• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modified scaling angular spectrum method for numerical simulation in long-distance propagation?

    2021-03-19 03:20:26XiaoYiChen陳曉義YaXuanDuan段亞軒BinBinXiang項斌斌MingLi李銘andZhengShangDa達爭尚
    Chinese Physics B 2021年3期
    關鍵詞:李銘

    Xiao-Yi Chen(陳曉義), Ya-Xuan Duan(段亞軒), Bin-Bin Xiang(項斌斌),Ming Li(李銘), and Zheng-Shang Da(達爭尚)

    1The Advanced Optical Instrument Research Department,Xi’an Institute of Optics and Precision Mechanics,

    Chinese Academy of Sciences,Xi’an 710119,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3Xinjiang Astronomical Observatory,Chinese Academy of Sciences,Urumqi 830011,China

    Keywords: angular spectrum,diffraction,Fourier optics and signal process

    1. Introduction

    Digital simulation of scalar diffraction is widely used for studies like phase retrieval,[1-6]digital holography,[7,8]optical information security,[9]and computational imaging.[10,11]These simulations of diffraction are usually based on the wellknown scalar diffraction theories. For parallel planes,[12]there are mainly three methods of field propagation called the single Fourier-transform-based Fresnel method(SFT-FR),the convolution-based Fresnel method (CV-FR), and the AS method respectively. The SFT-FR has the fastest speed, but the sampling interval is proportional to the propagation distance. To control the sampling interval, the multi-step Fresnel method[13-15]and shifted Fresnel method (shift-FR)[16]have been proposed. The CV-FR and AS are all convolutionbased methods,so the sampling window and the sampling interval in the input plane are the same as those in the output plane. Compared with CV-FR,AS is more accurate as it is directly derived from Rayleigh-Sommerfeld diffraction theory without approximation.[17,18]But the sampling problem in the transfer function makes that AS only accurate for quite near field. However,the long-distance propagation often occurs in some applications such as wavefront detection,computational holography,and antenna detection.

    There are two effective methods to achieve long-distance propagation based on AS. One is adding a wide calculation window(zero-padding)in the input plane, which will lead to large amount of calculation. The other is BLAS[19]method,in which the transfer function is truncated to a proper bandwidth.The aliasing transfer function components are forced to be zeros and only the non-aliasing transfer function components are used. It has been shown that the effective non-aliasing bandwidth of the transfer function would decrease rapidly when the propagation distance increases. So, the accuracy of BLAS in inverse calculation from the output plane to the input plane decreases as the propagation distance increases.[19,20]Therefore,the application of BLAS in iterative phase retrieval technology is limited.

    In this paper, a modified scaling angular spectrum(MSAS)method for long-distance propagation is proposed. It consists of two parts, the scaling calculation and the choice of calculation window. Firstly, a scaling factor is introduced so that the sampling interval of input plane can be defined independently. And by applying the Bluestein substitution,the discrete Fourier transform can be used even if the sampling intervals of input plane are different from that of output plane.[21-24]The calculation speed of MSAS is fast because it is based on a linear convolution which can be evaluated by fast Fourier transform (FFT) effectively. Then the most suitable size of the calculation window is selected so that the numerical calculation in long-distance propagation runs efficiently. Unlike the truncation of the transfer function in BLAS method,the proposed method can also be accurately calculated in the inverse calculation.

    The rest of this paper is arranged as follows:In Section 2,the principle of traditional long-distance propagation is introduced in details. Section 3 discusses the MSAS proposed in this paper and explains it from three parts: the scaling calculation of MSAS,the calculation window of MSAS,and computational complexity. In Section 4,MSAS is compared with other methods when used for numerical calculation in longdistance propagation. In Section 5, the simulations are verified through experiments. Finally, in Section 6, conclusions are drawn.

    2. The principle of the traditional long-distance propagation

    In the scalar diffraction theory, the accurate diffraction formula is the Rayleigh-Sommerfeld diffraction integral. It is always converted into a convolution form which is also called the AS formula

    where z is the propagation distance, (x0,y0) and U0(x0,y0,0)are the coordinates and the light field of input plane,(x,y)and U(x,y,z)are the coordinates and the light field of output plane,F and F?1represent the Fourier transform and inverse Fourier transform,respectively. H(u,v,z)is the transfer function,

    where λ is the wavelength,u and v are the Fourier frequencies in x and y directions,respectively.

    The calculation of AS is based on the discrete Fourier transform (DFT) which only describes the discrete periodic function. As shown in Fig.1, the sampling of the input field would result in the generation of modulated and translated replicas in periodic locations of the input plane. To avoid the aliasing error, the discrete calculation of Eq. (1) need to meet Nyquist sampling theorem. So the discrete transfer function’s sampling rate of change is less than or equal to π when m=M/2,n=N/2,we obtain[25]

    where m = ?M/2,?M/2 + 1,...,M/2?1 and n =?N/2,?N/2+1,...,N/2?1, M and N are the sampling numbers in the x0and y0directions, Δx0and Δy0are the sampling intervals in the x0and y0directions, respectively.Therefore,the propagation distance z need to satisfy

    In AS, the sampling intervals of the input plane are equal to the sampling intervals of the output plane. Meanwhile, the sampling intervals of the output plane are determined by the pixel sizes of detector. Once the pixel sizes of the detector(Δx,Δy)are determined,the sampling intervals of input plane(Δx0=Δx, Δy0=Δy) are also determined accordingly. According to Eq. (4), the propagation distance is restricted to a limited value.

    Fig.1. Replicas of the physical window in the input plane.

    Another way is to truncate the transfer function to a limited bandwidth, which is called BLAS. The expression of its transfer function is[19]

    where ulimand vlimare

    where Δu = 1/[2(MΔy0)], Δv = 1/[2(NΔy0)]. Although BLAS increases the propagation distance, high-frequency information is lost due to the limited bandwidth in the frequency domain and the accuracy in inverse calculation is also limited.

    3. Modified scaling angular spectrum propagation

    3.1. Scaling calculation of MSAS

    From Eq. (4), the propagation distance is also related to the sampling intervals in the input plane. As the sampling intervals increase,the propagation distance increases. However,the sampling intervals between the input plane and the output plane are equal in traditional long-distance propagation.Therefore, MSAS consists of two parts: the scaling calculation and the selection of calculation window. One is to freely define the sampling interval of the input plane, and the other is to select the most suitable size of calculation window for long-distance propagation.

    MSAS is derived from AS, and the coordinate system used in formulas is shown in Fig.2. P and Q are the sampling numbers of calculation window in the x0and y0directions,respectively. R and T are the sampling points of the input field in the x0and y0directions, respectively. The discrete Fourier transform of the input plane A(up,vq,0)can be expressed as

    where x0p= pΔx0,y0q=qΔy0,up= pΔu,and vp=qΔv. So,the diffraction field of output plane is

    where

    A(up,vq,z)=A(up,vq,0)H(up,vq,z)

    is discrete Fourier transform of the output plane, xr= rΔx,yt=tΔy. Δx and Δy are the sampling intervals of output plane in x and y directions,respectively. We cannot directly use the inverse discrete Fourier transform to calculate the summation of Eq. (9) because of the differences of the sample intervals and sampling numbers in the input and output planes(P/=R,Q/=T,Δx/=Δx0,Δy/=Δy0). To solve this problem,a scaling factor h is firstly introduced into Eq.(9)as

    Additionally, the term (2hupxr+2hvqyt) can be converted to the following expression:

    which is known as Bluestein substitution.[22]Then the summation process in Eq.(10)is converted into a discrete convolution

    where

    the star operator “?” denotes the discrete convolution operation.

    Fig.2. Geometry of the propagation model between input plane and output plane.

    Due to Δu′=Δx, Δv′=Δy, the discrete convolution can also be effectively evaluated by FFT. By Eq. (11), we can choose the independent sampling intervals in the input plane.Meanwhile, the sampling numbers between the input plane and the output plane need not be the same because of the linear convolution.As for the inverse propagation,just let z equal?z and exchange the position of Δx0and Δx,Δy0and Δy,the calculation formula is still the same as Eq.(11).

    The sampling intervals of input plane can be smaller than, equal to, or larger than the sampling intervals of output plane.However,Δx0>Δx and Δy0>Δy are required for longdistance propagation in MSAS to reduce the sampling numbers of calculation window. According to Eq. (4), when the distance is constant, the sampling intervals of the input plane must meet the following condition:

    3.2. Calculation window of MSAS

    Similarly, a suitable calculation window should be selected in MSAS to make sure that the sampling in the frequency domain is effective for long-distance propagation. In MSAS,increasing the sampling interval in the input plane will reduce the sampling number of the calculation window,so the amount of calculation will be greatly reduced. Taking x0and x axes as examples,y0and y axes can be analogical.

    Firstly, the range of sampling frequency in the transfer function within which no aliasing error occurs must be determined by Eq.(7).[19]The required sampling interval Δu of frequency domain is

    Therefore, according to Eqs.(7)and(13), the size of the calculation window is

    Secondly,to convert a circular convolution to a linear convolution, the input field needs to be doubled both in x and y axes.[21,22]

    In addition, FFT will broaden the spectrum of input field. In order to ensure that the aliasing spectrum will not overflow into the output plane,the size of calculation window needs to satisfy[26]

    where Wx=RΔx0and Sx=RΔx are the size of input field and observation window in x0and x directions,respectively.

    In summary,the calculation window Lxwill be the maximum of L1x, L2xand L3xfor meeting all these requirements from Eqs. (14)-(16). P can be obtained by Lx, Δx0, and Q is analogical.

    As shown in Fig.3, the highest spatial frequency observed at the upper end of observation window may be given by the field coming from the lower end of the input field. Therefore, the minimum bandwidth of the spectrum which is needed for exact numerical propagation is

    After adding the calculation window by Eq. (17), the maximum bandwidth which MSAS can be correctly sampled is[19,27]

    If umax<uneed, the input field loses a part of the frequency band necessary for exact diffraction. Therefore, for an accurate sample,the relation between umaxand uneedis

    From Eqs. (18)and(19),we know the following two points.

    (i)if L=max(L1,L2,L3)=L3,umax=uneed;

    (ii)if L=max(L1,L2,L3)=L1or L2,umax>uneed.

    So equation(20)is always satisfied.

    Fig.3. A model for minimum bandwidth required for exact numerical propagation.

    Figure 4 shows a sampled transfer function of AS,where the parameters are M = 1024, z = 50MΔx, λ = 635 nm,Δx=2λ, and Δx0=2λ. Only the real part of transfer function is depicted in the sampling interval Δu=1/MΔx0of AS.Because the transfer function is a kind of chirp function, an aliasing error is introduced in the sampled transfer function as shown in Fig.4. With MSAS method, Δx0increases to 10λ and the calculation window is determined by Eq. (17). Then the maximum bandwidth umaxcan be calculated by Eq. (19).As a result,the aliasing error is removed.

    Fig.4. Example of a sampled transfer function of AS and MSAS.

    3.3. Computational complexity

    Both the AS and PAS use two Fourier transforms. The computational complexity can be calculated by the following formulas:

    In MSAS,one FFT calculations and one FFT-based linear convolution are used,so the computational complexity is

    Under long-distance propagation, the sampling number required by MSAS is less than that required by PAS(M ≤R <P <MPAS, N ≤T <Q <NPAS), so the computational complexity is low(CAS<CMSAS<CPAS)and the calculation speed is faster than PAS. Moreover, as the propagation distance increases, more sampling number is required for PAS and the advantage of MSAS is more significant.

    4. Simulation

    In order to prove the effectiveness of MSAS, we performed the following simulation and compared it with AS,PAS, and BLAS. The parameters of simulation are as follows: the detector pixel size is Δx=Δy=7.4μm, the wavelength is λ = 635 nm, the width of the square aperture is 0.5 mm, the sampling number of the object plane is chosen to be M×N =200×200 to convert a circular convolution to a linear convolution.[21,22]

    In AS, BLAS, and PAS, the sampling interval of input plane is the same as that of output plane.The sampling number in AS does not change with the propagation distance,which is always MAS×NAS=200×200. However,the sampling number of BLAS is MBLAS×NBLAS= 400×400 and the sampling number of PAS(MPASand NPAS)increases according to Eq.(5).

    Fig.5. The minimum sampling number in the diffraction area and the sampling interval of MSAS changes with propagation distance. (a) The minimum sampling number in the diffraction area changes with propagation distance;(b)the sampling interval of MSAS changes with propagation distance.

    As the distance increases, the diffractive propagation is divergent. In MSAS, the minimum sampling numbers (R,T = R) of diffractive area required for diffraction propagation are determined as shown in Fig.5(a) according to different diffraction distances. The sampling intervals under different propagation distances in the input plane are determined by the minimum sampling numbers and Eq.(12)as shown in Fig.5(b). Then the minimum sampling numbers and sampling intervals determine the sampling number(P,P=Q)of calculation window.

    Fig.6. Comparison of AS, BLAS, PAS, and MSAS. (a) The SNR of AS,BLAS,PAS,and MSAS changes with propagation distance;(b)the calculation time of AS,BLAS,PAS,and MSAS changes with propagation distance;(c)the inset clearly shows calculation time of AS,BLAS,and MSAS when the distance from 0 mm to 500 mm.

    Accuracy is evaluated by SNR of the diffraction intensity:[28]

    where I(x,y) is the calculated diffraction intensity of output plane obtained by AS, BLAS, PAS or MSAS. Irig(x,y)stands for the diffraction intensity on the output plane obtained by the accurate Gauss-quadrature numerical integral(NI)method,[29,30]where α is introduced as follows:

    As shown in Fig.6(a), the SNR calculated by BLAS and AS gradually decreases when the distance is larger than 27 mm and 418 mm respectively.BLAS and AS no longer have an advantage in the long-distance propagation. However,the SNRs of PAS and MSAS tend to increase as the distance increases.PAS and MSAS have very good SNR,but the running speed of MSAS is faster than PAS as the propagation distance increases which is shown in Fig.6(b). The running speed is consistent with the computational complexity described in Subsection 3.3. In the simulation,MATLAB(Version R2016b,Math Works, Natick, Massachusetts) installed in a 3.40-GHz central processing unit(Intel core i7-6700)and 8 GB of randomaccess memory desktop computer was used for calculation.

    Taking z1=100 mm and z2=500 mm as examples,the two-dimensional (2D) diffraction intensity, one-dimensional(1D) amplitude, and phase of AS, BLAS, MSAS, PAS, and NI are shown in Fig.7. When the distance is z1=100 mm,the amplitude and phase calculated by AS are already incorrect as shown in Fig.7(a). However,the amplitude and phase of BLAS, PAS, and MSAS are all consistent with that of NI.When the distance is z2=500 mm, BLAS and AS cannot be calculated accurately as shown in Fig.7(b). But both MSAS and PAS can be calculated accurately like NI,and MSAS runs faster than PAS.

    Fig.7. The 2D-diffraction intensity,1D-amplitude,and phase using AS,BLAS,MSAS,PAS,and NI in z1=100 mm and z2=500 mm,respectively.(a)z1=100 mm;(b)z2=500 mm.

    The intensities calculated inversely by MSAS and BLAS under the distances of z1=100 mm and z2=500 mm are given in Fig.8. Due to the limitation of the bandwidth in the transfer function,the accuracy of inverse calculation in BLAS decreases with the increase of propagation distance as shown in Figs.8(a),8(b),8(a1),and 8(b1). The application of BLAS in the iterative phase retrieval technology is limited. But MSAS is not restricted to inverse calculation as shown in Figs.8(c),8(d),8(c1),and 8(d1).

    Fig.8. The 2D-intensity and 1D-intensity using the inverse calculation of BLAS and MSAS under z1 =100 mm and z2 =500 mm. BLAS: (a) the inverse result in z1=100 mm,(a1)center section view of panel(a);(b)the inverse result in z2=500 mm,(b1)center section view of panel(b);MSAS:(c)the inverse result in z1=100 mm,(c1)center section view of panel(c);(d)the inverse result in z2=500 mm,(d1)center section view of panel(d).

    5. Experiment

    The experimental setup is shown in Fig.9. The laser with a wavelength λ =635 nm goes through the collimating lens and the pinhole,getting to the CCD.The diameter of the pinhole is 0.5 mm, the pixel size of CCD is Δx=Δy=7.4 μm with a total number of pixels is 1600×1200. The PV of wavefront error is 0.13λ (the caliber is φ =6 mm)so that the wavefront in the pinhole can be approximated as a plane wave. The distances between the pinhole and CCD are z1=113 mm and z2=520 mm,respectively.

    Fig.9. Experimental setup.

    When the distance is z1=113 mm,the sampling number in the pinhole plane is MPAS×NPAS=1310×1310 by using PAS. Using MSAS, the sampling interval of pinhole plane is Δx0=Δy0=16.7μm and the sampling number of calculation window is P×Q=512×512. Similarly, when the distance is z2=520 mm, the sampling number using PAS in the pinhole plane is MPAS×NPAS=6030×6030. Using MSAS,the sampling interval of pinhole plane is Δx0=Δy0=18.1 μm and the sampling number of calculation window is P×Q=2016×2016.

    Figure 10 shows the diffractive spots of PAS,MSAS,and experiment. The one-dimensional cross-sectional views of MSAS and experiment along the center are shown in Fig.11.In order to further prove the agreements between simulation by MSAS and experiment, the correlation coefficient c is defined

    From Figs.10(b)and 10(e),there is no periodic artifacts appear in the diffraction spots calculated by MSAS under two distances. Either in Fig.10 or Fig.11, MSAS is also highly consistent with the experimental results. And the correlation coefficients of the two in z1=113 mm and z2=520 mm are c1=0.9502 and c2=0.9992,respectively.As the propagation distance increases, the correlation coefficients increase because the influence of wavefront aberration is getting smaller.And the calculation time of PAS is about 3.93×and 5.77×of MSAS in z1=113 mm and z2=520 mm,respectively.Therefore, for long-distance propagation, the calculation of MSAS is accurate and fast.

    Fig.10. The diffractive spots of PAS, MSAS, and experiment. Top row: z1 =113 mm, (a) calculated by PAS, (b) calculated by MSAS, (c)experiment;bottom row: z2=520 mm,(d)calculated by PAS,(e)calculated by MSAS,(f)experiment.

    Fig.11. One-dimensional cross-sectional views of MSAS and experiment along the center: (a)z1=113 mm,(b)z2=520 mm.

    6. Conclusion

    In conclusion, a modified scaling angular spectrum(MSAS)method to solve the problem in AS for long-distance propagation is proposed. The method consists of two parts,the scaling calculation and the selection of calculation window. The former is used to freely define the sampling intervals of the input and output planes. The latter is to ensure that MSAS is calculated accurately for the long-distance propagation. It is indicated from the simulation and experiment that MSAS is highly consistent with NI and experimental results,and the calculation speed is faster than PAS.Meanwhile,MSAS does not limit bandwidth in the frequency domain like BLAS, so its accuracy in inverse calculation is much higher than BLAS. Both simulation and experiment prove the correctness of MSAS and it has a great prospect for application in iterative phase retrieval.

    猜你喜歡
    李銘
    驚喜
    奇怪的保潔
    故事會(2021年15期)2021-08-04 05:55:24
    民國銀行家李銘貨幣思想初探
    近代史學刊(2020年2期)2020-11-18 09:12:36
    拉鉤
    拉鉤
    寒門學子搶銀行,14年后浴火重生折桂名校
    分憂(2017年12期)2017-12-07 18:31:18
    寒門高考狀元為盡孝失足,14年后浴火重生折桂名校
    狀元落魄搶銀行14年浴火重生
    莫愁(2017年32期)2017-11-14 20:53:24
    寒門高考狀元盡孝搶銀行,7年后浴火重生了
    寒門高考狀元盡孝搶銀行,7年后浴火重生了
    亚洲18禁久久av| 亚洲国产精品久久男人天堂| 国产69精品久久久久777片| 蜜桃亚洲精品一区二区三区| 亚洲国产成人一精品久久久| 国产精品蜜桃在线观看| 久久精品国产99精品国产亚洲性色| 热99re8久久精品国产| 亚洲一区高清亚洲精品| 老司机福利观看| 久久99热6这里只有精品| 国产69精品久久久久777片| 蜜桃亚洲精品一区二区三区| 亚洲av不卡在线观看| 蜜桃久久精品国产亚洲av| av在线老鸭窝| 亚洲国产精品合色在线| 国产精品不卡视频一区二区| 亚洲美女搞黄在线观看| 可以在线观看毛片的网站| av专区在线播放| 欧美日韩国产亚洲二区| 日韩国内少妇激情av| 国产精品一区二区性色av| 亚洲精品久久久久久婷婷小说 | 免费一级毛片在线播放高清视频| 欧美高清成人免费视频www| 97超碰精品成人国产| 看免费成人av毛片| 欧美激情国产日韩精品一区| 亚洲,欧美,日韩| 国产精品久久久久久久电影| 22中文网久久字幕| 亚洲中文字幕日韩| 在线观看av片永久免费下载| 日本免费一区二区三区高清不卡| 亚洲精品亚洲一区二区| 最新中文字幕久久久久| 婷婷六月久久综合丁香| 久久韩国三级中文字幕| 午夜福利成人在线免费观看| 欧美日韩综合久久久久久| 九九久久精品国产亚洲av麻豆| 亚洲aⅴ乱码一区二区在线播放| 日本黄色片子视频| 久久久久久久久久成人| 久久99蜜桃精品久久| 99九九线精品视频在线观看视频| 亚洲精品456在线播放app| 特级一级黄色大片| 美女大奶头视频| 免费大片18禁| 成年免费大片在线观看| 国产伦在线观看视频一区| 汤姆久久久久久久影院中文字幕 | 一边亲一边摸免费视频| 国产片特级美女逼逼视频| 一级爰片在线观看| 亚洲中文字幕日韩| 亚州av有码| 国产在视频线精品| 国产高清三级在线| 亚洲欧美精品自产自拍| 亚洲18禁久久av| 久久久久网色| 少妇的逼水好多| 91午夜精品亚洲一区二区三区| 国产成人福利小说| 久久人人爽人人片av| 午夜免费男女啪啪视频观看| 亚洲国产精品sss在线观看| av在线天堂中文字幕| 99热这里只有是精品在线观看| 亚洲欧美成人精品一区二区| 黄片wwwwww| 两个人视频免费观看高清| 亚洲欧美精品综合久久99| 欧美激情国产日韩精品一区| 搡女人真爽免费视频火全软件| 天天躁日日操中文字幕| 欧美高清性xxxxhd video| 免费无遮挡裸体视频| 最新中文字幕久久久久| 18禁裸乳无遮挡免费网站照片| 级片在线观看| 中文字幕av成人在线电影| 国国产精品蜜臀av免费| 国产视频内射| 99久久九九国产精品国产免费| 国内揄拍国产精品人妻在线| 最近手机中文字幕大全| 国产淫语在线视频| 日产精品乱码卡一卡2卡三| 我要看日韩黄色一级片| 蜜桃亚洲精品一区二区三区| 高清午夜精品一区二区三区| 日本猛色少妇xxxxx猛交久久| 久久久国产成人免费| 成人欧美大片| 黄片无遮挡物在线观看| 丝袜美腿在线中文| 午夜久久久久精精品| 欧美区成人在线视频| 黑人高潮一二区| 国产精品嫩草影院av在线观看| 国产亚洲av片在线观看秒播厂 | 亚洲av中文av极速乱| 我要看日韩黄色一级片| 国产精品伦人一区二区| 国产黄片美女视频| 日韩欧美三级三区| 简卡轻食公司| 97超碰精品成人国产| 97人妻精品一区二区三区麻豆| 精品国产露脸久久av麻豆 | 人人妻人人澡欧美一区二区| 岛国在线免费视频观看| 亚洲国产精品国产精品| 亚洲中文字幕一区二区三区有码在线看| 亚洲熟妇中文字幕五十中出| 久久精品久久久久久久性| 黄色配什么色好看| 99热网站在线观看| 精品欧美国产一区二区三| 成人一区二区视频在线观看| 看非洲黑人一级黄片| 一区二区三区免费毛片| 啦啦啦观看免费观看视频高清| 久久久亚洲精品成人影院| 我要看日韩黄色一级片| 欧美高清性xxxxhd video| 国产精品久久久久久久电影| 99九九线精品视频在线观看视频| 最近最新中文字幕大全电影3| 国产高潮美女av| 最近视频中文字幕2019在线8| 久久精品国产99精品国产亚洲性色| 国产黄片美女视频| 九色成人免费人妻av| 秋霞在线观看毛片| 少妇高潮的动态图| 亚洲熟妇中文字幕五十中出| 极品教师在线视频| 美女脱内裤让男人舔精品视频| 亚洲国产欧洲综合997久久,| 亚洲精品456在线播放app| 夫妻性生交免费视频一级片| 久久久精品94久久精品| 如何舔出高潮| 久久精品91蜜桃| 97在线视频观看| 又爽又黄无遮挡网站| 国产白丝娇喘喷水9色精品| av免费在线看不卡| 秋霞在线观看毛片| 三级经典国产精品| 国产一区亚洲一区在线观看| 三级国产精品片| 九草在线视频观看| 国产亚洲91精品色在线| 国产视频内射| 国产午夜福利久久久久久| 亚洲国产欧美人成| 午夜精品国产一区二区电影 | 亚洲精品一区蜜桃| 午夜福利高清视频| 国产高清有码在线观看视频| 联通29元200g的流量卡| 久久国产乱子免费精品| 国产在视频线精品| 亚洲性久久影院| 亚洲av成人精品一二三区| 欧美色视频一区免费| 色5月婷婷丁香| 国产精品av视频在线免费观看| 欧美色视频一区免费| 麻豆成人av视频| 99久久精品热视频| 欧美xxxx性猛交bbbb| 亚洲国产精品合色在线| 国产国拍精品亚洲av在线观看| 久久久久性生活片| 波野结衣二区三区在线| 亚洲欧洲日产国产| 一卡2卡三卡四卡精品乱码亚洲| 你懂的网址亚洲精品在线观看 | 女人久久www免费人成看片 | 大香蕉久久网| 久久久久久国产a免费观看| 极品教师在线视频| 日韩欧美 国产精品| 综合色丁香网| 成人美女网站在线观看视频| 亚洲欧洲国产日韩| 国产黄色视频一区二区在线观看 | 国产精华一区二区三区| av在线亚洲专区| 国产伦精品一区二区三区视频9| 在线免费十八禁| 亚洲最大成人中文| 又粗又硬又长又爽又黄的视频| 国产单亲对白刺激| 亚洲欧美精品自产自拍| 一区二区三区四区激情视频| av专区在线播放| 男人舔女人下体高潮全视频| 国产片特级美女逼逼视频| 国产精品乱码一区二三区的特点| 欧美一区二区国产精品久久精品| 女的被弄到高潮叫床怎么办| 婷婷色麻豆天堂久久 | 精品一区二区三区人妻视频| 六月丁香七月| 日韩国内少妇激情av| 欧美精品国产亚洲| 特大巨黑吊av在线直播| 久久久亚洲精品成人影院| 免费搜索国产男女视频| 免费av观看视频| 亚洲av.av天堂| 韩国高清视频一区二区三区| 日本免费在线观看一区| 两个人视频免费观看高清| 国产日韩欧美在线精品| av免费观看日本| 久久久久网色| 国产黄片美女视频| 偷拍熟女少妇极品色| 老师上课跳d突然被开到最大视频| 亚洲真实伦在线观看| 最近手机中文字幕大全| 国内精品一区二区在线观看| or卡值多少钱| 99热这里只有精品一区| 久久久久国产网址| 亚洲国产欧美在线一区| 欧美成人一区二区免费高清观看| 精品国内亚洲2022精品成人| 久久久久久伊人网av| 99热全是精品| 国产高潮美女av| av卡一久久| 亚洲国产日韩欧美精品在线观看| 国产国拍精品亚洲av在线观看| 欧美极品一区二区三区四区| av播播在线观看一区| 久久久色成人| 三级经典国产精品| 免费观看人在逋| 精品国内亚洲2022精品成人| 26uuu在线亚洲综合色| 国产麻豆成人av免费视频| .国产精品久久| 深爱激情五月婷婷| 天堂网av新在线| 黄片wwwwww| 免费黄色在线免费观看| 国内精品美女久久久久久| 岛国在线免费视频观看| 国产欧美日韩精品一区二区| 精品一区二区免费观看| 免费看av在线观看网站| 永久免费av网站大全| 成人午夜高清在线视频| 国产激情偷乱视频一区二区| 欧美精品国产亚洲| 日韩欧美国产在线观看| 亚洲一级一片aⅴ在线观看| 久久人人爽人人片av| 99视频精品全部免费 在线| 综合色av麻豆| 成人一区二区视频在线观看| 五月玫瑰六月丁香| 又爽又黄a免费视频| 91av网一区二区| 51国产日韩欧美| 99视频精品全部免费 在线| 嫩草影院精品99| 亚洲人成网站高清观看| 国产一区二区在线观看日韩| 日本黄色片子视频| 久久久久久九九精品二区国产| 色播亚洲综合网| 久久亚洲国产成人精品v| 亚洲av男天堂| 九九爱精品视频在线观看| 汤姆久久久久久久影院中文字幕 | 热99re8久久精品国产| 日本黄色视频三级网站网址| 久久午夜福利片| 特级一级黄色大片| 九九热线精品视视频播放| 久久久精品大字幕| 日韩欧美三级三区| 级片在线观看| 亚洲av男天堂| 中文字幕人妻熟人妻熟丝袜美| 日韩中字成人| 日韩一区二区三区影片| 成人毛片a级毛片在线播放| 日韩欧美精品免费久久| 免费av不卡在线播放| 国产黄片视频在线免费观看| 国产伦在线观看视频一区| a级毛片免费高清观看在线播放| 最近最新中文字幕大全电影3| 少妇丰满av| 青春草国产在线视频| 天天躁夜夜躁狠狠久久av| 春色校园在线视频观看| 老司机影院毛片| 亚洲av熟女| 高清视频免费观看一区二区 | 日韩 亚洲 欧美在线| 全区人妻精品视频| 嫩草影院入口| 夫妻性生交免费视频一级片| 欧美xxxx黑人xx丫x性爽| 久久久久国产网址| 免费观看人在逋| 亚洲国产日韩欧美精品在线观看| 乱人视频在线观看| 国产激情偷乱视频一区二区| 97在线视频观看| 啦啦啦观看免费观看视频高清| 最近最新中文字幕免费大全7| 久久久久久久国产电影| 色噜噜av男人的天堂激情| 成人鲁丝片一二三区免费| 又粗又爽又猛毛片免费看| 日韩亚洲欧美综合| 日本-黄色视频高清免费观看| 六月丁香七月| 成人亚洲欧美一区二区av| 99国产精品一区二区蜜桃av| 免费av观看视频| 国产成人91sexporn| 91久久精品国产一区二区成人| 亚洲精品,欧美精品| 天天躁日日操中文字幕| 欧美成人午夜免费资源| 一级黄色大片毛片| 亚洲欧洲国产日韩| 91在线精品国自产拍蜜月| 成人av在线播放网站| 国产免费又黄又爽又色| 永久网站在线| 黑人高潮一二区| 国产片特级美女逼逼视频| 又黄又爽又刺激的免费视频.| 熟女电影av网| 日韩三级伦理在线观看| 乱系列少妇在线播放| 日韩一区二区视频免费看| 天天躁夜夜躁狠狠久久av| 日韩成人av中文字幕在线观看| 久久草成人影院| 亚洲最大成人中文| 久久亚洲精品不卡| 亚洲婷婷狠狠爱综合网| 高清毛片免费看| av天堂中文字幕网| 国产精品久久久久久精品电影| 亚洲高清免费不卡视频| av黄色大香蕉| 午夜福利在线观看免费完整高清在| 亚洲国产欧洲综合997久久,| 嫩草影院入口| 老师上课跳d突然被开到最大视频| 岛国毛片在线播放| 亚洲av成人精品一二三区| 99久久精品国产国产毛片| 日韩一区二区视频免费看| 亚洲精品,欧美精品| 色播亚洲综合网| 一级爰片在线观看| 国产女主播在线喷水免费视频网站 | 18禁裸乳无遮挡免费网站照片| 又爽又黄a免费视频| 国产免费福利视频在线观看| 精品久久久久久久久av| 少妇熟女欧美另类| 91狼人影院| 日韩中字成人| 欧美xxxx黑人xx丫x性爽| 欧美一级a爱片免费观看看| 亚洲av日韩在线播放| 爱豆传媒免费全集在线观看| 中文乱码字字幕精品一区二区三区 | 久久久久久大精品| 日日摸夜夜添夜夜爱| 99热全是精品| 国产精品不卡视频一区二区| 少妇丰满av| 精品欧美国产一区二区三| av在线亚洲专区| 国产精品av视频在线免费观看| 成人av在线播放网站| 熟妇人妻久久中文字幕3abv| 美女国产视频在线观看| 好男人在线观看高清免费视频| 一个人看视频在线观看www免费| 国产亚洲91精品色在线| 久久久久久久久久久丰满| 成人毛片a级毛片在线播放| av在线播放精品| 高清在线视频一区二区三区 | 日本午夜av视频| av在线播放精品| 亚洲久久久久久中文字幕| 最近中文字幕2019免费版| 99久久中文字幕三级久久日本| 国产精华一区二区三区| 精品久久久噜噜| av福利片在线观看| 亚洲成人中文字幕在线播放| 亚洲最大成人手机在线| 高清视频免费观看一区二区 | 久久99蜜桃精品久久| 18禁在线播放成人免费| 亚洲国产成人一精品久久久| 免费无遮挡裸体视频| 我的女老师完整版在线观看| 国语对白做爰xxxⅹ性视频网站| 成人美女网站在线观看视频| 国产女主播在线喷水免费视频网站 | 可以在线观看毛片的网站| 午夜福利高清视频| 中国国产av一级| 亚洲一区高清亚洲精品| 少妇熟女aⅴ在线视频| 一边亲一边摸免费视频| 亚洲国产精品久久男人天堂| 午夜福利在线在线| 好男人视频免费观看在线| 亚洲无线观看免费| 国产欧美另类精品又又久久亚洲欧美| 亚洲av电影不卡..在线观看| 精品一区二区免费观看| 夜夜爽夜夜爽视频| 激情 狠狠 欧美| 国产精品乱码一区二三区的特点| 丰满少妇做爰视频| ponron亚洲| 国产精品一二三区在线看| 3wmmmm亚洲av在线观看| 最近最新中文字幕大全电影3| 99在线人妻在线中文字幕| 日韩在线高清观看一区二区三区| 岛国在线免费视频观看| 美女脱内裤让男人舔精品视频| 日韩亚洲欧美综合| 日本五十路高清| 成人亚洲精品av一区二区| 久久精品夜色国产| 日韩,欧美,国产一区二区三区 | 成年免费大片在线观看| 亚洲电影在线观看av| 久久韩国三级中文字幕| 欧美日韩国产亚洲二区| 免费不卡的大黄色大毛片视频在线观看 | 久久人人爽人人爽人人片va| 99久国产av精品| 国产精品综合久久久久久久免费| 亚洲四区av| 亚洲av二区三区四区| 国产精品日韩av在线免费观看| 亚洲人成网站在线播| 天天躁夜夜躁狠狠久久av| 亚洲精品影视一区二区三区av| 精品国内亚洲2022精品成人| 亚洲精品日韩av片在线观看| 亚洲va在线va天堂va国产| 麻豆成人av视频| 亚洲熟妇中文字幕五十中出| 蜜桃亚洲精品一区二区三区| 亚洲精品aⅴ在线观看| 国产精品久久久久久av不卡| 久久精品熟女亚洲av麻豆精品 | 成人午夜精彩视频在线观看| 国产精品一及| 特大巨黑吊av在线直播| 亚洲精品日韩在线中文字幕| 国内精品宾馆在线| 搞女人的毛片| 日本猛色少妇xxxxx猛交久久| 欧美高清性xxxxhd video| 午夜日本视频在线| 亚洲高清免费不卡视频| 亚洲国产日韩欧美精品在线观看| 免费不卡的大黄色大毛片视频在线观看 | 男女下面进入的视频免费午夜| 最近的中文字幕免费完整| 国产极品精品免费视频能看的| 一本久久精品| 少妇高潮的动态图| 亚洲熟妇中文字幕五十中出| 乱码一卡2卡4卡精品| 五月伊人婷婷丁香| 免费看av在线观看网站| 精品一区二区三区人妻视频| 91精品伊人久久大香线蕉| av在线亚洲专区| 国产黄a三级三级三级人| 国产av一区在线观看免费| 亚洲欧美精品专区久久| 成人性生交大片免费视频hd| 高清午夜精品一区二区三区| 91久久精品国产一区二区成人| 亚洲性久久影院| 成年女人永久免费观看视频| 国产亚洲av片在线观看秒播厂 | 欧美97在线视频| 精品一区二区免费观看| 韩国高清视频一区二区三区| 国内少妇人妻偷人精品xxx网站| 国产片特级美女逼逼视频| 亚洲中文字幕一区二区三区有码在线看| 色播亚洲综合网| 尾随美女入室| 一边亲一边摸免费视频| 精品人妻一区二区三区麻豆| 97人妻精品一区二区三区麻豆| 在线免费十八禁| 大话2 男鬼变身卡| 亚洲综合精品二区| 亚洲经典国产精华液单| 日韩成人av中文字幕在线观看| 91精品一卡2卡3卡4卡| 国产亚洲午夜精品一区二区久久 | 免费播放大片免费观看视频在线观看 | 春色校园在线视频观看| 三级经典国产精品| 在线观看美女被高潮喷水网站| 国产激情偷乱视频一区二区| 五月玫瑰六月丁香| 国产乱人偷精品视频| 五月伊人婷婷丁香| 久久精品久久久久久久性| 精品人妻偷拍中文字幕| 99久国产av精品国产电影| 在线观看66精品国产| 99国产精品一区二区蜜桃av| 国产伦在线观看视频一区| 噜噜噜噜噜久久久久久91| 精品久久久久久久人妻蜜臀av| 99在线人妻在线中文字幕| 国产一区有黄有色的免费视频 | 精品少妇黑人巨大在线播放 | 久久精品熟女亚洲av麻豆精品 | 精品熟女少妇av免费看| 成人无遮挡网站| 白带黄色成豆腐渣| 国产黄片视频在线免费观看| 久久久久免费精品人妻一区二区| 久久久精品94久久精品| 亚洲av成人精品一区久久| 热99在线观看视频| 精品99又大又爽又粗少妇毛片| av国产免费在线观看| 又爽又黄无遮挡网站| 日产精品乱码卡一卡2卡三| 最近2019中文字幕mv第一页| 亚洲av日韩在线播放| av国产久精品久网站免费入址| 色综合色国产| av视频在线观看入口| 亚洲欧美日韩东京热| 69人妻影院| 女人久久www免费人成看片 | 91精品一卡2卡3卡4卡| 欧美一区二区国产精品久久精品| 啦啦啦韩国在线观看视频| 99在线人妻在线中文字幕| 国产一区有黄有色的免费视频 | 久久鲁丝午夜福利片| 国产黄色小视频在线观看| 亚洲无线观看免费| 青青草视频在线视频观看| 国产精品99久久久久久久久| 日本免费a在线| 国产伦理片在线播放av一区| 最近视频中文字幕2019在线8| 熟妇人妻久久中文字幕3abv| 少妇猛男粗大的猛烈进出视频 | 一个人观看的视频www高清免费观看| 白带黄色成豆腐渣| 一二三四中文在线观看免费高清| 国产精品国产高清国产av| 日本爱情动作片www.在线观看| 免费看光身美女| 一区二区三区四区激情视频| 精品少妇黑人巨大在线播放 | 欧美日本视频| 超碰av人人做人人爽久久| 欧美人与善性xxx| 成人漫画全彩无遮挡| 中国美白少妇内射xxxbb| 最近视频中文字幕2019在线8| 中文资源天堂在线| 搡老妇女老女人老熟妇| 国产精品国产高清国产av| 少妇猛男粗大的猛烈进出视频 | 91精品伊人久久大香线蕉| av天堂中文字幕网| 最近手机中文字幕大全| av在线蜜桃| 三级毛片av免费| 97人妻精品一区二区三区麻豆| 天堂影院成人在线观看| 亚洲国产欧美人成| 看免费成人av毛片| 免费搜索国产男女视频| 最近中文字幕2019免费版| 精品欧美国产一区二区三|