• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs

    2022-05-16 07:12:16ShuruiCao曹書(shū)睿RuizeFeng封瑞澤BoWang王博TongLiu劉桐
    Chinese Physics B 2022年5期
    關(guān)鍵詞:王博

    Shurui Cao(曹書(shū)睿) Ruize Feng(封瑞澤) Bo Wang(王博) Tong Liu(劉桐)

    Peng Ding(丁芃)1,2,?, and Zhi Jin(金智)1,2,?

    1High-Frequency High-Voltage Device and Integrated Circuits Center,Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,China

    2University of Chinese Academy of Sciences,Beijing 100029,China

    3Guangxi Key Laboratory of Precision Navigation Technology and Application,Guilin University of Electronic Technology,Guilin 541004,China

    Keywords: InP HEMT,InGaAs/InAlAs,cut-off frequency(fT),maximum oscillation frequency(fmax),asymmetric gate recess

    1. Introduction

    Due to high frequency, high gain, low power consumption, and low noise performance, InP-based high electron mobility transistors (HEMTs) are one of the most promising semiconductor devices for millimeter-wave and terahertz monolithic integrated circuits.[1–5]The excellent performance is attributed to high carrier density, high electron velocity, and low gate leakage current. A cutoff frequency (fT)of over 700 GHz using 25-nm gate was reported in InPbased HEMTs[6]. A maximum oscillation frequency (fmax)of 1.5 THz and a terahertz IC operating at 1 THz using 25-nm gate InP-based HEMTs were demonstrated.[7]ThefTandfmaxof HEMTs were mainly improved by scaling down the gate length of devices.[8]On the other hand,it is of great significance to optimize parasitic effects in order to further improve performance.[9]By reducing the source-to-drain space,parasitic resistance was suppressed and RF performance was improved.[10,11]Modifying the gate recess is another effective way to improve high-frequency characteristics of InP-based HEMTs. The adoption of asymmetric gate recess was proved helpful to improvefmax.[12,13]On this basis,we would like to further investigate the impacts of asymmetric gate recess by varying the gate location in the recess.

    In this paper,we will report on how the gate offset in gate recess impacts the DC and RF characteristics of InP-based HEMTs instead of a gate scaling down that is often used to obtain high performance. We designed and fabricated a set of devices,of which the gate location was varying in the recess.Therefore,various forms of asymmetric gate recess were realized. A fixed source-to-drain space was maintained at 2.4 μm for the same periphery conditions. The gate was located at the recess center,with an offset toward source or drain side to form the whole gate structure. The gate recess lengthLrecessis expressed asLrs+Lg+Lrd,whereLrsis the source-side recess length,Lgis the gate length, andLrdis the drain-side recess length. It is easy to adjust the gate location through one step EBL after the recess is defined and form the asymmetry of gate recess. To draw a general conclusion,gate recesses were defined with three lengths, which were 0.4 μm, 0.6 μm, and 0.8 μm respectively. It was found that the gate away from drain side was effective in decreasing parasitic source resistance, output conductance and gate-to-drain capacitance, and hence improved transconductance andfmaxeven though an increase ofCgsis not ideal for a highfT.

    2. Device fabrication

    Figure 1 shows the cross-section schematic diagram of the device with a gate offset toward source side. Epitaxial layer structures of InP-based HEMTs were grown on a 3-inch(1 inch=2.54 cm)semi-insulating InP(100)substrate by gas source molecular beam epitaxy (GSMBE). The layers, from bottom to top, were composed of a 500-nm In0.52Al0.48As buffer layer, a 15-nm lattice matched In0.52Ga0.48As channel layer, a 3-nm In0.52Al0.48As spacer layer, an Si planar doping with a sheet carrier density of 5×1012cm-2,an 8-nm In0.52Al0.48As Schottky barrier layer, a 4-nm InP etch-stop layer, and a 15-nm/15-nm/10-nm heavily Si-doped In0.52Ga0.48As/In0.53Ga0.48As/In0.65Ga0.35As composite cap layer with a concentration of 1×1019cm-3/1×1019cm-3/3×1019cm-3. Hall measurement was carried out at room temperature. The two-dimensional electron gas (2DEG) carrier mobility was 12000 cm2/(V·s).

    Fig.1. Cross-section schematic diagram of the InP-based HEMT with a gate offset toward source.

    The fabrication process of InP-based HEMTs consisted of four main steps,namely mesa isolation,Ohmic contact formation, gate recess, and T-shaped gate process, which was similar to our previously reported devices.[14]At first isolated mesa was formed to define the area of a device by means of phosphorus acid based wet chemical etching down to buffer layer. Then source and drain were defined by lithography with a 2.4-μm space in between. Ohmic contacts were formed using electron beam evaporated Ti/Pt/Au(15 nm/15 nm/50 nm)without annealing. The ohmic contact resistivity was measured to be 0.023 Ω·mm and the specific contact resistivity to be 8.75×10-8Ω·cm2by transmission line method(TLM).[15]Afterward, SiO2was deposited by PECVD, which served as a hard mask for gate recess and improved adherence of photoresist. A novel gate recess process was proposed,where the gate recess was defined by electron beam lithography with a ZEP520A e-beam resist independently of the gate electrode. SiO2mask was etched by reactive ion etching (RIE).For extending investigation, the gate recesses were designed with three different lengths, which were 0.4 μm, 0.6 μm,and 0.8 μm respectively. The gate recess, as a whole, was closer to the source side in order to achieve a higher breakdown voltage. This was followed by T-shaped gate lithography. The gate was defined by EBL with a ZEP/PMGI/ZEP(200 nm/500 nm/200 nm)tri-layer e-beam resist.Here the gate could be located at the recess center,or with an offset toward source/drain, which corresponded to the variation ofLrsandLrd. After pattern definition,wet chemical etching was used to form the gate recess and Ti/Pt/Au(3 nm/15 nm/300 nm)stack layers were evaporated and lifted off to form the T-shaped gate in sequence. Finally the SiO2hard mask was removed,the devices were passivated by a 20-nm SiNxlayer,and Ti/Au(15 nm/30 nm)connection pads were evaporated for on-wafer characterization.The SEM images of the devices are shown in Fig.2.

    Fig.2. SEM images of InP HEMTs with gate offsets in gate recess: (a)top view of InP HEMT; (b) gate offset toward source; (c) gate in the middle of recess;(d)gate offset toward drain.

    3. Result and discussion

    In a narrow recess the absolute value of gate offset was relatively small while in a wider recess the offset was larger.The offsets from recess center were±0.05 μm,±0.15 μm,and±0.25 μm for recess lengths of 0.4 μm,0.6 μm,and 0.8 μm,respectively. In this case,Lrswas kept at 0.15 μm for gate offset toward source andLrdwas kept at 0.15 μm for gate offset toward drain. The values of gate offsets were normalized as-1, 0, and 1 to represent the offset toward source, in the middle,and toward drain,respectively.

    3.1. DC characteristics

    On-wafer DC measurement was carried out by a HP4155A semiconductor parameter analyzer at room temperature. The gate–source voltage(Vgs)was swept from-1.0 V to 0.2 V at a step of +0.1 V, and the drain–source voltage (Vds) was from 0 V to 1.5 V. The threshold voltage was about-0.6 V. These devices exhibited a maximum saturated drain currentIds,maxof 763.9 mA/mm atVGS= 0.2 V andVgs=1.5 V,which was achieved in a device of 0.4-μm recess length.The maximum extrinsic transconductance,gm,max,was high up to 1120 mS/mm atVGS=-0.25 V.

    Devices with a wider gate recess,where the absolute gate offset was larger,indicated clear changes ofIdsandgm. WhenLrsdecreased, namely gate location shifted from drain side to source side, bothIds,maxandgm,maxincreased. Figure 3 plots theIds–Vdscurves of 0.8-μm-recess devices with different gate offsets, and theIds,maxincreased by over 15% from 541 mA/mm to 621 mA/mm. Another benefit could be found that a longerLrdlead to effective suppression of impact ionization when a largeVdswas applied. ForVgs=-0.4 V, the drain current of positive-offset device exceeded that of zerooffset device atVdsover 1.2 V, illustrating a weaker impact ionization in longer distance between gate and drain. Besides,gm,maxincreased by 17%from 864 mA/mm to 1016 mA/mm,as is shown in Fig. 4. Extrinsic transconductancegmcan be expressed as

    wheregmiis the intrinsic transconductance removing the influence of parasitic parameters, andRsis the parasitic source resistance. Since recess resistanceRrecessis 2.3 times larger than that of cap layerRcap,[12]a smallerLrsin the access region between gate and source led to a smallerRsthat improved extrinsic transconductance. The voltage drop onRswas reduced, and consequently more proportion ofVgsdropped on the Schottky barrier capacitor for gate control.connection pads.fTwas obtained by extrapolating H21curve to unit gain by a slope of-20 dB/decade. Moreover, due to the noisy characteristics of unilateral gain(U)which indicated insufficient estimation offmaxvariation,MAG/MSG was used to extrapolatefmax,[13–16]as is shown in Fig.5. SincefTandfmaxhad a positive correlation withgmi,VdsandVgswere biased at 1.5 V and-0.2 V,respectively,which were associated with the maximumgmiin our devices.As can be seen in Fig.6,fmaxranged from 374 GHz to 584 GHz whilefTranged from 167 GHz to 225 GHz, and there was a trade-off between the two parameters.The highestfTwas obtained from the positive gate-offset device with 0.4-μm gate recess while the highestfmaxwas obtained from the negative gate-offset device with 0.8-μm gate recess.

    Fig.3. Output characteristics of 0.8-μm-recess HEMTs.

    Fig.5. Extrapolation of fT and fmax from measured data.

    Fig.4. Transfer characteristics of 0.8-μm-recess HEMTs.

    Moreover,for all devices of different gate recess lengths,gmshowed a maximum value when gate was located with an offset toward source. And the correspondingIdstend to be a larger value due to better gate control.

    3.2. RF characteristics

    RF characteristics were measured on wafer by Agilent E8363B PNA vector network analyzer from 0.1 GHz to 40 GHz at a step of 0.1 GHz. Open-short patterns were fabricated on the same wafer forSparameter deembedding of

    Fig.6. fT and fmax of HEMTs with gate offsets in gate recess(solid: fmax,dashed: fT).

    The results were similar for devices with three different gate recess lengths. When the normalized gate offset varied from 1 to-1, which literally meant that the gate location moved from drain side to source side,fTdecreased,andfmaxincreased. It can be seen from Fig.6 that in wide recesses,the ratio offTandfmaxchange became more obvious.fTandfmaxcan be expressed as

    wheregmiis the intrinsic transconductance,Cgsis the gate–source capacitance,Cgdis the gate–drain capacitance,gdsis the output conductance,Rsis the source resistance,Rdis the drain resistance,Rgis the gate resistance, andRiis the intrinsic resistance in the channel region.[16]fT,intrepresents the cut-off frequency of the intrinsic part of HEMTs without parasitic resistance and capacitance. Parameters of the small-signal equivalent circuit model were extracted and compared based on Rorsman’s method[17]and our previous research.[18–20]Figure 7 illustrates the changes in key parameters, and Table 1 lists some related small-signal model parameters of 0.8-μm-recess devices. The small-signal model was then simulated with extracted parameter values. Figure 8 shows a good fitting result of our small-signal model compared with the measured data after de-embedding,which indicated effectiveness and accuracy of our extracted parameters.

    Table 1. Parameters of small-signal model for InP HEMTs of 0.8-μm gate recess.

    Table 2. Benchmarks of fmax in InGaAs/InAlAs HEMTs.

    Fig.7. Extracted small-signal parameters of HEMTs with different gate offsets: (a)gate–source capacitance;(b)gate–drain capacitance;(c)output conductance.

    For a given gate recess,whereLrs+Lrdwas a constant,the variation of gate offset from drain side to source side meant a smallerLrsand a largerLrd.CgsandCgdwhich were related to the corresponding space consequently changed,resulting inCgsincrease andCgddecrease. Thegdsdecrease was also attributed to the extension ofLrd.[13]Here the electric field between gate and drain was smoothed, and thus impact ionization in the channel was suppressed. This was consistent with the phenomenon observed in DC measurement.

    AlthoughCgsandCgdchanged in a contrary way,the absolute value ofCgswas still much larger than that ofCgd. As a result,Cgs+Cgdin total increased, contributing to the decrease offT. As forfmax, although it was proportional tofT,Cgd/Cgsfurther decreased due to the contrary change,leading to the reduction in the denominator of thefmaxformula by a greater ratio. Moreover, according to Eq. (4), the reduction ofgdsandRswas helpful in increasingfmaxas well. As is plotted in Fig. 5, a highfmaxof approximately 1.1 THz was achieved from extrapolation of Mason’s unilateral gain,U,to 0 dB when aVgsof-0.2 V and aVdsof 1.5 V were applied to the HEMT.

    Table 2 shows the benchmarks offmaxin published papers.[13,21–24]In some cases,fmaxexceeding 1 THz was obtained by scalingLgto less than 50 nm. Meanwhile,the InPbased HEMT reported in this paper reached afmaxof approximately 1.1 THz althoughLgwas relatively large at 100 nm.

    In a multi-function MMIC, devices of various performance are needed. For instance, an analog module requires highfTwhile a power amplifier requires highfmax. Thus,the device requirements can be satisfied by simply adjusting the gate location in gate recess. Furthermore,by adding the modification of gate recess length,various transistor performances are available over a larger range.

    Fig. 8. Small-signal model versus de-embedded S parameters of InP-based HEMTs (red line: small-signal model; blue dot: de-embedded measured S parameters).

    4. Conclusion

    In this paper, we investigated a set of 100-nm InP-based HEMTs with gate offsets in the gate recess. A novel technology was proposed for independent definition of gate recess and T-shaped gate. As a result,a maximumIdsof 769 mA/mm andgmof 1120 mS/mm were obtained. When the gate offset varied from toward drain side to toward source side,Idsandgmincreased. The reduction ofRsimproved extrinsic transconductance and decreased the voltage drop split fromVgs. In the meantime,fTdecreased whilefmaxincreased. Afmaxof 1096 GHz was obtained in a 0.8-μm-recess HEMT with a gate offset toward source side. This was attributed to the increase ofCgs, along with the reduction ofCgd,gds, andRs. This work provides simple and flexible device parameter selection for HEMTs of different usage over a large frequency range.

    Acknowledgment

    Project supported by the National Nature Science Foundation of China(Grant No.61434006).

    猜你喜歡
    王博
    Electronic structure study of the charge-density-wave Kondo lattice CeTe3
    Circular dichroism spectra of α-lactose molecular measured by terahertz time-domain spectroscopy
    冷凍斷裂帶儲(chǔ)層預(yù)測(cè)研究
    Enhancement of fMAX of InP-based HEMTs by double-recessed offset gate process
    民航空中交通管制進(jìn)近程序間隔安全性評(píng)估模型
    科學(xué)家(2022年4期)2022-05-10 03:47:14
    Impact of symmetric gate-recess length on the DC and RF characteristics of InP HEMTs
    Experimental study on dynamic stall control based on AC-DBD actuation
    嫁妻換前程,一樁好買(mǎi)賣(mài)兩個(gè)糊涂蛋
    STRONG COMPARISON PRINCIPLES FOR SOME NONLINEAR DEGENERATE ELLIPTIC EQUATIONS?
    山東工藝美術(shù)學(xué)院作品賞析
    速讀·下旬(2017年4期)2017-06-20 17:51:03
    91在线观看av| 国产一卡二卡三卡精品| 天天添夜夜摸| 免费在线观看黄色视频的| 亚洲男人的天堂狠狠| 亚洲中文日韩欧美视频| 999精品在线视频| 久久国产精品男人的天堂亚洲| 国产午夜精品久久久久久| www.www免费av| 校园春色视频在线观看| 曰老女人黄片| 中文字幕人成人乱码亚洲影| 变态另类丝袜制服| 久久香蕉激情| 国产激情偷乱视频一区二区| 久久久久久免费高清国产稀缺| 在线观看免费视频日本深夜| 欧美性长视频在线观看| 熟妇人妻久久中文字幕3abv| 欧美精品啪啪一区二区三区| 午夜激情av网站| 久久久久久九九精品二区国产 | 国产亚洲精品久久久久久毛片| 日本黄色视频三级网站网址| 国产成人欧美在线观看| 欧美一级毛片孕妇| 精品国内亚洲2022精品成人| 色婷婷久久久亚洲欧美| 久久婷婷成人综合色麻豆| 国产又爽黄色视频| 国产精品一区二区三区四区久久 | 丝袜人妻中文字幕| 首页视频小说图片口味搜索| 中文字幕久久专区| 欧美精品啪啪一区二区三区| 国产一区二区三区视频了| 2021天堂中文幕一二区在线观 | 久久伊人香网站| 免费观看精品视频网站| 久久久久免费精品人妻一区二区 | 亚洲精品色激情综合| 黄色视频不卡| 啦啦啦 在线观看视频| 天天添夜夜摸| 色精品久久人妻99蜜桃| 狠狠狠狠99中文字幕| 叶爱在线成人免费视频播放| 久久久久久国产a免费观看| 搡老妇女老女人老熟妇| 老鸭窝网址在线观看| 欧美色视频一区免费| 久久人妻av系列| 国产精品一区二区精品视频观看| 在线观看一区二区三区| 亚洲精华国产精华精| 美女扒开内裤让男人捅视频| 在线十欧美十亚洲十日本专区| 欧美日本亚洲视频在线播放| av在线天堂中文字幕| 日本一区二区免费在线视频| 亚洲欧美日韩高清在线视频| 免费在线观看影片大全网站| 国产欧美日韩精品亚洲av| 18禁裸乳无遮挡免费网站照片 | av中文乱码字幕在线| a级毛片a级免费在线| 精品熟女少妇八av免费久了| 脱女人内裤的视频| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲国产精品久久男人天堂| 午夜老司机福利片| 成年女人毛片免费观看观看9| 91大片在线观看| 91在线观看av| 午夜激情av网站| 成人av一区二区三区在线看| 国产成人系列免费观看| 亚洲第一青青草原| 欧美性猛交╳xxx乱大交人| 1024视频免费在线观看| 国产真实乱freesex| 久久久国产成人精品二区| 看免费av毛片| 欧美又色又爽又黄视频| 性色av乱码一区二区三区2| 国产精品亚洲av一区麻豆| 两性午夜刺激爽爽歪歪视频在线观看 | 国产一区在线观看成人免费| 午夜免费激情av| 久久人妻av系列| 在线观看www视频免费| 国产精品一区二区三区四区久久 | 国产精品亚洲一级av第二区| 变态另类丝袜制服| 老司机午夜福利在线观看视频| 亚洲自偷自拍图片 自拍| 亚洲国产毛片av蜜桃av| 欧美黑人巨大hd| 天堂影院成人在线观看| 国产爱豆传媒在线观看 | e午夜精品久久久久久久| 成人永久免费在线观看视频| 久久精品国产亚洲av香蕉五月| 午夜福利在线观看吧| 欧美大码av| 国产亚洲精品久久久久久毛片| 亚洲男人天堂网一区| 欧美成狂野欧美在线观看| 夜夜躁狠狠躁天天躁| 精品电影一区二区在线| 免费看美女性在线毛片视频| 色综合欧美亚洲国产小说| 婷婷亚洲欧美| 一二三四社区在线视频社区8| 最近在线观看免费完整版| 一级毛片精品| 一级a爱片免费观看的视频| 亚洲aⅴ乱码一区二区在线播放 | 免费在线观看影片大全网站| 国产精品精品国产色婷婷| 久久草成人影院| 欧美不卡视频在线免费观看 | 亚洲五月婷婷丁香| 成人欧美大片| 欧美日本亚洲视频在线播放| 性色av乱码一区二区三区2| 欧美日韩一级在线毛片| 亚洲欧洲精品一区二区精品久久久| 色老头精品视频在线观看| 动漫黄色视频在线观看| 欧美激情极品国产一区二区三区| 国产单亲对白刺激| 女同久久另类99精品国产91| www.999成人在线观看| 日韩有码中文字幕| 国产伦一二天堂av在线观看| 午夜福利欧美成人| 桃红色精品国产亚洲av| 亚洲av中文字字幕乱码综合 | 国产伦人伦偷精品视频| 日韩欧美在线二视频| 欧美精品啪啪一区二区三区| 亚洲精品色激情综合| 国产真实乱freesex| 色综合婷婷激情| 午夜影院日韩av| 搡老妇女老女人老熟妇| 欧美另类亚洲清纯唯美| 久久精品91蜜桃| 久久久水蜜桃国产精品网| 免费在线观看黄色视频的| 搡老熟女国产l中国老女人| 色在线成人网| 午夜免费激情av| 国产99久久九九免费精品| 亚洲专区中文字幕在线| 男女之事视频高清在线观看| 国产aⅴ精品一区二区三区波| 亚洲精品在线美女| 丝袜美腿诱惑在线| 日韩欧美国产在线观看| 午夜福利在线在线| 国产成人影院久久av| 50天的宝宝边吃奶边哭怎么回事| 久久人人精品亚洲av| cao死你这个sao货| 精品久久久久久久久久免费视频| 男人舔女人的私密视频| 国产精品久久久久久人妻精品电影| 级片在线观看| 波多野结衣高清无吗| 女生性感内裤真人,穿戴方法视频| 色精品久久人妻99蜜桃| 久久精品国产99精品国产亚洲性色| 精品一区二区三区av网在线观看| 岛国在线观看网站| 国产亚洲精品第一综合不卡| 国产av不卡久久| 亚洲精品中文字幕一二三四区| 可以在线观看的亚洲视频| 中文字幕最新亚洲高清| 成人一区二区视频在线观看| 亚洲国产日韩欧美精品在线观看 | 国产精品亚洲美女久久久| 黄色成人免费大全| 欧美又色又爽又黄视频| 免费高清视频大片| 青草久久国产| 精品欧美一区二区三区在线| 日韩大尺度精品在线看网址| 美女国产高潮福利片在线看| 女人高潮潮喷娇喘18禁视频| 国产精品久久久久久人妻精品电影| 亚洲欧美日韩高清在线视频| 最好的美女福利视频网| 18禁裸乳无遮挡免费网站照片 | 香蕉av资源在线| 国产熟女午夜一区二区三区| 香蕉久久夜色| www.999成人在线观看| 久久久国产成人免费| 国内精品久久久久精免费| 怎么达到女性高潮| 久久午夜综合久久蜜桃| 黑人巨大精品欧美一区二区mp4| 亚洲成人国产一区在线观看| 久久久久九九精品影院| 久久伊人香网站| 成年版毛片免费区| 男人舔女人下体高潮全视频| 99riav亚洲国产免费| 精品久久久久久久久久久久久 | 在线观看66精品国产| 草草在线视频免费看| 国产欧美日韩精品亚洲av| a级毛片在线看网站| 日韩欧美在线二视频| 欧美激情久久久久久爽电影| 亚洲欧美日韩无卡精品| 亚洲国产欧洲综合997久久, | 天天一区二区日本电影三级| 成人国产一区最新在线观看| 亚洲熟妇熟女久久| 亚洲色图 男人天堂 中文字幕| 制服人妻中文乱码| 少妇 在线观看| 亚洲激情在线av| 18美女黄网站色大片免费观看| 一卡2卡三卡四卡精品乱码亚洲| 成人永久免费在线观看视频| 午夜福利高清视频| 日韩三级视频一区二区三区| 国产区一区二久久| 亚洲精品国产区一区二| 香蕉丝袜av| 欧美大码av| 99国产极品粉嫩在线观看| 最近最新免费中文字幕在线| 看免费av毛片| avwww免费| 男人操女人黄网站| 国产精品免费视频内射| 成在线人永久免费视频| 黄片播放在线免费| 神马国产精品三级电影在线观看 | 特大巨黑吊av在线直播 | 日韩一卡2卡3卡4卡2021年| 婷婷精品国产亚洲av| 国产黄a三级三级三级人| 成人亚洲精品av一区二区| 99久久久亚洲精品蜜臀av| 亚洲av熟女| 国内精品久久久久精免费| 亚洲国产精品999在线| 久久天躁狠狠躁夜夜2o2o| 看片在线看免费视频| 国产不卡一卡二| 国产av又大| 不卡av一区二区三区| 中文字幕人妻丝袜一区二区| 欧美国产日韩亚洲一区| 99国产极品粉嫩在线观看| 最近最新免费中文字幕在线| 免费在线观看视频国产中文字幕亚洲| 国产黄a三级三级三级人| 亚洲avbb在线观看| 亚洲真实伦在线观看| 久久久久国内视频| 亚洲最大成人中文| 国产精品九九99| 成人18禁在线播放| 久久久国产精品麻豆| 亚洲成国产人片在线观看| 国产一级毛片七仙女欲春2 | 欧美成人午夜精品| 久久人妻福利社区极品人妻图片| 精品一区二区三区av网在线观看| 国产蜜桃级精品一区二区三区| 99热6这里只有精品| 亚洲人成网站在线播放欧美日韩| 亚洲欧美一区二区三区黑人| 久久青草综合色| 2021天堂中文幕一二区在线观 | 国产亚洲精品第一综合不卡| 好男人在线观看高清免费视频 | 别揉我奶头~嗯~啊~动态视频| 激情在线观看视频在线高清| 黄色视频,在线免费观看| 国内精品久久久久精免费| 一级a爱片免费观看的视频| av福利片在线| 欧美不卡视频在线免费观看 | 操出白浆在线播放| 动漫黄色视频在线观看| av视频在线观看入口| 人人澡人人妻人| 久久国产乱子伦精品免费另类| 麻豆国产av国片精品| av免费在线观看网站| av有码第一页| 一级毛片女人18水好多| 久久天堂一区二区三区四区| 亚洲avbb在线观看| 美女大奶头视频| 女警被强在线播放| 悠悠久久av| 国产黄色小视频在线观看| 亚洲avbb在线观看| 国产伦一二天堂av在线观看| 日韩大尺度精品在线看网址| 丝袜在线中文字幕| 深夜精品福利| 精品欧美国产一区二区三| 国产在线精品亚洲第一网站| 亚洲 国产 在线| 一级片免费观看大全| 亚洲精品av麻豆狂野| 天天躁狠狠躁夜夜躁狠狠躁| 国产欧美日韩一区二区精品| 曰老女人黄片| 黑丝袜美女国产一区| 中文在线观看免费www的网站 | 午夜影院日韩av| 黄片大片在线免费观看| 一本大道久久a久久精品| 亚洲国产欧洲综合997久久, | 亚洲欧美日韩无卡精品| 久久久久九九精品影院| 久久精品亚洲精品国产色婷小说| 老汉色av国产亚洲站长工具| 97超级碰碰碰精品色视频在线观看| 欧美日韩瑟瑟在线播放| 他把我摸到了高潮在线观看| 91国产中文字幕| 欧美日本视频| 男女做爰动态图高潮gif福利片| 中文字幕人妻熟女乱码| 欧美 亚洲 国产 日韩一| 亚洲成人国产一区在线观看| 国内精品久久久久久久电影| 少妇 在线观看| 亚洲人成77777在线视频| 国产久久久一区二区三区| 久久婷婷成人综合色麻豆| 久久精品国产亚洲av高清一级| 精品一区二区三区av网在线观看| 亚洲成人精品中文字幕电影| 亚洲五月婷婷丁香| 国产成+人综合+亚洲专区| 国产精品二区激情视频| 国产v大片淫在线免费观看| 女人高潮潮喷娇喘18禁视频| 日韩一卡2卡3卡4卡2021年| 不卡一级毛片| 亚洲精华国产精华精| 免费在线观看成人毛片| 久久精品91蜜桃| 在线观看免费日韩欧美大片| 日韩精品中文字幕看吧| а√天堂www在线а√下载| 亚洲在线自拍视频| 亚洲精品久久成人aⅴ小说| 特大巨黑吊av在线直播 | 亚洲国产精品成人综合色| 午夜日韩欧美国产| 国产精品免费一区二区三区在线| 十分钟在线观看高清视频www| 男女午夜视频在线观看| 久久香蕉激情| 国产精品亚洲美女久久久| 亚洲精品美女久久久久99蜜臀| 女人被狂操c到高潮| 亚洲国产精品999在线| 国产亚洲av嫩草精品影院| 天天一区二区日本电影三级| 国产成人精品久久二区二区91| 男男h啪啪无遮挡| 国产主播在线观看一区二区| 国产麻豆成人av免费视频| 国产在线精品亚洲第一网站| 国产av一区在线观看免费| 欧美激情久久久久久爽电影| 香蕉av资源在线| 91国产中文字幕| 亚洲在线自拍视频| 一边摸一边做爽爽视频免费| 日日干狠狠操夜夜爽| 无限看片的www在线观看| 日韩三级视频一区二区三区| 黑人操中国人逼视频| 国产免费av片在线观看野外av| www.熟女人妻精品国产| 国产一级毛片七仙女欲春2 | 国产av又大| 十八禁人妻一区二区| 精品欧美一区二区三区在线| 大型黄色视频在线免费观看| 母亲3免费完整高清在线观看| 一级毛片精品| 男女下面进入的视频免费午夜 | 首页视频小说图片口味搜索| 在线十欧美十亚洲十日本专区| 一区福利在线观看| 午夜精品在线福利| 午夜日韩欧美国产| 波多野结衣av一区二区av| or卡值多少钱| 一本久久中文字幕| 国产精品乱码一区二三区的特点| 成人国产一区最新在线观看| 露出奶头的视频| 色尼玛亚洲综合影院| 国产一区二区三区视频了| 国产黄a三级三级三级人| 久久久精品国产亚洲av高清涩受| 午夜激情av网站| 女生性感内裤真人,穿戴方法视频| 国产av一区在线观看免费| 日韩免费av在线播放| 亚洲av成人一区二区三| 18禁国产床啪视频网站| bbb黄色大片| 手机成人av网站| a级毛片在线看网站| 国产亚洲精品一区二区www| 亚洲七黄色美女视频| 中文资源天堂在线| 亚洲黑人精品在线| 真人做人爱边吃奶动态| 在线免费观看的www视频| 国产又爽黄色视频| 午夜福利免费观看在线| 国产真实乱freesex| 中文资源天堂在线| 国产精品免费一区二区三区在线| 1024手机看黄色片| 99国产精品99久久久久| 国产一卡二卡三卡精品| 一级毛片精品| 免费看a级黄色片| а√天堂www在线а√下载| 久久久久久久久中文| 午夜福利欧美成人| 欧美中文日本在线观看视频| 亚洲精品中文字幕在线视频| 午夜免费激情av| 好看av亚洲va欧美ⅴa在| 1024香蕉在线观看| 久久久水蜜桃国产精品网| 亚洲欧美激情综合另类| 夜夜看夜夜爽夜夜摸| 青草久久国产| 一级a爱视频在线免费观看| 亚洲国产欧美一区二区综合| 久久久久久久久中文| 女生性感内裤真人,穿戴方法视频| 久久伊人香网站| 中文字幕人成人乱码亚洲影| av福利片在线| 不卡一级毛片| 日韩av在线大香蕉| 日韩精品中文字幕看吧| 99在线人妻在线中文字幕| 观看免费一级毛片| 亚洲国产精品999在线| 桃红色精品国产亚洲av| 老司机深夜福利视频在线观看| 国产三级在线视频| 亚洲中文av在线| 国产精品 欧美亚洲| 男人舔女人下体高潮全视频| 精品无人区乱码1区二区| 99国产极品粉嫩在线观看| 禁无遮挡网站| 午夜两性在线视频| or卡值多少钱| 50天的宝宝边吃奶边哭怎么回事| 亚洲国产欧洲综合997久久, | 国产精品乱码一区二三区的特点| 一夜夜www| 国产99久久九九免费精品| 一二三四社区在线视频社区8| 丰满人妻熟妇乱又伦精品不卡| 丰满的人妻完整版| 国产单亲对白刺激| 久久精品人妻少妇| 亚洲成人久久爱视频| www日本在线高清视频| 欧美日韩亚洲综合一区二区三区_| 日本一本二区三区精品| 亚洲片人在线观看| 亚洲国产精品久久男人天堂| 久久国产乱子伦精品免费另类| 亚洲人成伊人成综合网2020| 欧美三级亚洲精品| 岛国视频午夜一区免费看| 性欧美人与动物交配| 日本五十路高清| 97超级碰碰碰精品色视频在线观看| 久久久久久九九精品二区国产 | 视频在线观看一区二区三区| 欧美性长视频在线观看| a级毛片a级免费在线| 中文字幕最新亚洲高清| 精品乱码久久久久久99久播| 欧美日韩亚洲国产一区二区在线观看| avwww免费| 亚洲免费av在线视频| 久久久国产欧美日韩av| 国产国语露脸激情在线看| 精品一区二区三区视频在线观看免费| av视频在线观看入口| 精品久久久久久久久久免费视频| 亚洲精品色激情综合| 精品久久蜜臀av无| 美女大奶头视频| 人人妻人人澡人人看| 波多野结衣高清无吗| 亚洲成av人片免费观看| 国产午夜福利久久久久久| 国产成人精品无人区| 成人一区二区视频在线观看| 一二三四社区在线视频社区8| 欧美日韩亚洲国产一区二区在线观看| 国产又爽黄色视频| 亚洲欧美激情综合另类| 免费看a级黄色片| 久9热在线精品视频| 女性被躁到高潮视频| 黄色视频不卡| 熟女少妇亚洲综合色aaa.| 国产一区二区三区视频了| 国产伦人伦偷精品视频| 成人精品一区二区免费| 久久久久久大精品| 日本一本二区三区精品| 久热这里只有精品99| 国产亚洲欧美98| 老司机靠b影院| 可以在线观看的亚洲视频| 欧美三级亚洲精品| 男人操女人黄网站| 国产精品亚洲一级av第二区| 亚洲五月婷婷丁香| 国产精品98久久久久久宅男小说| www.www免费av| 亚洲午夜精品一区,二区,三区| 日韩大码丰满熟妇| 亚洲国产欧美日韩在线播放| 色综合欧美亚洲国产小说| 草草在线视频免费看| 亚洲国产欧美网| 极品教师在线免费播放| 精品国产超薄肉色丝袜足j| 久久草成人影院| 国产主播在线观看一区二区| 亚洲av片天天在线观看| 久久人妻福利社区极品人妻图片| 亚洲中文字幕一区二区三区有码在线看 | 无限看片的www在线观看| 国产精品av久久久久免费| 久久久久久免费高清国产稀缺| 国产成人欧美在线观看| 国产精品久久久人人做人人爽| 亚洲午夜理论影院| 精品免费久久久久久久清纯| 国产爱豆传媒在线观看 | 精品卡一卡二卡四卡免费| 国产精品av久久久久免费| 亚洲中文字幕一区二区三区有码在线看 | 一区二区三区高清视频在线| 亚洲人成伊人成综合网2020| 久久久久久久久久黄片| 国产精品乱码一区二三区的特点| 99riav亚洲国产免费| 欧美av亚洲av综合av国产av| 亚洲熟女毛片儿| 亚洲欧美激情综合另类| 国产成年人精品一区二区| 美女国产高潮福利片在线看| 久久久精品国产亚洲av高清涩受| 黄片小视频在线播放| 国产精品乱码一区二三区的特点| 国产精品美女特级片免费视频播放器 | 国产1区2区3区精品| 这个男人来自地球电影免费观看| 波多野结衣av一区二区av| 可以在线观看毛片的网站| 视频在线观看一区二区三区| 欧美av亚洲av综合av国产av| 一级毛片精品| a在线观看视频网站| 搡老岳熟女国产| 一级毛片高清免费大全| 视频在线观看一区二区三区| 精品电影一区二区在线| 最新美女视频免费是黄的| 满18在线观看网站| 成人av一区二区三区在线看| 日本撒尿小便嘘嘘汇集6| 十八禁网站免费在线| 国产亚洲精品一区二区www| 久久香蕉激情| 色综合亚洲欧美另类图片| 99精品在免费线老司机午夜| 一级片免费观看大全| 在线观看www视频免费| 国产精品久久电影中文字幕| 久久中文字幕人妻熟女| 欧美性长视频在线观看| 国产极品粉嫩免费观看在线| 国产一卡二卡三卡精品| 国产激情欧美一区二区| 麻豆av在线久日|