• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Combined effects of cycling endurance and total ionizing dose on floating gate memory cells

    2022-05-16 07:10:54SiDeSong宋思德GuoZhuLiu劉國柱QiHe賀琪XiangGu顧祥GenShenHong洪根深andJianWeiWu吳建偉
    Chinese Physics B 2022年5期
    關鍵詞:國柱

    Si-De Song(宋思德), Guo-Zhu Liu(劉國柱), Qi He(賀琪), Xiang Gu(顧祥),Gen-Shen Hong(洪根深), and Jian-Wei Wu(吳建偉)

    The 58th Institution of Electronic Science and Technology Group Corporation of China,Wuxi 214000,China

    Keywords: radiation,floating gate,threshold voltage,recombination

    1. Introduction

    Despite the rapid growth of new emerging alternative memories, such as the ferroelectric random access memory (FeRAM),[1–3]the magnetic random access memory (MRAM),[4,5]the phase change random access memory (PCRAM),[6,7]and the resistive random access memory (RRAM),[8,9]the flash memory still dominates the nonvolatile memory market due to its high reliability,high density,and low cost. For the electrical and electronic systems based on floating gate memories in aerospace technology,the effect of total ionizing dose(TID)and single event effect(SEE)remain big challenges.[10–13]In order to guarantee the reliability and performance of these floating gate(FG)memory incorporated systems, the fundamental mechanisms of TID and SEE on the FG memories need further exploring.

    There have been several studies[10,14]of modeling the radiation response of FG memories, including mainly the following three mechanisms: (i) holes injected into the FG, (ii)holes trapped in the oxide,and(iii)electron emitted from the FG. These studies describe mainly the TID induced threshold voltage shift in floating gate memories, but not the radiation effects on device parameters such as leakage,or transconductance, or breakdown . Moreover, in real space-flight missions, the flash memories are subjected to both TID and cycling(programmed and erased,P/E)stress,and the reports on combined effects of cycling endurance and radiation on floating gate memories are quite few. So,it would be valuable and meaningful to have an in-depth study on the interaction between cycling stress and radiation to analyze the degradation mechanism and also to design radiation hardened FG memories.

    In this study, the combined effects of cycling endurance and radiation on floating gate memory cell are emphasized.We find that an appropriate magnitude of cycling stress on flash cells before radiation can mitigate the threshold voltage shift in response to Co-60γ-ray irradiation. Both the programmed state and erased state with prior cycling stress exhibit more severe transconductance degradation than without cycling in advance; Radiation is more likely to set up the interface generation in programmed state than in erased state.

    2. Experiment and devices

    The FG memory cell tested in this work,also named 2TFlash,was fabricated based on the embedded p-Flash technology.The structure is displayed in Fig.1,a typical 2T-Flash cell consisted of two transistors, a select transistor, and a floating gate transistor. The flash cell operation included the program,erase and read. The program operation was to move electrons into the FG (programmed state), while the erasing operation was to remove the electrons out of the FG(erased state),then the state of the flash cell could be sensed or read by measuring the threshold voltage. In this work,the programmed state and erased state of the flash cells in response to radiation are studied in detail.

    The flash cells were bound to a DIP20 ceramic dual-inline package,and all the devices under test(DUT)were classified into four conditions prior to irradiation,i.e., the programmed state with prior cycling stress (group 1), the programmed state without prior cycling stress (group 2), the erased state with prior cycling stress(group 3),and the erased state without prior cycling stress(group 4). The devices were irradiated by Co-60γ-ray source under normal incidence and at a constant dose rate of 50 rad (Si/s), the total dose is set to be 50 krad and 100 krad separately, all the terminals in the radiation process were grounded. After the specified total dose of radiation is reached,an electrical parameter test is performed. The electrical characteristics of the 2T-flash memory cells were measured with KEYSIGHT B1500 semiconductor device analyzer.

    Fig.1. Typical structure of 2T-flash memory cell.

    3. Results and discussion

    The electrical characteristics in group 1 and group 2 devices are shown in Fig.2.It is observed that both the threshold voltage and the threshold transconductance in group 1 devices change only slightly before and after 2000 times P/E cycles,according to which we assume that the initial states of group 1 are“similar”to those of group 2 devices.

    While after irradiation,the difference in threshold voltage shift between two groups is significant. The threshold voltage shifts of devices in group 1 are all 0.8 V for 50 krad(Si)and 2.1 V for 100 krad(Si)respectively,while those in group 2 devices are 2.3 V for 50 krad(Si)and 3.6 V for 100 krad(Si),respectively(see Figs.2(a)and 2(b)). In addition,the transconductance curves in both groups shift toward negative values and the peak value decrease,which is an indication of reduced electrons on the FG and increased interface state density, respectively. It is also noted that the conductance degradation in group 1 is more severe than in group 2, which we assume is the result of prior P/E cycling stress.The significant difference in threshold voltage shift is illustrated as follows.

    The threshold voltage(Vth)versustotal doseγis quantitatively described in the following equation:[15]

    whereγis the total dose,Vth(0)is the threshold voltage before irradiation,Vth(∞) is the saturation value, andAis the decay constant.

    Fig.2. Electrical characteristics of programmed flash cell before and after TID,showing[(a)and(b)]transfer curves,and[(c)and(d)]transconductance curves.

    As mentioned above, the initial states of group 1 and group 2 devices are“similar”in terms of initial threshold voltage and interface state density, while their responses to TID are quite different. According to Eq.(1),the threshold voltage after radiation is dependent on the initial threshold voltage,the total dose of radiation and the decay constant,so the threshold voltage shift difference may origin from the decay constant,which is closely related to the material properties and process technology,and also more likely to the prior P/E cycling stress.As is well known,the P/E cycling endurance leaves the tunnel oxide in high electrical stress,which may lead the oxide trap to generate and interface trap to generate. In our case,the interface trap after stress is negligible,so we assume that the large difference may be caused by the oxide trap. The schematic diagram of programmed flash cell in response to radiation is depictured in Fig.3.

    As illustrated in Fig. 3, there are a majority of electrons stored on the floating gate at the programmed state, forming strong electric field in the surrounding oxide layers. When irradiated, the following three main processes may cause the electrons to lose from the floating gate: (I) photoemission(electrons on the floating gate absorb enough energy from the photons and overcome the barrier(>3.2 eV)of the surrounding dielectric layer); (II) the hole hopping and trapping (the radiation induced holes in the oxide layer transport through local state and some are trapped near the SiO2/floating gate interface); (III) the hole injection (Some holes may escape from the trapping process and directly enter into the floating gate and recombine with the electron localized). Thus, the threshold voltage shift(ΔVth)after irradiation can be expressed below:[11]

    whereCppis the floating gate to control gate capacitance,ΔQis the total electron loss from floating gate,ΔQph,ΔQt,andQiare the electrons lost due to photoemission,hole trapping,and hole injection,respectively,with all normalized into the value per unit area.

    Fig.3. Programmed flash cell in response to Co-60 γ-ray radiation.

    Fig.4. TID characteristics of flash cell with prior P/E cycling numbers(a)500,(b)2000,(c)5000,and(d)10000.

    In group 1 the devices is under a prior 2000-P/E cycling stress, the tunnel oxide is subjected to high electrical filed stress, generating oxide traps (mainly electron traps). While the TID also causes the hole to be trapped in the tunnel oxide,there is a possibility that these trapped electrons and trapped holes may be recombined in a very short time as illustrated in process 4 in Fig.3,reducing the electron loss through ΔQtandQiin Eq.(2),resulting in reduced threshold voltage shift compared with the scenario for the devices in group 2.

    Also, the influence of prior P/E cycling numbers on the radiation induced threshold voltage shift is investigated, and the results are shown in Fig. 4. After the radiation with the total dose of 100 krad(Si),the threshold voltage shift for flash cells with prior 500-and 2000-P/E cycling stresses exhibits a total threshold voltage shift of about 2 V, while the values of 2.5 V and 2.8 V are in the 5000- and 10000-P/E cycled devices, respectively. The result, in the one hand, proves that the P/E cycling stress before TID can mitigate the radiation induced threshold voltage shift,and,in the other hand,reveals that too many cycling numbers also set up large threshold voltage shift,which is a result of the combined effects of cycling stress and TID.

    Furthermore, the combined effects of TID and cycling stress are also studied in the erased state, and the results are described in Fig. 5. Like the programmed state for each of the devices of group 1,the threshold voltage and transconductance before P/E cycling stress are similar to those after the P/E cycling stress, while the transconductance peak value after radiation for each of the devices of group 3 drops much more than that in group 4 devices(see Fig.5(d)),which once again proves that the cycled flash cells are more likely to develop interface state after radiation. By comparison,the major difference between the programmed state and erased state after TID lies in the fact that the latter’s threshold voltage shifts slightly toward the positive direction,which is caused mainly by hole emission in the surrounding oxide. It is also observed that the conductance degradation in group 1(the programmed state)is more severe than in group 3(erased state),illustrating the radiation induced interface trap generation in programmed state is higher than in the erased state.

    Fig.5. Electrical characteristics of erased flash cell before and after TID,showing[(a)–(c)]transfer curve,and(d)transconductance curve.

    4. Conclusions

    In this paper, the combined effects of cycling endurance and radiation on floating gate memory cell are investigated in detail, the results reveal that appropriate P/E cycling number before radiation can mitigate the TID induced threshold voltage shift,which is ascribed to the electron–hole recombination in the surrounding oxides. However, the cycling stress may lead to more severe conductance degradation after radiation,and this is more evident in the programmed state than in the erased state. Thus, the combined effect of cycling stress and TID is a tradeoff between interface state and threshold voltage shift. The result will be useful in understanding the issues involved in cycling endurance and radiation effects as well as in designing radiation hardened floating gate memory cells.

    Acknowledgements

    Project supported financially by the National Natural Science Foundation of China(Grant No.62174150)and the Natural Science Foundation of Jiangsu Province, China (Grant No.BK20211040).

    猜你喜歡
    國柱
    Fully relativistic many-body perturbation energies,transition properties,and lifetimes of lithium-like iron Fe XXIV
    純良打鐵
    飛天(2023年2期)2023-03-06 04:01:43
    Analysis on degradation mechanisms of normally-off p-GaN gate AlGaN/GaN high-electron mobility transistor?
    輸氣管道工程中定向鉆施工工藝應用研究
    Implementation Scheme of Two-Photon Post-Quantum Correlations?
    什么都不知道
    短篇小說(2018年2期)2018-04-25 06:57:12
    幸福生活往高處走
    都市(2017年11期)2017-11-14 02:22:36
    閉著眼睛的男孩
    閉著眼睛的男孩
    女士(2015年3期)2015-07-05 01:11:32
    涉筆奏刀皆成趣
    當代人(2015年4期)2015-05-30 10:48:04
    一级片'在线观看视频| 国产免费av片在线观看野外av| 精品国产一区二区三区四区第35| 国产欧美亚洲国产| 麻豆av在线久日| 极品人妻少妇av视频| av一本久久久久| 不卡av一区二区三区| 99久久人妻综合| 老汉色av国产亚洲站长工具| 波多野结衣一区麻豆| 搡老乐熟女国产| 欧美人与性动交α欧美软件| 国产精品麻豆人妻色哟哟久久| 乱人伦中国视频| 久久精品国产综合久久久| 美女大奶头黄色视频| 老司机影院毛片| 久久性视频一级片| 成人18禁高潮啪啪吃奶动态图| 美国免费a级毛片| www.自偷自拍.com| 成人免费观看视频高清| 亚洲熟女精品中文字幕| 亚洲精品国产色婷婷电影| 精品福利观看| h视频一区二区三区| 国产一区二区三区在线臀色熟女 | 国产一区二区 视频在线| 精品福利观看| 人妻一区二区av| 亚洲精品久久久久久婷婷小说| 亚洲国产中文字幕在线视频| 亚洲专区国产一区二区| 久久精品国产亚洲av香蕉五月 | 成人亚洲精品一区在线观看| 午夜精品久久久久久毛片777| 精品一区二区三区av网在线观看 | 成人国产一区最新在线观看| 国产精品av久久久久免费| 国产成人一区二区三区免费视频网站| 欧美日韩国产mv在线观看视频| 91字幕亚洲| 久久久水蜜桃国产精品网| 午夜精品久久久久久毛片777| 久久99热这里只频精品6学生| 国产亚洲一区二区精品| 精品少妇黑人巨大在线播放| 一区二区三区精品91| 国产亚洲午夜精品一区二区久久| 日本av手机在线免费观看| 啦啦啦在线免费观看视频4| 99国产精品一区二区蜜桃av | 一级片'在线观看视频| 黄片播放在线免费| 伦理电影免费视频| 免费在线观看视频国产中文字幕亚洲 | 69精品国产乱码久久久| 亚洲精品国产一区二区精华液| 99精品久久久久人妻精品| 亚洲国产av影院在线观看| 十八禁人妻一区二区| 免费看十八禁软件| 三级毛片av免费| 久久99热这里只频精品6学生| 一级a爱视频在线免费观看| 涩涩av久久男人的天堂| 日韩 欧美 亚洲 中文字幕| 亚洲,欧美精品.| 天天添夜夜摸| 国产av精品麻豆| 精品少妇一区二区三区视频日本电影| 一区二区三区四区激情视频| 高清av免费在线| cao死你这个sao货| 99精品久久久久人妻精品| 国产男人的电影天堂91| 咕卡用的链子| 老司机靠b影院| 久久精品国产亚洲av香蕉五月 | 欧美另类亚洲清纯唯美| 黄色怎么调成土黄色| 不卡av一区二区三区| 久久精品国产a三级三级三级| 中文字幕人妻丝袜一区二区| 久久久久久久久久久久大奶| 亚洲国产欧美在线一区| 王馨瑶露胸无遮挡在线观看| 国产成人欧美| 欧美变态另类bdsm刘玥| 黄频高清免费视频| 精品国产一区二区久久| 中文字幕色久视频| 50天的宝宝边吃奶边哭怎么回事| 精品第一国产精品| 亚洲欧美清纯卡通| 国产在视频线精品| 美女国产高潮福利片在线看| 不卡一级毛片| 国产在线观看jvid| 欧美老熟妇乱子伦牲交| 一个人免费在线观看的高清视频 | 婷婷丁香在线五月| 午夜免费鲁丝| 黄色视频在线播放观看不卡| 91字幕亚洲| 黄色视频不卡| 欧美一级毛片孕妇| 建设人人有责人人尽责人人享有的| 深夜精品福利| 亚洲人成电影免费在线| 亚洲中文日韩欧美视频| 91成人精品电影| 丝袜美腿诱惑在线| 欧美中文综合在线视频| 在线亚洲精品国产二区图片欧美| 久久国产精品大桥未久av| 在线av久久热| 在线观看www视频免费| 精品人妻熟女毛片av久久网站| 国产成人影院久久av| 人人妻人人澡人人看| 亚洲国产日韩一区二区| 午夜免费成人在线视频| 飞空精品影院首页| av又黄又爽大尺度在线免费看| 亚洲欧美成人综合另类久久久| 免费久久久久久久精品成人欧美视频| 午夜日韩欧美国产| 中文字幕精品免费在线观看视频| 成年av动漫网址| 亚洲精品久久成人aⅴ小说| 99国产综合亚洲精品| 91av网站免费观看| 91成人精品电影| 国产91精品成人一区二区三区 | 精品国产一区二区三区久久久樱花| 最黄视频免费看| 黄色a级毛片大全视频| 亚洲精品成人av观看孕妇| 91成人精品电影| 国产一区二区三区在线臀色熟女 | 中文字幕色久视频| 青春草亚洲视频在线观看| 99久久99久久久精品蜜桃| 狂野欧美激情性bbbbbb| 国产在线一区二区三区精| 亚洲成av片中文字幕在线观看| 亚洲一码二码三码区别大吗| 欧美精品av麻豆av| 亚洲av成人不卡在线观看播放网 | 日韩中文字幕欧美一区二区| 中文字幕人妻丝袜制服| 久久影院123| 久久久久久久国产电影| 一级片免费观看大全| 久久国产精品人妻蜜桃| 亚洲精品一区蜜桃| 男女免费视频国产| 91老司机精品| 国产一区有黄有色的免费视频| 亚洲精华国产精华精| 免费在线观看日本一区| av天堂在线播放| 在线看a的网站| 国产精品一区二区免费欧美 | 欧美日韩亚洲国产一区二区在线观看 | 成人黄色视频免费在线看| 亚洲欧美一区二区三区久久| 亚洲视频免费观看视频| 女人精品久久久久毛片| 精品国产超薄肉色丝袜足j| 欧美激情极品国产一区二区三区| 熟女少妇亚洲综合色aaa.| 国产无遮挡羞羞视频在线观看| 90打野战视频偷拍视频| 91大片在线观看| 18禁观看日本| av超薄肉色丝袜交足视频| 久久综合国产亚洲精品| 亚洲欧美色中文字幕在线| 中文欧美无线码| 9191精品国产免费久久| av视频免费观看在线观看| 成人黄色视频免费在线看| 亚洲专区字幕在线| 19禁男女啪啪无遮挡网站| 一本—道久久a久久精品蜜桃钙片| 91成人精品电影| 精品福利永久在线观看| 高潮久久久久久久久久久不卡| videos熟女内射| 亚洲精品自拍成人| 国产在视频线精品| 国产一区二区激情短视频 | 欧美激情 高清一区二区三区| 国产麻豆69| 亚洲专区国产一区二区| 狠狠婷婷综合久久久久久88av| 搡老乐熟女国产| 国产在线一区二区三区精| 一级,二级,三级黄色视频| 国产免费视频播放在线视频| 久久精品熟女亚洲av麻豆精品| 亚洲熟女精品中文字幕| 97精品久久久久久久久久精品| 美女高潮到喷水免费观看| 国产激情久久老熟女| 久久久久久久国产电影| 大香蕉久久成人网| 亚洲午夜精品一区,二区,三区| 成年人免费黄色播放视频| 久久久久国产一级毛片高清牌| 建设人人有责人人尽责人人享有的| 日韩视频一区二区在线观看| svipshipincom国产片| 自线自在国产av| 色精品久久人妻99蜜桃| 美国免费a级毛片| 人妻一区二区av| 成人国语在线视频| 婷婷成人精品国产| 天天添夜夜摸| 最新在线观看一区二区三区| 人妻人人澡人人爽人人| av欧美777| 久久九九热精品免费| 王馨瑶露胸无遮挡在线观看| 久久狼人影院| 亚洲一区二区三区欧美精品| 欧美少妇被猛烈插入视频| av免费在线观看网站| 日韩 欧美 亚洲 中文字幕| 亚洲一码二码三码区别大吗| 人妻久久中文字幕网| 国产精品久久久久久精品电影小说| av欧美777| 欧美亚洲 丝袜 人妻 在线| 一本久久精品| 19禁男女啪啪无遮挡网站| 国产精品 欧美亚洲| 成人国产一区最新在线观看| 国产欧美日韩一区二区精品| 亚洲精品成人av观看孕妇| 国产有黄有色有爽视频| 人人澡人人妻人| 亚洲国产看品久久| 亚洲av男天堂| 亚洲精品国产区一区二| 国产成人影院久久av| 亚洲自偷自拍图片 自拍| 日韩,欧美,国产一区二区三区| 熟女少妇亚洲综合色aaa.| 亚洲av成人不卡在线观看播放网 | 老司机亚洲免费影院| 国产精品香港三级国产av潘金莲| 亚洲国产精品一区三区| 不卡av一区二区三区| 亚洲少妇的诱惑av| 90打野战视频偷拍视频| 亚洲免费av在线视频| 国产精品熟女久久久久浪| 欧美精品高潮呻吟av久久| 老鸭窝网址在线观看| 制服人妻中文乱码| 男人添女人高潮全过程视频| 一本色道久久久久久精品综合| 国产高清视频在线播放一区 | 欧美国产精品va在线观看不卡| 91精品三级在线观看| 多毛熟女@视频| 男女午夜视频在线观看| 久久精品久久久久久噜噜老黄| 欧美成人午夜精品| 老鸭窝网址在线观看| 午夜福利影视在线免费观看| 天天添夜夜摸| 亚洲av片天天在线观看| 黄色视频不卡| 亚洲色图综合在线观看| 黄片小视频在线播放| 一级片'在线观看视频| 精品人妻1区二区| 国产欧美日韩一区二区精品| 999久久久精品免费观看国产| cao死你这个sao货| www日本在线高清视频| 久久精品人人爽人人爽视色| 一区二区三区四区激情视频| www.999成人在线观看| 大片电影免费在线观看免费| 十八禁高潮呻吟视频| 中文字幕人妻熟女乱码| 免费在线观看影片大全网站| 亚洲天堂av无毛| 麻豆乱淫一区二区| 51午夜福利影视在线观看| 热re99久久国产66热| 十八禁网站网址无遮挡| 精品少妇久久久久久888优播| 人妻 亚洲 视频| 国产精品亚洲av一区麻豆| 日韩制服丝袜自拍偷拍| 午夜老司机福利片| 999久久久国产精品视频| 成年人黄色毛片网站| 欧美日韩精品网址| 亚洲国产精品一区二区三区在线| 老司机深夜福利视频在线观看 | 水蜜桃什么品种好| av网站免费在线观看视频| 一本综合久久免费| 国产精品av久久久久免费| 一区二区三区四区激情视频| 啦啦啦 在线观看视频| 91大片在线观看| 日本91视频免费播放| 国产av精品麻豆| 国产精品二区激情视频| 亚洲人成电影观看| 亚洲色图综合在线观看| www.自偷自拍.com| 国产有黄有色有爽视频| 一级毛片电影观看| 亚洲伊人色综图| 汤姆久久久久久久影院中文字幕| 在线观看免费高清a一片| www.999成人在线观看| 91大片在线观看| av视频免费观看在线观看| 老司机福利观看| av在线老鸭窝| 久久久久视频综合| 国产又爽黄色视频| 日韩中文字幕视频在线看片| 欧美av亚洲av综合av国产av| 欧美黄色淫秽网站| 精品亚洲乱码少妇综合久久| 最新在线观看一区二区三区| 欧美精品高潮呻吟av久久| 国产成人免费观看mmmm| 91成人精品电影| 免费不卡黄色视频| 涩涩av久久男人的天堂| 各种免费的搞黄视频| 国产日韩欧美亚洲二区| 女人精品久久久久毛片| 午夜影院在线不卡| 欧美另类亚洲清纯唯美| 精品人妻在线不人妻| 中文字幕另类日韩欧美亚洲嫩草| 我要看黄色一级片免费的| 大陆偷拍与自拍| 亚洲av片天天在线观看| 久久中文字幕一级| 中文字幕精品免费在线观看视频| 高清黄色对白视频在线免费看| 日韩免费高清中文字幕av| 国产av精品麻豆| 咕卡用的链子| 亚洲欧美精品自产自拍| 丝袜脚勾引网站| 欧美在线一区亚洲| 欧美精品亚洲一区二区| 亚洲精品日韩在线中文字幕| 亚洲欧美激情在线| 国产欧美日韩一区二区精品| 男人舔女人的私密视频| 久久香蕉激情| www.自偷自拍.com| 欧美黄色淫秽网站| 青春草视频在线免费观看| 久久久国产一区二区| 男女无遮挡免费网站观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产毛片av蜜桃av| 午夜激情久久久久久久| 亚洲精品久久成人aⅴ小说| √禁漫天堂资源中文www| 午夜福利乱码中文字幕| 久久久久精品国产欧美久久久 | 亚洲色图 男人天堂 中文字幕| 国产精品久久久久久精品古装| 成年人黄色毛片网站| 婷婷成人精品国产| 热99re8久久精品国产| 国产一级毛片在线| 人成视频在线观看免费观看| 中文字幕高清在线视频| 日韩欧美一区二区三区在线观看 | 水蜜桃什么品种好| 久久久水蜜桃国产精品网| e午夜精品久久久久久久| 日韩 亚洲 欧美在线| 久久久国产精品麻豆| 国产男女内射视频| 国产精品国产三级国产专区5o| 免费女性裸体啪啪无遮挡网站| 丰满迷人的少妇在线观看| 91成人精品电影| 中文欧美无线码| 99国产精品一区二区三区| 在线天堂中文资源库| 欧美少妇被猛烈插入视频| 美女午夜性视频免费| 亚洲精品乱久久久久久| 国产日韩欧美视频二区| 国产av精品麻豆| 淫妇啪啪啪对白视频 | 中亚洲国语对白在线视频| 女性被躁到高潮视频| 老鸭窝网址在线观看| 秋霞在线观看毛片| 别揉我奶头~嗯~啊~动态视频 | 日本猛色少妇xxxxx猛交久久| 成年动漫av网址| 一级毛片电影观看| 99国产精品免费福利视频| 啦啦啦中文免费视频观看日本| 性高湖久久久久久久久免费观看| 又黄又粗又硬又大视频| 精品福利永久在线观看| 在线观看www视频免费| 最黄视频免费看| 99国产极品粉嫩在线观看| 久久久久视频综合| 国产精品国产av在线观看| 国产日韩一区二区三区精品不卡| av视频免费观看在线观看| 欧美一级毛片孕妇| 亚洲精品国产色婷婷电影| 精品国产国语对白av| 亚洲精品久久成人aⅴ小说| 久久这里只有精品19| 亚洲中文字幕日韩| 精品免费久久久久久久清纯 | 国产精品一区二区在线观看99| 91老司机精品| 亚洲av电影在线进入| 亚洲自偷自拍图片 自拍| 母亲3免费完整高清在线观看| 亚洲欧美日韩另类电影网站| 老司机影院毛片| 久久人人爽av亚洲精品天堂| 成人亚洲精品一区在线观看| 超碰成人久久| 色精品久久人妻99蜜桃| 免费在线观看影片大全网站| 十分钟在线观看高清视频www| 日韩电影二区| 淫妇啪啪啪对白视频 | 淫妇啪啪啪对白视频 | 久久99热这里只频精品6学生| 91成年电影在线观看| 老司机深夜福利视频在线观看 | 亚洲全国av大片| 免费不卡黄色视频| 久久久精品免费免费高清| 我的亚洲天堂| 大陆偷拍与自拍| 9热在线视频观看99| 亚洲人成电影观看| 丝瓜视频免费看黄片| 精品欧美一区二区三区在线| 亚洲,欧美精品.| 国产1区2区3区精品| 狠狠婷婷综合久久久久久88av| 欧美精品亚洲一区二区| 别揉我奶头~嗯~啊~动态视频 | 制服人妻中文乱码| 午夜福利免费观看在线| 色老头精品视频在线观看| 亚洲人成电影观看| 国产在线一区二区三区精| av网站在线播放免费| 国产伦理片在线播放av一区| 亚洲精品av麻豆狂野| 国产伦人伦偷精品视频| 韩国高清视频一区二区三区| 亚洲国产av新网站| 欧美黑人精品巨大| 高潮久久久久久久久久久不卡| 亚洲性夜色夜夜综合| 国产精品99久久99久久久不卡| 成人黄色视频免费在线看| 精品亚洲成国产av| 制服人妻中文乱码| 国产精品自产拍在线观看55亚洲 | 一区二区三区乱码不卡18| 天天操日日干夜夜撸| 激情视频va一区二区三区| 国产一区二区在线观看av| 成年动漫av网址| 高潮久久久久久久久久久不卡| 久久中文字幕一级| 国产精品国产三级国产专区5o| 国产成人一区二区三区免费视频网站| 免费黄频网站在线观看国产| 亚洲av电影在线观看一区二区三区| av有码第一页| 精品福利观看| 成人黄色视频免费在线看| 日本91视频免费播放| 搡老乐熟女国产| 久久女婷五月综合色啪小说| 9热在线视频观看99| 久久香蕉激情| 亚洲国产看品久久| 窝窝影院91人妻| 狠狠狠狠99中文字幕| 妹子高潮喷水视频| 18禁裸乳无遮挡动漫免费视频| 蜜桃在线观看..| 99久久99久久久精品蜜桃| 男女边摸边吃奶| 丝瓜视频免费看黄片| 国产亚洲午夜精品一区二区久久| 国产三级黄色录像| 水蜜桃什么品种好| 久久久精品国产亚洲av高清涩受| 欧美变态另类bdsm刘玥| 亚洲av片天天在线观看| 久久久久国内视频| 新久久久久国产一级毛片| 亚洲视频免费观看视频| 伦理电影免费视频| 亚洲av美国av| 久久青草综合色| 欧美性长视频在线观看| 免费高清在线观看日韩| 91九色精品人成在线观看| 亚洲黑人精品在线| 一边摸一边抽搐一进一出视频| 男女下面插进去视频免费观看| 亚洲欧美一区二区三区久久| 日本a在线网址| 亚洲一区中文字幕在线| 色精品久久人妻99蜜桃| 97精品久久久久久久久久精品| 18在线观看网站| 啦啦啦啦在线视频资源| 国产成人影院久久av| 亚洲精品av麻豆狂野| 纯流量卡能插随身wifi吗| 一区二区三区精品91| 悠悠久久av| 18禁黄网站禁片午夜丰满| 男人舔女人的私密视频| 18禁裸乳无遮挡动漫免费视频| 天天躁狠狠躁夜夜躁狠狠躁| 十分钟在线观看高清视频www| 久久久精品区二区三区| 欧美日韩一级在线毛片| 日韩欧美国产一区二区入口| 老司机午夜福利在线观看视频 | 国产免费视频播放在线视频| 91av网站免费观看| 久久久久网色| 国产精品av久久久久免费| 亚洲精品国产av成人精品| 精品国产乱码久久久久久男人| 夜夜骑夜夜射夜夜干| 国产黄频视频在线观看| av在线老鸭窝| 啦啦啦中文免费视频观看日本| 国产精品久久久久久人妻精品电影 | 久久国产精品影院| 国产97色在线日韩免费| 亚洲久久久国产精品| 成年人午夜在线观看视频| 国产国语露脸激情在线看| 欧美午夜高清在线| 国产亚洲精品一区二区www | 最近中文字幕2019免费版| 五月天丁香电影| 天天操日日干夜夜撸| a级毛片黄视频| 亚洲人成电影观看| 少妇粗大呻吟视频| 成人国产av品久久久| 纯流量卡能插随身wifi吗| 菩萨蛮人人尽说江南好唐韦庄| 国产野战对白在线观看| 欧美另类亚洲清纯唯美| 99精品欧美一区二区三区四区| 成年人午夜在线观看视频| 国产成人一区二区三区免费视频网站| a级片在线免费高清观看视频| 我要看黄色一级片免费的| 欧美日韩一级在线毛片| 国产欧美日韩一区二区三 | 国产免费现黄频在线看| 亚洲熟女毛片儿| 色综合欧美亚洲国产小说| 90打野战视频偷拍视频| 丰满饥渴人妻一区二区三| 高清av免费在线| 黑丝袜美女国产一区| 国产一级毛片在线| 多毛熟女@视频| 中文字幕另类日韩欧美亚洲嫩草| 久久久久久久大尺度免费视频| 国产片内射在线| 亚洲欧美精品自产自拍| www.自偷自拍.com| 青青草视频在线视频观看| 啪啪无遮挡十八禁网站| 人人妻,人人澡人人爽秒播| 高潮久久久久久久久久久不卡| 日韩人妻精品一区2区三区| 午夜福利视频在线观看免费| 一级毛片精品| 亚洲精品日韩在线中文字幕| 嫩草影视91久久| 免费久久久久久久精品成人欧美视频|