• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modified scaling angular spectrum method for numerical simulation in long-distance propagation?

    2021-03-19 03:20:26XiaoYiChen陳曉義YaXuanDuan段亞軒BinBinXiang項斌斌MingLi李銘andZhengShangDa達爭尚
    Chinese Physics B 2021年3期
    關鍵詞:李銘

    Xiao-Yi Chen(陳曉義), Ya-Xuan Duan(段亞軒), Bin-Bin Xiang(項斌斌),Ming Li(李銘), and Zheng-Shang Da(達爭尚)

    1The Advanced Optical Instrument Research Department,Xi’an Institute of Optics and Precision Mechanics,

    Chinese Academy of Sciences,Xi’an 710119,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3Xinjiang Astronomical Observatory,Chinese Academy of Sciences,Urumqi 830011,China

    Keywords: angular spectrum,diffraction,Fourier optics and signal process

    1. Introduction

    Digital simulation of scalar diffraction is widely used for studies like phase retrieval,[1-6]digital holography,[7,8]optical information security,[9]and computational imaging.[10,11]These simulations of diffraction are usually based on the wellknown scalar diffraction theories. For parallel planes,[12]there are mainly three methods of field propagation called the single Fourier-transform-based Fresnel method(SFT-FR),the convolution-based Fresnel method (CV-FR), and the AS method respectively. The SFT-FR has the fastest speed, but the sampling interval is proportional to the propagation distance. To control the sampling interval, the multi-step Fresnel method[13-15]and shifted Fresnel method (shift-FR)[16]have been proposed. The CV-FR and AS are all convolutionbased methods,so the sampling window and the sampling interval in the input plane are the same as those in the output plane. Compared with CV-FR,AS is more accurate as it is directly derived from Rayleigh-Sommerfeld diffraction theory without approximation.[17,18]But the sampling problem in the transfer function makes that AS only accurate for quite near field. However,the long-distance propagation often occurs in some applications such as wavefront detection,computational holography,and antenna detection.

    There are two effective methods to achieve long-distance propagation based on AS. One is adding a wide calculation window(zero-padding)in the input plane, which will lead to large amount of calculation. The other is BLAS[19]method,in which the transfer function is truncated to a proper bandwidth.The aliasing transfer function components are forced to be zeros and only the non-aliasing transfer function components are used. It has been shown that the effective non-aliasing bandwidth of the transfer function would decrease rapidly when the propagation distance increases. So, the accuracy of BLAS in inverse calculation from the output plane to the input plane decreases as the propagation distance increases.[19,20]Therefore,the application of BLAS in iterative phase retrieval technology is limited.

    In this paper, a modified scaling angular spectrum(MSAS)method for long-distance propagation is proposed. It consists of two parts, the scaling calculation and the choice of calculation window. Firstly, a scaling factor is introduced so that the sampling interval of input plane can be defined independently. And by applying the Bluestein substitution,the discrete Fourier transform can be used even if the sampling intervals of input plane are different from that of output plane.[21-24]The calculation speed of MSAS is fast because it is based on a linear convolution which can be evaluated by fast Fourier transform (FFT) effectively. Then the most suitable size of the calculation window is selected so that the numerical calculation in long-distance propagation runs efficiently. Unlike the truncation of the transfer function in BLAS method,the proposed method can also be accurately calculated in the inverse calculation.

    The rest of this paper is arranged as follows:In Section 2,the principle of traditional long-distance propagation is introduced in details. Section 3 discusses the MSAS proposed in this paper and explains it from three parts: the scaling calculation of MSAS,the calculation window of MSAS,and computational complexity. In Section 4,MSAS is compared with other methods when used for numerical calculation in longdistance propagation. In Section 5, the simulations are verified through experiments. Finally, in Section 6, conclusions are drawn.

    2. The principle of the traditional long-distance propagation

    In the scalar diffraction theory, the accurate diffraction formula is the Rayleigh-Sommerfeld diffraction integral. It is always converted into a convolution form which is also called the AS formula

    where z is the propagation distance, (x0,y0) and U0(x0,y0,0)are the coordinates and the light field of input plane,(x,y)and U(x,y,z)are the coordinates and the light field of output plane,F and F?1represent the Fourier transform and inverse Fourier transform,respectively. H(u,v,z)is the transfer function,

    where λ is the wavelength,u and v are the Fourier frequencies in x and y directions,respectively.

    The calculation of AS is based on the discrete Fourier transform (DFT) which only describes the discrete periodic function. As shown in Fig.1, the sampling of the input field would result in the generation of modulated and translated replicas in periodic locations of the input plane. To avoid the aliasing error, the discrete calculation of Eq. (1) need to meet Nyquist sampling theorem. So the discrete transfer function’s sampling rate of change is less than or equal to π when m=M/2,n=N/2,we obtain[25]

    where m = ?M/2,?M/2 + 1,...,M/2?1 and n =?N/2,?N/2+1,...,N/2?1, M and N are the sampling numbers in the x0and y0directions, Δx0and Δy0are the sampling intervals in the x0and y0directions, respectively.Therefore,the propagation distance z need to satisfy

    In AS, the sampling intervals of the input plane are equal to the sampling intervals of the output plane. Meanwhile, the sampling intervals of the output plane are determined by the pixel sizes of detector. Once the pixel sizes of the detector(Δx,Δy)are determined,the sampling intervals of input plane(Δx0=Δx, Δy0=Δy) are also determined accordingly. According to Eq. (4), the propagation distance is restricted to a limited value.

    Fig.1. Replicas of the physical window in the input plane.

    Another way is to truncate the transfer function to a limited bandwidth, which is called BLAS. The expression of its transfer function is[19]

    where ulimand vlimare

    where Δu = 1/[2(MΔy0)], Δv = 1/[2(NΔy0)]. Although BLAS increases the propagation distance, high-frequency information is lost due to the limited bandwidth in the frequency domain and the accuracy in inverse calculation is also limited.

    3. Modified scaling angular spectrum propagation

    3.1. Scaling calculation of MSAS

    From Eq. (4), the propagation distance is also related to the sampling intervals in the input plane. As the sampling intervals increase,the propagation distance increases. However,the sampling intervals between the input plane and the output plane are equal in traditional long-distance propagation.Therefore, MSAS consists of two parts: the scaling calculation and the selection of calculation window. One is to freely define the sampling interval of the input plane, and the other is to select the most suitable size of calculation window for long-distance propagation.

    MSAS is derived from AS, and the coordinate system used in formulas is shown in Fig.2. P and Q are the sampling numbers of calculation window in the x0and y0directions,respectively. R and T are the sampling points of the input field in the x0and y0directions, respectively. The discrete Fourier transform of the input plane A(up,vq,0)can be expressed as

    where x0p= pΔx0,y0q=qΔy0,up= pΔu,and vp=qΔv. So,the diffraction field of output plane is

    where

    A(up,vq,z)=A(up,vq,0)H(up,vq,z)

    is discrete Fourier transform of the output plane, xr= rΔx,yt=tΔy. Δx and Δy are the sampling intervals of output plane in x and y directions,respectively. We cannot directly use the inverse discrete Fourier transform to calculate the summation of Eq. (9) because of the differences of the sample intervals and sampling numbers in the input and output planes(P/=R,Q/=T,Δx/=Δx0,Δy/=Δy0). To solve this problem,a scaling factor h is firstly introduced into Eq.(9)as

    Additionally, the term (2hupxr+2hvqyt) can be converted to the following expression:

    which is known as Bluestein substitution.[22]Then the summation process in Eq.(10)is converted into a discrete convolution

    where

    the star operator “?” denotes the discrete convolution operation.

    Fig.2. Geometry of the propagation model between input plane and output plane.

    Due to Δu′=Δx, Δv′=Δy, the discrete convolution can also be effectively evaluated by FFT. By Eq. (11), we can choose the independent sampling intervals in the input plane.Meanwhile, the sampling numbers between the input plane and the output plane need not be the same because of the linear convolution.As for the inverse propagation,just let z equal?z and exchange the position of Δx0and Δx,Δy0and Δy,the calculation formula is still the same as Eq.(11).

    The sampling intervals of input plane can be smaller than, equal to, or larger than the sampling intervals of output plane.However,Δx0>Δx and Δy0>Δy are required for longdistance propagation in MSAS to reduce the sampling numbers of calculation window. According to Eq. (4), when the distance is constant, the sampling intervals of the input plane must meet the following condition:

    3.2. Calculation window of MSAS

    Similarly, a suitable calculation window should be selected in MSAS to make sure that the sampling in the frequency domain is effective for long-distance propagation. In MSAS,increasing the sampling interval in the input plane will reduce the sampling number of the calculation window,so the amount of calculation will be greatly reduced. Taking x0and x axes as examples,y0and y axes can be analogical.

    Firstly, the range of sampling frequency in the transfer function within which no aliasing error occurs must be determined by Eq.(7).[19]The required sampling interval Δu of frequency domain is

    Therefore, according to Eqs.(7)and(13), the size of the calculation window is

    Secondly,to convert a circular convolution to a linear convolution, the input field needs to be doubled both in x and y axes.[21,22]

    In addition, FFT will broaden the spectrum of input field. In order to ensure that the aliasing spectrum will not overflow into the output plane,the size of calculation window needs to satisfy[26]

    where Wx=RΔx0and Sx=RΔx are the size of input field and observation window in x0and x directions,respectively.

    In summary,the calculation window Lxwill be the maximum of L1x, L2xand L3xfor meeting all these requirements from Eqs. (14)-(16). P can be obtained by Lx, Δx0, and Q is analogical.

    As shown in Fig.3, the highest spatial frequency observed at the upper end of observation window may be given by the field coming from the lower end of the input field. Therefore, the minimum bandwidth of the spectrum which is needed for exact numerical propagation is

    After adding the calculation window by Eq. (17), the maximum bandwidth which MSAS can be correctly sampled is[19,27]

    If umax<uneed, the input field loses a part of the frequency band necessary for exact diffraction. Therefore, for an accurate sample,the relation between umaxand uneedis

    From Eqs. (18)and(19),we know the following two points.

    (i)if L=max(L1,L2,L3)=L3,umax=uneed;

    (ii)if L=max(L1,L2,L3)=L1or L2,umax>uneed.

    So equation(20)is always satisfied.

    Fig.3. A model for minimum bandwidth required for exact numerical propagation.

    Figure 4 shows a sampled transfer function of AS,where the parameters are M = 1024, z = 50MΔx, λ = 635 nm,Δx=2λ, and Δx0=2λ. Only the real part of transfer function is depicted in the sampling interval Δu=1/MΔx0of AS.Because the transfer function is a kind of chirp function, an aliasing error is introduced in the sampled transfer function as shown in Fig.4. With MSAS method, Δx0increases to 10λ and the calculation window is determined by Eq. (17). Then the maximum bandwidth umaxcan be calculated by Eq. (19).As a result,the aliasing error is removed.

    Fig.4. Example of a sampled transfer function of AS and MSAS.

    3.3. Computational complexity

    Both the AS and PAS use two Fourier transforms. The computational complexity can be calculated by the following formulas:

    In MSAS,one FFT calculations and one FFT-based linear convolution are used,so the computational complexity is

    Under long-distance propagation, the sampling number required by MSAS is less than that required by PAS(M ≤R <P <MPAS, N ≤T <Q <NPAS), so the computational complexity is low(CAS<CMSAS<CPAS)and the calculation speed is faster than PAS. Moreover, as the propagation distance increases, more sampling number is required for PAS and the advantage of MSAS is more significant.

    4. Simulation

    In order to prove the effectiveness of MSAS, we performed the following simulation and compared it with AS,PAS, and BLAS. The parameters of simulation are as follows: the detector pixel size is Δx=Δy=7.4μm, the wavelength is λ = 635 nm, the width of the square aperture is 0.5 mm, the sampling number of the object plane is chosen to be M×N =200×200 to convert a circular convolution to a linear convolution.[21,22]

    In AS, BLAS, and PAS, the sampling interval of input plane is the same as that of output plane.The sampling number in AS does not change with the propagation distance,which is always MAS×NAS=200×200. However,the sampling number of BLAS is MBLAS×NBLAS= 400×400 and the sampling number of PAS(MPASand NPAS)increases according to Eq.(5).

    Fig.5. The minimum sampling number in the diffraction area and the sampling interval of MSAS changes with propagation distance. (a) The minimum sampling number in the diffraction area changes with propagation distance;(b)the sampling interval of MSAS changes with propagation distance.

    As the distance increases, the diffractive propagation is divergent. In MSAS, the minimum sampling numbers (R,T = R) of diffractive area required for diffraction propagation are determined as shown in Fig.5(a) according to different diffraction distances. The sampling intervals under different propagation distances in the input plane are determined by the minimum sampling numbers and Eq.(12)as shown in Fig.5(b). Then the minimum sampling numbers and sampling intervals determine the sampling number(P,P=Q)of calculation window.

    Fig.6. Comparison of AS, BLAS, PAS, and MSAS. (a) The SNR of AS,BLAS,PAS,and MSAS changes with propagation distance;(b)the calculation time of AS,BLAS,PAS,and MSAS changes with propagation distance;(c)the inset clearly shows calculation time of AS,BLAS,and MSAS when the distance from 0 mm to 500 mm.

    Accuracy is evaluated by SNR of the diffraction intensity:[28]

    where I(x,y) is the calculated diffraction intensity of output plane obtained by AS, BLAS, PAS or MSAS. Irig(x,y)stands for the diffraction intensity on the output plane obtained by the accurate Gauss-quadrature numerical integral(NI)method,[29,30]where α is introduced as follows:

    As shown in Fig.6(a), the SNR calculated by BLAS and AS gradually decreases when the distance is larger than 27 mm and 418 mm respectively.BLAS and AS no longer have an advantage in the long-distance propagation. However,the SNRs of PAS and MSAS tend to increase as the distance increases.PAS and MSAS have very good SNR,but the running speed of MSAS is faster than PAS as the propagation distance increases which is shown in Fig.6(b). The running speed is consistent with the computational complexity described in Subsection 3.3. In the simulation,MATLAB(Version R2016b,Math Works, Natick, Massachusetts) installed in a 3.40-GHz central processing unit(Intel core i7-6700)and 8 GB of randomaccess memory desktop computer was used for calculation.

    Taking z1=100 mm and z2=500 mm as examples,the two-dimensional (2D) diffraction intensity, one-dimensional(1D) amplitude, and phase of AS, BLAS, MSAS, PAS, and NI are shown in Fig.7. When the distance is z1=100 mm,the amplitude and phase calculated by AS are already incorrect as shown in Fig.7(a). However,the amplitude and phase of BLAS, PAS, and MSAS are all consistent with that of NI.When the distance is z2=500 mm, BLAS and AS cannot be calculated accurately as shown in Fig.7(b). But both MSAS and PAS can be calculated accurately like NI,and MSAS runs faster than PAS.

    Fig.7. The 2D-diffraction intensity,1D-amplitude,and phase using AS,BLAS,MSAS,PAS,and NI in z1=100 mm and z2=500 mm,respectively.(a)z1=100 mm;(b)z2=500 mm.

    The intensities calculated inversely by MSAS and BLAS under the distances of z1=100 mm and z2=500 mm are given in Fig.8. Due to the limitation of the bandwidth in the transfer function,the accuracy of inverse calculation in BLAS decreases with the increase of propagation distance as shown in Figs.8(a),8(b),8(a1),and 8(b1). The application of BLAS in the iterative phase retrieval technology is limited. But MSAS is not restricted to inverse calculation as shown in Figs.8(c),8(d),8(c1),and 8(d1).

    Fig.8. The 2D-intensity and 1D-intensity using the inverse calculation of BLAS and MSAS under z1 =100 mm and z2 =500 mm. BLAS: (a) the inverse result in z1=100 mm,(a1)center section view of panel(a);(b)the inverse result in z2=500 mm,(b1)center section view of panel(b);MSAS:(c)the inverse result in z1=100 mm,(c1)center section view of panel(c);(d)the inverse result in z2=500 mm,(d1)center section view of panel(d).

    5. Experiment

    The experimental setup is shown in Fig.9. The laser with a wavelength λ =635 nm goes through the collimating lens and the pinhole,getting to the CCD.The diameter of the pinhole is 0.5 mm, the pixel size of CCD is Δx=Δy=7.4 μm with a total number of pixels is 1600×1200. The PV of wavefront error is 0.13λ (the caliber is φ =6 mm)so that the wavefront in the pinhole can be approximated as a plane wave. The distances between the pinhole and CCD are z1=113 mm and z2=520 mm,respectively.

    Fig.9. Experimental setup.

    When the distance is z1=113 mm,the sampling number in the pinhole plane is MPAS×NPAS=1310×1310 by using PAS. Using MSAS, the sampling interval of pinhole plane is Δx0=Δy0=16.7μm and the sampling number of calculation window is P×Q=512×512. Similarly, when the distance is z2=520 mm, the sampling number using PAS in the pinhole plane is MPAS×NPAS=6030×6030. Using MSAS,the sampling interval of pinhole plane is Δx0=Δy0=18.1 μm and the sampling number of calculation window is P×Q=2016×2016.

    Figure 10 shows the diffractive spots of PAS,MSAS,and experiment. The one-dimensional cross-sectional views of MSAS and experiment along the center are shown in Fig.11.In order to further prove the agreements between simulation by MSAS and experiment, the correlation coefficient c is defined

    From Figs.10(b)and 10(e),there is no periodic artifacts appear in the diffraction spots calculated by MSAS under two distances. Either in Fig.10 or Fig.11, MSAS is also highly consistent with the experimental results. And the correlation coefficients of the two in z1=113 mm and z2=520 mm are c1=0.9502 and c2=0.9992,respectively.As the propagation distance increases, the correlation coefficients increase because the influence of wavefront aberration is getting smaller.And the calculation time of PAS is about 3.93×and 5.77×of MSAS in z1=113 mm and z2=520 mm,respectively.Therefore, for long-distance propagation, the calculation of MSAS is accurate and fast.

    Fig.10. The diffractive spots of PAS, MSAS, and experiment. Top row: z1 =113 mm, (a) calculated by PAS, (b) calculated by MSAS, (c)experiment;bottom row: z2=520 mm,(d)calculated by PAS,(e)calculated by MSAS,(f)experiment.

    Fig.11. One-dimensional cross-sectional views of MSAS and experiment along the center: (a)z1=113 mm,(b)z2=520 mm.

    6. Conclusion

    In conclusion, a modified scaling angular spectrum(MSAS)method to solve the problem in AS for long-distance propagation is proposed. The method consists of two parts,the scaling calculation and the selection of calculation window. The former is used to freely define the sampling intervals of the input and output planes. The latter is to ensure that MSAS is calculated accurately for the long-distance propagation. It is indicated from the simulation and experiment that MSAS is highly consistent with NI and experimental results,and the calculation speed is faster than PAS.Meanwhile,MSAS does not limit bandwidth in the frequency domain like BLAS, so its accuracy in inverse calculation is much higher than BLAS. Both simulation and experiment prove the correctness of MSAS and it has a great prospect for application in iterative phase retrieval.

    猜你喜歡
    李銘
    驚喜
    奇怪的保潔
    故事會(2021年15期)2021-08-04 05:55:24
    民國銀行家李銘貨幣思想初探
    近代史學刊(2020年2期)2020-11-18 09:12:36
    拉鉤
    拉鉤
    寒門學子搶銀行,14年后浴火重生折桂名校
    分憂(2017年12期)2017-12-07 18:31:18
    寒門高考狀元為盡孝失足,14年后浴火重生折桂名校
    狀元落魄搶銀行14年浴火重生
    莫愁(2017年32期)2017-11-14 20:53:24
    寒門高考狀元盡孝搶銀行,7年后浴火重生了
    寒門高考狀元盡孝搶銀行,7年后浴火重生了
    深夜精品福利| 午夜福利免费观看在线| 欧美日韩中文字幕国产精品一区二区三区 | 搡老熟女国产l中国老女人| 五月天丁香电影| 亚洲色图av天堂| 动漫黄色视频在线观看| 999久久久国产精品视频| 激情视频va一区二区三区| 日韩中文字幕欧美一区二区| 999久久久国产精品视频| 国产成人系列免费观看| kizo精华| 亚洲熟妇熟女久久| 久久人妻熟女aⅴ| 欧美亚洲 丝袜 人妻 在线| 在线观看免费午夜福利视频| 久久久久视频综合| 国产一区二区 视频在线| 淫妇啪啪啪对白视频| 精品久久久精品久久久| 在线观看66精品国产| 欧美日韩黄片免| 亚洲精品中文字幕在线视频| 精品亚洲乱码少妇综合久久| 80岁老熟妇乱子伦牲交| 成年人免费黄色播放视频| 免费女性裸体啪啪无遮挡网站| 18在线观看网站| 亚洲伊人久久精品综合| 色尼玛亚洲综合影院| 丁香六月欧美| 色老头精品视频在线观看| 不卡一级毛片| 亚洲国产毛片av蜜桃av| 国产伦理片在线播放av一区| 亚洲精品粉嫩美女一区| 最近最新中文字幕大全免费视频| 久久九九热精品免费| 精品国产亚洲在线| 国产精品久久久久久精品电影小说| 亚洲精品国产区一区二| 免费黄频网站在线观看国产| 国产免费av片在线观看野外av| 国产在线视频一区二区| 丝袜美腿诱惑在线| 嫁个100分男人电影在线观看| 国产精品秋霞免费鲁丝片| 2018国产大陆天天弄谢| 99精品在免费线老司机午夜| 一本久久精品| 成年版毛片免费区| 少妇粗大呻吟视频| avwww免费| 99re6热这里在线精品视频| 国产一卡二卡三卡精品| 极品教师在线免费播放| 汤姆久久久久久久影院中文字幕| 日韩一卡2卡3卡4卡2021年| 成人影院久久| 天天躁日日躁夜夜躁夜夜| 麻豆成人av在线观看| 老熟女久久久| 国产精品久久久人人做人人爽| 岛国毛片在线播放| 女性生殖器流出的白浆| 日本a在线网址| 国产欧美日韩一区二区精品| 精品午夜福利视频在线观看一区 | 精品国产国语对白av| 欧美人与性动交α欧美软件| 九色亚洲精品在线播放| 夜夜骑夜夜射夜夜干| 王馨瑶露胸无遮挡在线观看| 大片免费播放器 马上看| 老熟妇乱子伦视频在线观看| 欧美精品亚洲一区二区| 极品少妇高潮喷水抽搐| 亚洲av美国av| 亚洲精品粉嫩美女一区| av网站免费在线观看视频| 日韩有码中文字幕| 成人18禁在线播放| 搡老熟女国产l中国老女人| 超碰97精品在线观看| 国产又色又爽无遮挡免费看| 人人妻人人澡人人爽人人夜夜| 国产成人影院久久av| 成人国产av品久久久| 国产在线一区二区三区精| 欧美黄色片欧美黄色片| 最近最新中文字幕大全免费视频| 人人妻人人澡人人看| 国产精品一区二区在线不卡| 国产精品久久久久成人av| 99国产精品99久久久久| 国产精品免费视频内射| 国产日韩欧美亚洲二区| 日韩欧美三级三区| 亚洲黑人精品在线| 夜夜夜夜夜久久久久| 精品国产乱子伦一区二区三区| 手机成人av网站| 女人高潮潮喷娇喘18禁视频| 99精品欧美一区二区三区四区| 亚洲av日韩在线播放| 精品久久久久久电影网| 9色porny在线观看| 手机成人av网站| 精品亚洲成a人片在线观看| 深夜精品福利| 日韩欧美免费精品| 免费看十八禁软件| 大码成人一级视频| 午夜福利视频精品| 在线观看www视频免费| 亚洲国产看品久久| 国内毛片毛片毛片毛片毛片| 波多野结衣一区麻豆| 夫妻午夜视频| 99国产精品一区二区三区| 狠狠精品人妻久久久久久综合| 国产不卡av网站在线观看| 天堂中文最新版在线下载| 18禁黄网站禁片午夜丰满| 最新美女视频免费是黄的| 国产精品国产高清国产av | 国产一区二区三区视频了| 啦啦啦免费观看视频1| 一个人免费在线观看的高清视频| 成人手机av| 一级毛片电影观看| 免费日韩欧美在线观看| 99国产极品粉嫩在线观看| 免费在线观看完整版高清| 欧美精品人与动牲交sv欧美| 桃花免费在线播放| 日日爽夜夜爽网站| 日本黄色视频三级网站网址 | 国产一区二区激情短视频| 国产黄频视频在线观看| 国产成人欧美在线观看 | 视频区图区小说| 伦理电影免费视频| 一边摸一边抽搐一进一出视频| 99久久人妻综合| 十八禁网站免费在线| 99riav亚洲国产免费| 国产成人啪精品午夜网站| 老司机深夜福利视频在线观看| 日韩欧美国产一区二区入口| 亚洲av成人不卡在线观看播放网| 精品人妻在线不人妻| 男女免费视频国产| 十分钟在线观看高清视频www| 中文字幕高清在线视频| 12—13女人毛片做爰片一| 亚洲第一青青草原| 中亚洲国语对白在线视频| 婷婷丁香在线五月| 日韩免费高清中文字幕av| 韩国精品一区二区三区| 岛国毛片在线播放| 麻豆国产av国片精品| 久久热在线av| 麻豆成人av在线观看| 两个人免费观看高清视频| 满18在线观看网站| 麻豆国产av国片精品| 国产亚洲午夜精品一区二区久久| 欧美精品啪啪一区二区三区| 一个人免费看片子| 99精国产麻豆久久婷婷| 国产成人一区二区三区免费视频网站| 免费在线观看日本一区| 亚洲精品中文字幕在线视频| 人妻一区二区av| 亚洲五月婷婷丁香| 亚洲欧洲精品一区二区精品久久久| 岛国在线观看网站| 国产日韩欧美在线精品| 少妇裸体淫交视频免费看高清 | netflix在线观看网站| 女性被躁到高潮视频| videos熟女内射| 老司机影院毛片| 免费在线观看黄色视频的| 亚洲色图综合在线观看| 悠悠久久av| 久久av网站| 国产黄频视频在线观看| 久久国产精品人妻蜜桃| 国产亚洲av高清不卡| 国产精品国产av在线观看| 男女边摸边吃奶| 一级毛片电影观看| 亚洲五月色婷婷综合| 欧美变态另类bdsm刘玥| 国产精品 国内视频| 夫妻午夜视频| 国产精品亚洲一级av第二区| 国产精品国产av在线观看| 久久久久精品人妻al黑| 超色免费av| 欧美久久黑人一区二区| 妹子高潮喷水视频| 99国产精品免费福利视频| 香蕉国产在线看| 黄色a级毛片大全视频| 亚洲精品中文字幕在线视频| 日本黄色日本黄色录像| 69精品国产乱码久久久| 日日爽夜夜爽网站| 日韩欧美国产一区二区入口| 精品国产一区二区三区久久久樱花| 亚洲免费av在线视频| 女人爽到高潮嗷嗷叫在线视频| www.自偷自拍.com| 久久中文字幕人妻熟女| 日韩中文字幕视频在线看片| 精品国产国语对白av| 12—13女人毛片做爰片一| 国产欧美日韩精品亚洲av| 波多野结衣一区麻豆| 国产免费视频播放在线视频| 老熟女久久久| 中文字幕人妻丝袜制服| 人妻久久中文字幕网| 老熟妇乱子伦视频在线观看| 欧美午夜高清在线| 大香蕉久久成人网| 国产成人av激情在线播放| 在线亚洲精品国产二区图片欧美| 露出奶头的视频| 国产97色在线日韩免费| 在线 av 中文字幕| 另类亚洲欧美激情| 久久九九热精品免费| 日日摸夜夜添夜夜添小说| 自线自在国产av| 十八禁网站免费在线| 两性夫妻黄色片| 窝窝影院91人妻| 黑人巨大精品欧美一区二区蜜桃| 俄罗斯特黄特色一大片| 色综合欧美亚洲国产小说| 777久久人妻少妇嫩草av网站| 欧美变态另类bdsm刘玥| 成人手机av| 真人做人爱边吃奶动态| 在线观看人妻少妇| 男女之事视频高清在线观看| www.精华液| 亚洲欧美激情在线| 亚洲精品国产精品久久久不卡| 精品国产一区二区久久| 午夜福利影视在线免费观看| 日韩视频在线欧美| cao死你这个sao货| 午夜成年电影在线免费观看| 欧美精品啪啪一区二区三区| 成年动漫av网址| 男女边摸边吃奶| 久久久久精品国产欧美久久久| 一二三四在线观看免费中文在| 久热这里只有精品99| 国产色视频综合| 大片免费播放器 马上看| 波多野结衣av一区二区av| 国产免费福利视频在线观看| 亚洲精品乱久久久久久| 亚洲色图av天堂| 日本精品一区二区三区蜜桃| 99香蕉大伊视频| 黄色毛片三级朝国网站| 嫩草影视91久久| 少妇裸体淫交视频免费看高清 | 视频在线观看一区二区三区| 亚洲成国产人片在线观看| 777久久人妻少妇嫩草av网站| 高清视频免费观看一区二区| 久久这里只有精品19| 国产精品国产高清国产av | 久久人妻福利社区极品人妻图片| 高清av免费在线| 建设人人有责人人尽责人人享有的| 岛国毛片在线播放| 国产一区二区在线观看av| 美女国产高潮福利片在线看| 99精品欧美一区二区三区四区| 精品一区二区三区四区五区乱码| 99国产精品一区二区三区| 国产一卡二卡三卡精品| 国产成人av教育| 不卡av一区二区三区| 国产精品国产av在线观看| 最新的欧美精品一区二区| 欧美成人免费av一区二区三区 | 亚洲欧美一区二区三区久久| 精品视频人人做人人爽| 香蕉国产在线看| 丰满少妇做爰视频| av视频免费观看在线观看| av福利片在线| 五月天丁香电影| 亚洲久久久国产精品| 日韩一卡2卡3卡4卡2021年| 精品福利观看| 欧美激情极品国产一区二区三区| 亚洲成国产人片在线观看| 国产精品亚洲一级av第二区| 91成年电影在线观看| 亚洲国产中文字幕在线视频| 亚洲国产欧美日韩在线播放| 国产免费现黄频在线看| 一级片'在线观看视频| 亚洲专区字幕在线| 99re在线观看精品视频| 超色免费av| 亚洲中文日韩欧美视频| 男女无遮挡免费网站观看| 亚洲天堂av无毛| 不卡av一区二区三区| 高清视频免费观看一区二区| 女人精品久久久久毛片| 黄色成人免费大全| 亚洲久久久国产精品| 亚洲成a人片在线一区二区| 色婷婷久久久亚洲欧美| 久久久欧美国产精品| 国产极品粉嫩免费观看在线| 岛国在线观看网站| 欧美激情 高清一区二区三区| 国产黄频视频在线观看| 久久国产亚洲av麻豆专区| 日韩视频在线欧美| 久久午夜亚洲精品久久| 欧美精品av麻豆av| 午夜精品国产一区二区电影| 男女下面插进去视频免费观看| 免费在线观看日本一区| 精品一区二区三卡| 免费观看a级毛片全部| www日本在线高清视频| 男女床上黄色一级片免费看| 老司机午夜福利在线观看视频 | 欧美日本中文国产一区发布| 色综合欧美亚洲国产小说| 每晚都被弄得嗷嗷叫到高潮| 国产伦人伦偷精品视频| 我的亚洲天堂| 国产xxxxx性猛交| 精品熟女少妇八av免费久了| 手机成人av网站| 久久精品人人爽人人爽视色| 黄色丝袜av网址大全| 乱人伦中国视频| 视频在线观看一区二区三区| 亚洲精品国产色婷婷电影| 午夜两性在线视频| 国产有黄有色有爽视频| 最近最新中文字幕大全电影3 | 一级毛片精品| 成年动漫av网址| 午夜老司机福利片| 变态另类成人亚洲欧美熟女 | 熟女少妇亚洲综合色aaa.| 三上悠亚av全集在线观看| 亚洲一码二码三码区别大吗| 啦啦啦中文免费视频观看日本| 亚洲国产看品久久| 国产国语露脸激情在线看| 欧美精品亚洲一区二区| 久久国产精品大桥未久av| 日韩中文字幕视频在线看片| 亚洲国产欧美日韩在线播放| 99国产精品一区二区蜜桃av | 国产精品99久久99久久久不卡| 久久精品人人爽人人爽视色| 搡老乐熟女国产| 丁香欧美五月| 最黄视频免费看| 精品福利观看| 老司机影院毛片| 精品第一国产精品| 国产一区有黄有色的免费视频| 别揉我奶头~嗯~啊~动态视频| 757午夜福利合集在线观看| 亚洲男人天堂网一区| 老司机午夜福利在线观看视频 | 精品国产乱码久久久久久男人| 国产精品一区二区免费欧美| 国产精品香港三级国产av潘金莲| 日韩有码中文字幕| 欧美日韩av久久| 国产精品二区激情视频| 自拍欧美九色日韩亚洲蝌蚪91| 伊人久久大香线蕉亚洲五| 狠狠狠狠99中文字幕| 午夜福利视频精品| h视频一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 另类精品久久| 母亲3免费完整高清在线观看| 久久精品国产综合久久久| 99re6热这里在线精品视频| 夫妻午夜视频| 在线观看一区二区三区激情| 国产欧美日韩综合在线一区二区| 亚洲熟女毛片儿| 一个人免费在线观看的高清视频| 午夜久久久在线观看| 国产亚洲精品第一综合不卡| 国产av又大| 久久国产精品影院| 少妇裸体淫交视频免费看高清 | 热99国产精品久久久久久7| 欧美日韩中文字幕国产精品一区二区三区 | 性高湖久久久久久久久免费观看| 国产精品一区二区在线不卡| 久久狼人影院| 成人国产av品久久久| 视频在线观看一区二区三区| 热99国产精品久久久久久7| 免费高清在线观看日韩| 啦啦啦在线免费观看视频4| 亚洲视频免费观看视频| 亚洲精品国产一区二区精华液| 午夜免费成人在线视频| 麻豆国产av国片精品| 午夜两性在线视频| 国产精品 国内视频| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利在线免费观看网站| 色视频在线一区二区三区| 日韩欧美一区二区三区在线观看 | 岛国毛片在线播放| 免费久久久久久久精品成人欧美视频| 亚洲少妇的诱惑av| 在线观看免费日韩欧美大片| 9热在线视频观看99| 性色av乱码一区二区三区2| 美女福利国产在线| 亚洲熟妇熟女久久| 淫妇啪啪啪对白视频| 宅男免费午夜| 国产激情久久老熟女| 天天躁狠狠躁夜夜躁狠狠躁| 国产一区二区在线观看av| 日韩免费av在线播放| 男人操女人黄网站| 日本黄色视频三级网站网址 | 一区二区av电影网| 老熟妇仑乱视频hdxx| 国产精品成人在线| 国产日韩欧美视频二区| 中亚洲国语对白在线视频| 国产精品久久久久久精品电影小说| 免费观看av网站的网址| 亚洲国产欧美网| 热99久久久久精品小说推荐| 大码成人一级视频| 无遮挡黄片免费观看| 一区二区av电影网| 亚洲全国av大片| 久久人人爽av亚洲精品天堂| 精品视频人人做人人爽| 大码成人一级视频| 日韩成人在线观看一区二区三区| 免费不卡黄色视频| 成人国产一区最新在线观看| 国产欧美日韩综合在线一区二区| 12—13女人毛片做爰片一| 男人操女人黄网站| 亚洲精品中文字幕在线视频| 中文欧美无线码| 亚洲成人免费电影在线观看| 日韩人妻精品一区2区三区| 岛国在线观看网站| 国产福利在线免费观看视频| 欧美国产精品va在线观看不卡| 亚洲九九香蕉| 丰满少妇做爰视频| 俄罗斯特黄特色一大片| 精品久久久精品久久久| 99国产综合亚洲精品| 女人爽到高潮嗷嗷叫在线视频| 免费高清在线观看日韩| 亚洲av片天天在线观看| 日韩熟女老妇一区二区性免费视频| 啦啦啦在线免费观看视频4| 亚洲av美国av| 久久人妻av系列| 国产不卡av网站在线观看| 国产高清国产精品国产三级| 80岁老熟妇乱子伦牲交| 久久久久精品国产欧美久久久| h视频一区二区三区| 婷婷丁香在线五月| 久久狼人影院| 欧美中文综合在线视频| 精品人妻在线不人妻| 男女高潮啪啪啪动态图| 久久毛片免费看一区二区三区| 欧美国产精品一级二级三级| 另类亚洲欧美激情| 国产aⅴ精品一区二区三区波| 国产免费av片在线观看野外av| 在线播放国产精品三级| 在线永久观看黄色视频| 制服人妻中文乱码| 国产91精品成人一区二区三区 | 天天影视国产精品| 色综合欧美亚洲国产小说| 日韩精品免费视频一区二区三区| 法律面前人人平等表现在哪些方面| 亚洲国产看品久久| 欧美国产精品一级二级三级| 啦啦啦免费观看视频1| 久久久国产一区二区| 一区二区日韩欧美中文字幕| 国产精品亚洲av一区麻豆| 日韩成人在线观看一区二区三区| 国产国语露脸激情在线看| 韩国精品一区二区三区| 精品熟女少妇八av免费久了| 一边摸一边做爽爽视频免费| 国产精品成人在线| 女人被躁到高潮嗷嗷叫费观| 一区二区av电影网| 亚洲美女黄片视频| 人妻久久中文字幕网| 久久久精品免费免费高清| 制服人妻中文乱码| 一二三四社区在线视频社区8| 啦啦啦视频在线资源免费观看| 亚洲久久久国产精品| 丁香六月欧美| 国产av精品麻豆| 久久精品亚洲精品国产色婷小说| 久久99一区二区三区| 9热在线视频观看99| 99riav亚洲国产免费| 美女视频免费永久观看网站| 黄色片一级片一级黄色片| 精品亚洲成a人片在线观看| 狂野欧美激情性xxxx| 亚洲欧美色中文字幕在线| 精品欧美一区二区三区在线| 久久久精品免费免费高清| 久久人妻av系列| 大香蕉久久网| 天天躁日日躁夜夜躁夜夜| 亚洲七黄色美女视频| 在线观看66精品国产| 国产av又大| 久久精品国产a三级三级三级| 亚洲精品乱久久久久久| 欧美黑人精品巨大| 欧美久久黑人一区二区| 国产三级黄色录像| 日韩免费高清中文字幕av| 天天操日日干夜夜撸| 建设人人有责人人尽责人人享有的| 欧美人与性动交α欧美精品济南到| 伊人久久大香线蕉亚洲五| 一本色道久久久久久精品综合| 一区福利在线观看| 国产一区二区 视频在线| 国产精品.久久久| 久久精品亚洲精品国产色婷小说| 欧美在线一区亚洲| 一边摸一边做爽爽视频免费| 亚洲一卡2卡3卡4卡5卡精品中文| 乱人伦中国视频| 欧美日韩亚洲国产一区二区在线观看 | 我的亚洲天堂| 一个人免费在线观看的高清视频| 久久精品亚洲熟妇少妇任你| 一级,二级,三级黄色视频| 黄色 视频免费看| 国产成人免费观看mmmm| 国产精品香港三级国产av潘金莲| 两个人看的免费小视频| 十八禁网站免费在线| 咕卡用的链子| 久久亚洲真实| 婷婷成人精品国产| 国产区一区二久久| 国产高清激情床上av| 黄色怎么调成土黄色| 99国产综合亚洲精品| 97人妻天天添夜夜摸| 久9热在线精品视频| 在线观看人妻少妇| 久久久精品94久久精品| 啦啦啦 在线观看视频| 亚洲人成电影免费在线| 在线亚洲精品国产二区图片欧美| 在线av久久热| 久久毛片免费看一区二区三区| 啦啦啦在线免费观看视频4| 中文字幕人妻丝袜制服| 亚洲五月色婷婷综合| 国产精品美女特级片免费视频播放器 | 岛国在线观看网站| 久久精品亚洲av国产电影网| 国产在线一区二区三区精| 亚洲国产中文字幕在线视频| 十八禁网站网址无遮挡| 国产亚洲精品一区二区www | 国产成人av教育| 日韩 欧美 亚洲 中文字幕| 我的亚洲天堂| 中文字幕人妻丝袜制服|