久精品国产自在天天线| 国产精品电影一区二区三区| 亚洲国产欧美人成| 久久久久久久久久久免费av| 精品久久久久久久末码| 国产精品一区二区在线观看99 | 国产精品女同一区二区软件| 啦啦啦观看免费观看视频高清| 成人午夜高清在线视频| 三级经典国产精品| 国产麻豆成人av免费视频| 又粗又爽又猛毛片免费看| 麻豆乱淫一区二区| 亚洲一级一片aⅴ在线观看| 在线播放国产精品三级| 亚洲欧美成人综合另类久久久 | 亚洲伊人久久精品综合 | 日韩高清综合在线| 中文欧美无线码| 老司机福利观看| 日韩av在线免费看完整版不卡| 国产精品美女特级片免费视频播放器| 男女下面进入的视频免费午夜| 亚洲国产精品国产精品| 爱豆传媒免费全集在线观看| 国产精品乱码一区二三区的特点| av视频在线观看入口| 中文字幕av成人在线电影| 人妻系列 视频| 汤姆久久久久久久影院中文字幕 | 听说在线观看完整版免费高清| 色5月婷婷丁香| 免费观看的影片在线观看| 欧美人与善性xxx| 蜜臀久久99精品久久宅男| 女人十人毛片免费观看3o分钟| 国产乱人偷精品视频| 午夜a级毛片| 午夜老司机福利剧场| 少妇熟女aⅴ在线视频| 97在线视频观看| 精品国产一区二区三区久久久樱花 | 亚洲人成网站在线观看播放| 午夜福利在线观看吧| 熟女电影av网| 亚洲欧美日韩高清专用| 亚洲美女视频黄频| 中文字幕人妻熟人妻熟丝袜美| 99久久精品热视频| 伦精品一区二区三区| 国产黄片视频在线免费观看| 欧美精品一区二区大全| 麻豆精品久久久久久蜜桃| 国产老妇女一区| 91精品国产九色| 亚洲伊人久久精品综合 | 亚洲在线自拍视频| 日本免费a在线| 国产精品国产高清国产av| 一级黄片播放器| 亚洲精品成人久久久久久| 99热这里只有精品一区| 欧美性感艳星|