• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhancement of fMAX of InP-based HEMTs by double-recessed offset gate process

    2022-05-16 07:12:20BoWang王博PengDing丁芃RuiZeFeng封瑞澤ShuRuiCao曹書睿HaoMiaoWei魏浩淼TongLiu劉桐XiaoYuLiu劉曉宇HaiOuLi李海鷗andZhiJin金智
    Chinese Physics B 2022年5期
    關(guān)鍵詞:王博海鷗

    Bo Wang(王博) Peng Ding(丁芃) Rui-Ze Feng(封瑞澤) Shu-Rui Cao(曹書睿)Hao-Miao Wei(魏浩淼) Tong Liu(劉桐) Xiao-Yu Liu(劉曉宇) Hai-Ou Li(李海鷗) and Zhi Jin(金智)

    1Guangxi Key Laboratory of Precision Navigation Technology and Application,Guilin University of Electronic Technology,Guilin 541004,China

    2High-Frequency High-Voltage Device and Integrated Circuits Center,Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,China

    Keywords: InP,HEMT,maximum oscillation frequency(fMAX),double-recess,offset gate

    1. Introduction

    InP-based high electron mobility transistors(HEMTs)are regarded as the most promising candidates for millimeterwave integrated circuits (MMIC) and even terahertz monolithic integrated circuits (TMIC) because of their extremely excellent high-frequency, high-gain and low-noise characteristics.[1–4]They play key roles in radio-astronomy and deep-space communication. In recent years, the requirements for higher operation frequency and larger output power of TMIC result in a strong push of THz transistor technologies with high cut-off frequency(fT)and maximum oscillation frequency (fMAX).[4–9]ThefMAXof InP-based HEMTs were mainly improved by scaling down the gate length.[10]Laiet al. reported the first InP-based HEMT with afMAXexceeding 1 THz by reducing the gate length to 50 nm.[4]Meiet al. demonstrated 25 nm gate length InP-based HEMTs withfMAXof 1.5 THz and realized the first TMIC with 1 THz amplification.[8]However, the gate length is seriously limited by the available lithography technology. At present, it is difficult to increasefMAXby continuously reducing the gate length. Another way to improve thefMAXis to optimize parasitic effects. Various efforts have been made in this regard,such as reducing the source-to-drain spacing (LSD),[11]gateto-channel distance (tins),[12]as well as optimizing the gate recess,[9,13,14]and the gate stem height.[15,16]

    In this paper, we will report on a novel double-recessed offset gate process for improving thefMAXof InP-based HEMT instead of a gate scaling that would often be used to obtain high RF performance. A double-recess gate structure has been used previously in GaAs-based HEMTs to improve breakdown voltage, which in turn increases output power.[17]We form the double-recess gate structure by selectively etching the cap layers. Compared with the traditional doublerecess gate structure,the incompletely removed cap layer can effectively reduce the exposed area of the active region and inhibit the surface effects. By controlling the gate offset,the parasitic effects can be further optimized for improved performances. Single-recessed HEMTs, and double-recessed HEMTs with different gate offsets have been fabricated and characterized. In addition,the parasitic parameters of devices are extracted and analyzed by using the small-signal model,which explains the influence of the double-recessed offset gate process.

    2. Experiment

    The schematic cross-section of double-recessed InPbased HEMTs is shown in Fig. 1. The epitaxial layers of the devices were grown by gas source molecular beam epitaxy (GSMBE) on 3 inch semi-insulating InP(100) substrates. From bottom to top, the layers consist of a 500 nm In0.52Al0.48As buffer layer, a 15 nm In0.53Ga0.47As channel layer,a 3 nm unstrained ln0.52Al0.48As spacer layer, a Si delta doping layer with 5×1012cm-2doping concentration, an 8 nm unstrained ln0.52Al0.48As Schottky barrier layer, a 4 nm InP etch-stop layer for preventing over etching and a 15 nm/15 nm/10 nm Sidoped ln0.52Al0.48As/In0.53Ga0.47As/In0.65Ga0.35As composite contact layer with a concentration of 1×1019cm-3/1×1019cm-3/3×1019cm-3. The 10 nm strained and heavily doped In0.65Ga0.35As layer to reduce the actual metal-semiconductor contact resistance, a 15 nm heavily doped In0.53Ga0.47As layer, and a 15 nm heavily doped ln0.52Al0.48As layer to lower the potential barrier across the Schottky barrier layer in the source and drain access regions.[18,19]Hall measurements were made at the room temperature,showing a carrier mobility of over 10000 cm2/(V·s).

    Fig.1. Schematic cross-section of double-recessed InP-based HEMTs.

    The fabrication process of double-recessed InP HEMTs mainly contains five steps, including mesa isolation, ohmic contact formation,gate recesses,T-gates and connection pads.Firstly, isolating mesa was formed by utilizing phosphorus acid-based wet chemical etching. Next, the source and drain were spaced 2.4 μm through a lithography process,followed by Ti/Pt/Au (15 nm/15 nm/50 nm) evaporated to satisfy the requirement of Ohmic contact by electron beam evaporation without annealing.

    Afterward, the 0.8 μm first gate recess was defined by electronic beam lithography (EBL) with a ZEP520A e-beam resist layer, and the In0.65Ga0.35As/In0.53Ga0.47As cap layers were etched by a citric acid based solution with an etch selectivity of 20:1 to In0.52Al0.48As. The distance between the source and drain from the center of the first gate recess is 0.9 μm and 1.5 μm, respectively. The source-side recess length (Lrs) and the drain-side recess length (Lrd) are controlled by adjusting the position of the T-shaped gate to form symmetrical or asymmetric gate recess. T-gates were defined by EBL with a PMMA/Al/UVIII (200 nm/10 nm/800 nm) ebeam resist stack. The top UVIII was exposed by a small dose and wide line, then developed by TMAH and rinsed in DI water to determine the gate cap. And then the bottom PMMA was exposed by a big dose and narrow line,then developed by 1, 2-dimethylbenzene to define the gate foot. After that, the second gate recess was etched in the In0.52Al0.48As cap layer by a phosphate based solution, and a Ti/Pt/Au(25 nm/25 nm/300 nm)metal stack was evaporated and lifted off. Three different gate positions were used to observe the dependence of RF performance on gate offset. The gate was located at the first gate recess center, with an offset to the source or drain side. The gate length of all devices is 100 nm,as shown in Fig.2.Finally,the Ti/Au(15 nm/300 nm)connection pads were evaporated for on-wafer DC and RF characteristics measurements.

    Single- and double-recessed HEMTs were identically processed, except for additional recess etching. The detailed parameters of fabricated HEMTs are shown in Table 1. All devices were deposited by plasma-enhanced chemical vapor deposition(PECVD)with 20 nm Si3N4as a passivation layer.

    Fig.2. SEM photograph of the T-Gate and gate recesses of the HEMTs.

    Table 1. The detailed parameters of fabricated HEMTs.

    3. Results and discussion

    3.1. Double-recessed structure

    DC properties were characterized by using a HP4142 semiconductor parameter analyzer at the room temperature.Figure 3 shows theID–VDoutput characteristics and transfer characteristics of the single-recessed HEMTs (device A) and double-recessed HEMTs (device B). Due to the higher series resistances,such as the source and drain resistance(RsandRd)caused by the removal of more cap layer during the formation of the first gate recess, the double-recessed HEMTs exhibit lower maximum drain–source current (ID,max) and maximum extrinsic transconductance (gm,max) than the single-recessed HEMTs. Extrinsic transconductancegmis expressed by

    wheregm,intis the intrinsic transconductance of the HEMTs.It can be seen from Eq.(1)that the increase ofRswill lead to a significant decrease ofgm,max.

    The RF performance is characterized via an Agilent E8363B PNA vector network analyzer from 0.1 GHz to 40 GHz. Before measurement,the devices were de-embedded by using on-wafer open and short pad structures to exclude the parasitic effect. Figure 4 shows the H21and MAG/MSG versus frequency of the single-recessed HEMTs (device A)and double-recessed HEMTs (device B) at their respectivegm,maxpoints. Since the test frequency range was limited from 0.1 GHz to 40 GHz, thefTandfMAXwere obtained by extrapolating the curve of H21and MAG/MSG followed by a slope of-20 dB/dec, respectively. ThefTand thefMAXof single-recessed HEMTs are 296 GHz and 355 GHz, respectively,while thefTand thefMAXof double-recessed HEMTs are 261 GHz and 396 GHz,respectively. However,the device was still unstable (k <1) at the maximum test frequency of 40 GHz,and the actualfMAXwill be larger than that obtained by extrapolation. ThefTandfMAXare expressed by

    Fig.3. DC output(a)and transfer(b)characteristics of the single-and double-recessed HEMTs.

    wheregmiis the intrinsic transconductance,CgsandCgdare the parasitic capacitances from gate to source and gate to drain respectively,gdsis conductance between drain and source,Rgis the parasitic resistances of gate,Riis the intrinsic resistance in the channel region,andfT,intrepresents the cut-off frequency of the intrinsic part of HEMTs without parasitic resistance and capacitance.

    To analyze the effect of the gate recess structures on RF performance, we use a small-signal model to extract the parasitic parameters of the devices. The small-signal model parameters were tuned repeatedly until very good fitting ofSparameters was obtained within the test frequency,as shown in Fig.5. According to the method in Ref.[20],the relative error between theS-parameters of the small-signal model and the measuredS-parameters is extracted. In the range of 5 GHz–40 GHz,the average relative error is only 2.75%.

    Fig. 4. The H21 and MAG/MSG versus frequency of the single and double recessed HEMTs.

    Fig.5. Measured(symbols)and small-signal modeled(lines)RF gains(H21,U,MAG/MSG)and stability factor(k)of the single and double recessed HEMTs.

    Table 2. The parameters of the small-signal equivalent circuit of devices.

    Table 2 summarizes the small-signal modeling parameters of the single and double recessed HEMTs, and also includesfT,measfor comparison. The measured(fT,meas)and the modeledfT(fT,model)are very similar,increasing the credibility of our analysis. Equations(2)and(3)suggest thatCgs,Cgd,Rs, andRdare the key parasitic parameters that affectfTandfMAX.[21]The heavily doped In0.53Ga0.47As/In0.65Ga0.35As cap layers are partially removed in the etching process of the first gate recess, which significantly increases the series resistances (RsandRd), resulting in thefTof double-recessed HEMTs being lower than that of the single-recessed HEMTs.On the other hand, double-recessed HEMTs achieve greaterfMAXdue to the decrease inCgdandgds. The decrease ofgdsis attributed to the effective suppression of impact ionization by the double recess structure.[22]

    3.2. Gate offset in the first gate recess

    The performances of double-recessed HEMTs with different gate offsets are compared. The gates of devices B, C,and D are located in the middle of the first gate recess,toward the source or toward the drain,respectively. The drain-side recess length(Lrd)of devices B,C,and D are 0.35 μm,0.6 μm,0.1 μm, respectively, while the width of the first gate recess remained 2.4 μm.

    Figure 6 shows theID–VDoutput characteristics and transfer characteristics of the devices B, C, and D. WhenLrdincreased,namely,gate position shifted from drain side to source side in the first gate recess, bothID,maxandgm,maxincreased.Device C shows the highestID,maxof 1038 mA/mm andgm,maxof 1151.6 mS/mm.

    Fig. 6. DC output (a) and transfer (b) characteristics of devices B, C,and D.

    Figure 7 shows the H21and MAG/MSG versus frequency of devices B,C,and D atVG=-0.4 V andVD=1.4 V.As the gate position shifts from drain side to source side in the first gate recess,fTdecreases from 287 GHz to 258 GHz andfMAXincreases from 342 GHz to 425 GHz. To explain the variation of RF performance,the parameters are extracted based on the small-signal model,as shown in Table 3.

    Fig.7. The H21 and MAG/MSG versus frequency of devices B,C,and D.

    Table 3. The parameters of the small-signal equivalent circuit of devices.

    Fig.8. Dependence of Cgs(a),Cgd(b),Cgs+Cgd(c)and Cgd/Cgs(d)on Lrd for double-recessed HEMTs.

    Figure 8 shows some key parasitic parameters as the functions ofLrd. The parametersCgsandCgdwere extracted by Eqs.(4)and(5). TheCgsincreased andCgddecreased by extendingLrdfrom 0.1 μm to 0.6 μm, as shown in Fig. 8. Although the changes ofCgsandCgdwith the extension ofLrdare not the same, the increase ofCgs+Cgdwell explains the observed decrease offT. On the other hand, since the opposite changes ofCgsandCgdlead to the further reduction ofCgd/Cgs, the device C with the gate offset to the source side exhibits a maximumfMAXof 425 GHz. Compared with the single-recessed HEMTs (device A) withfMAXof 355 GHz,the increase offMAXis about 20%.

    Table 4 summarizes the reported performance of InP HEMT devices with a gate length of about 100 nm.Our device exhibits outstandingfMAXin devices with gate length over 100 nm by using double-recessed offset gate process technology. The device performances can be further improved by reducing the gate length or using InAs-rich channel materials in the future.

    Table 4. Compared with the published InP HEMT with a gate length of about 100 nm.

    4. Conclusion

    In summary we demonstrated a novel double-recessed offset gate process for InP HEMTs. The double-recessed HEMTs can effectively improvefMAXby reducinggdsandCgs. With the gate offset from the drain side to the source side,fMAXcan be further improved by suppressingCgd/Cgs. Finally,thefMAXof double double-recessed offset gate HEMTs is 20%higher than that of single-recessed HEMTs.

    Acknowledgements

    This work is supported by the National Natural Science Foundation of China (Grant Nos. 61874036, 62174041, and 61434006),the Open Project of State Key Laboratory of ASIC and System (Grant No. KVH1233021), the Opening Foundation of the State Key Laboratory of Advanced Materials and Electronic Components(Grant No.FHR-JS-201909007),the Guangxi Innovation Research Team Project (Grant Nos. 2018GXNSFGA281004 and 2018GXNSFBA281152),the Guangxi Innovation Driven Development Special Fund Project(Grant No.AA19254015),and the Guangxi Key Laboratory of Precision Navigation Technology and Application Project(Grant Nos.DH201906,DH202020,and DH202001).

    猜你喜歡
    王博海鷗
    Electronic structure study of the charge-density-wave Kondo lattice CeTe3
    Circular dichroism spectra of α-lactose molecular measured by terahertz time-domain spectroscopy
    霸道海鷗誰能治
    冷凍斷裂帶儲層預測研究
    Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs
    “海鷗”展翅 “美好”起飛
    山東國資(2021年12期)2021-03-12 10:04:30
    STRONG COMPARISON PRINCIPLES FOR SOME NONLINEAR DEGENERATE ELLIPTIC EQUATIONS?
    山東工藝美術(shù)學院作品賞析
    速讀·下旬(2017年4期)2017-06-20 17:51:03
    海鷗
    海鷗靚影
    国产成人一区二区在线| 久久久久性生活片| 日韩欧美 国产精品| 我的老师免费观看完整版| 日日啪夜夜撸| 99在线人妻在线中文字幕| 久久精品影院6| 一个人免费在线观看电影| 男插女下体视频免费在线播放| 国产日本99.免费观看| 丝袜喷水一区| 欧美区成人在线视频| 国产 一区精品| 十八禁网站免费在线| 亚洲aⅴ乱码一区二区在线播放| 国产欧美日韩一区二区精品| 亚洲第一电影网av| 三级经典国产精品| 日产精品乱码卡一卡2卡三| 免费不卡的大黄色大毛片视频在线观看 | 亚洲美女视频黄频| 天美传媒精品一区二区| 久久99热6这里只有精品| 最近最新中文字幕大全电影3| 特级一级黄色大片| 深夜a级毛片| 亚洲精品在线观看二区| 久久久久精品国产欧美久久久| 国产探花极品一区二区| 欧美色视频一区免费| 国产 一区精品| 成人综合一区亚洲| 国产精品乱码一区二三区的特点| 日韩欧美精品v在线| 国国产精品蜜臀av免费| 最近的中文字幕免费完整| 国产在线精品亚洲第一网站| 国产成人精品久久久久久| 国产精品av视频在线免费观看| 嫩草影院精品99| av女优亚洲男人天堂| 国产综合懂色| 久久精品91蜜桃| 国产伦精品一区二区三区视频9| 18禁在线播放成人免费| 夜夜夜夜夜久久久久| 联通29元200g的流量卡| 一区二区三区高清视频在线| 国产成年人精品一区二区| 精品不卡国产一区二区三区| av中文乱码字幕在线| 精品久久久久久久久av| 最近2019中文字幕mv第一页| 午夜精品一区二区三区免费看| 一级黄色大片毛片| 久久精品国产清高在天天线| 3wmmmm亚洲av在线观看| 黄色欧美视频在线观看| 变态另类丝袜制服| 国产一区二区在线观看日韩| 人人妻人人看人人澡| 一进一出抽搐动态| www.色视频.com| 最新中文字幕久久久久| 欧美zozozo另类| 免费看日本二区| 99精品在免费线老司机午夜| 日韩一本色道免费dvd| 天堂动漫精品| 亚洲成人久久爱视频| 成人综合一区亚洲| 国产三级中文精品| 免费看美女性在线毛片视频| 女的被弄到高潮叫床怎么办| 人妻制服诱惑在线中文字幕| 久久精品国产自在天天线| 听说在线观看完整版免费高清| 能在线免费观看的黄片| 免费一级毛片在线播放高清视频| 天天躁夜夜躁狠狠久久av| 国产精品国产三级国产av玫瑰| 久久天躁狠狠躁夜夜2o2o| 久久精品国产99精品国产亚洲性色| 日韩在线高清观看一区二区三区| 国产精品福利在线免费观看| 两个人视频免费观看高清| 性欧美人与动物交配| 色5月婷婷丁香| 亚洲真实伦在线观看| 亚洲无线在线观看| 欧美中文日本在线观看视频| 白带黄色成豆腐渣| 亚洲一级一片aⅴ在线观看| 久久久久国内视频| 成人综合一区亚洲| 99国产极品粉嫩在线观看| 欧美性猛交黑人性爽| 亚洲成人久久爱视频| 中文字幕久久专区| 亚洲真实伦在线观看| 欧美性感艳星| 国产91av在线免费观看| 欧美日韩一区二区视频在线观看视频在线 | 中国美白少妇内射xxxbb| 日产精品乱码卡一卡2卡三| a级毛片a级免费在线| 最近2019中文字幕mv第一页| 中国美白少妇内射xxxbb| 人人妻人人澡欧美一区二区| 亚洲欧美日韩卡通动漫| 丝袜喷水一区| 亚洲激情五月婷婷啪啪| 亚洲av一区综合| 精品无人区乱码1区二区| 免费av观看视频| 免费看a级黄色片| 俄罗斯特黄特色一大片| 亚洲久久久久久中文字幕| 国语自产精品视频在线第100页| avwww免费| 欧美成人a在线观看| 内地一区二区视频在线| 精品一区二区三区视频在线观看免费| 男女边吃奶边做爰视频| 又爽又黄无遮挡网站| 精品少妇黑人巨大在线播放 | 亚洲电影在线观看av| 美女黄网站色视频| 热99re8久久精品国产| 亚洲精华国产精华液的使用体验 | 综合色av麻豆| 晚上一个人看的免费电影| 欧美不卡视频在线免费观看| 亚州av有码| 精品欧美国产一区二区三| 淫妇啪啪啪对白视频| 寂寞人妻少妇视频99o| 国产av不卡久久| 国产精品一区www在线观看| 赤兔流量卡办理| av天堂在线播放| 我要搜黄色片| 精品久久久久久久久久久久久| 亚洲人成网站在线播放欧美日韩| a级毛片免费高清观看在线播放| 少妇熟女欧美另类| 国内精品一区二区在线观看| 色吧在线观看| 99热6这里只有精品| 中国美白少妇内射xxxbb| 美女免费视频网站| 国产精华一区二区三区| 日韩成人伦理影院| 免费av毛片视频| 久久国内精品自在自线图片| 亚洲无线观看免费| 91麻豆精品激情在线观看国产| 日本欧美国产在线视频| 国内精品一区二区在线观看| 床上黄色一级片| 桃色一区二区三区在线观看| 全区人妻精品视频| 久久精品综合一区二区三区| 欧美成人免费av一区二区三区| 熟女电影av网| 久久综合国产亚洲精品| 国产成人a区在线观看| 日日啪夜夜撸| 国产精华一区二区三区| 国产精品人妻久久久久久| 一级a爱片免费观看的视频| 插阴视频在线观看视频| 伦精品一区二区三区| 日韩制服骚丝袜av| 夜夜夜夜夜久久久久| 一个人看的www免费观看视频| 亚洲自偷自拍三级| 亚洲人成网站在线播| 免费在线观看影片大全网站| 男女视频在线观看网站免费| 日韩欧美国产在线观看| 国内少妇人妻偷人精品xxx网站| 激情 狠狠 欧美| 成年av动漫网址| 国产一级毛片七仙女欲春2| 嫩草影院精品99| 国产精品永久免费网站| 免费看a级黄色片| 中国美女看黄片| 精品久久久久久久人妻蜜臀av| 五月伊人婷婷丁香| av女优亚洲男人天堂| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品影院6| 成人鲁丝片一二三区免费| 九九在线视频观看精品| 欧美日韩乱码在线| 国产色爽女视频免费观看| 日日啪夜夜撸| 日韩高清综合在线| 伊人久久精品亚洲午夜| 精品久久久久久久久av| aaaaa片日本免费| 午夜视频国产福利| 日韩欧美在线乱码| 亚洲精品一卡2卡三卡4卡5卡| 少妇丰满av| 国产欧美日韩精品亚洲av| 少妇猛男粗大的猛烈进出视频 | 国产伦精品一区二区三区视频9| 麻豆国产av国片精品| 亚洲成av人片在线播放无| 日韩制服骚丝袜av| 成年女人毛片免费观看观看9| 成人特级黄色片久久久久久久| 亚洲精品国产成人久久av| 欧洲精品卡2卡3卡4卡5卡区| 婷婷精品国产亚洲av在线| 美女内射精品一级片tv| 日韩欧美在线乱码| 天堂√8在线中文| 99久国产av精品| 国产免费一级a男人的天堂| 亚洲av第一区精品v没综合| 淫妇啪啪啪对白视频| 美女免费视频网站| 熟女人妻精品中文字幕| 久久精品91蜜桃| 我要搜黄色片| 久久久久久久久中文| 一进一出好大好爽视频| 中出人妻视频一区二区| 亚洲精品日韩在线中文字幕 | 内地一区二区视频在线| 国产午夜精品久久久久久一区二区三区 | 亚洲av不卡在线观看| 永久网站在线| 国产精品久久视频播放| 内射极品少妇av片p| 国产av不卡久久| 亚洲久久久久久中文字幕| 亚洲激情五月婷婷啪啪| 亚洲精品久久国产高清桃花| 人妻制服诱惑在线中文字幕| 久久久久久久午夜电影| 色尼玛亚洲综合影院| 99国产极品粉嫩在线观看| 久久久久九九精品影院| 少妇熟女aⅴ在线视频| 天堂√8在线中文| 欧洲精品卡2卡3卡4卡5卡区| 日韩欧美精品v在线| 国产淫片久久久久久久久| 亚洲色图av天堂| 狂野欧美激情性xxxx在线观看| 又爽又黄a免费视频| 亚洲成人精品中文字幕电影| 一级黄片播放器| 中文亚洲av片在线观看爽| 校园人妻丝袜中文字幕| 亚洲成av人片在线播放无| 亚州av有码| 亚洲av电影不卡..在线观看| 午夜福利18| 久久久色成人| 中文亚洲av片在线观看爽| 日本爱情动作片www.在线观看 | 91在线精品国自产拍蜜月| 日日摸夜夜添夜夜添小说| 国产精品久久久久久精品电影| 麻豆av噜噜一区二区三区| 寂寞人妻少妇视频99o| 免费搜索国产男女视频| 国内精品一区二区在线观看| 日韩欧美免费精品| 97超碰精品成人国产| 亚洲av免费在线观看| 人妻久久中文字幕网| 国产精品久久久久久亚洲av鲁大| 亚洲欧美中文字幕日韩二区| 精品一区二区三区视频在线观看免费| 久久久久国内视频| 波野结衣二区三区在线| 岛国在线免费视频观看| 欧美激情国产日韩精品一区| 黄色视频,在线免费观看| 成人一区二区视频在线观看| 国产一区亚洲一区在线观看| 中文字幕人妻熟人妻熟丝袜美| 少妇人妻一区二区三区视频| 久久久久性生活片| 成人毛片a级毛片在线播放| 午夜老司机福利剧场| 国产精品99久久久久久久久| 乱人视频在线观看| 少妇的逼水好多| 精品乱码久久久久久99久播| 级片在线观看| www.色视频.com| 精品日产1卡2卡| 国产男靠女视频免费网站| 成人性生交大片免费视频hd| 1000部很黄的大片| 99在线视频只有这里精品首页| 小说图片视频综合网站| 欧美成人一区二区免费高清观看| h日本视频在线播放| 观看美女的网站| 午夜日韩欧美国产| 亚洲精品国产成人久久av| 啦啦啦观看免费观看视频高清| 婷婷六月久久综合丁香| 精品99又大又爽又粗少妇毛片| 日本五十路高清| 亚洲成人久久爱视频| 午夜福利在线观看免费完整高清在 | 亚洲精品久久国产高清桃花| 亚洲av二区三区四区| 嫩草影院新地址| 日日摸夜夜添夜夜添av毛片| 听说在线观看完整版免费高清| 日日摸夜夜添夜夜添小说| 精品午夜福利在线看| 亚洲天堂国产精品一区在线| 久久这里只有精品中国| 直男gayav资源| 欧美bdsm另类| 精品99又大又爽又粗少妇毛片| 欧美日韩在线观看h| 免费在线观看成人毛片| 日韩精品青青久久久久久| 老司机影院成人| 伊人久久精品亚洲午夜| 国产高清视频在线观看网站| 久99久视频精品免费| 亚洲国产日韩欧美精品在线观看| 欧美bdsm另类| 能在线免费观看的黄片| 亚洲国产高清在线一区二区三| 欧美激情在线99| 精品久久久久久久久久久久久| 精品熟女少妇av免费看| 偷拍熟女少妇极品色| 又黄又爽又刺激的免费视频.| 嫩草影视91久久| 黄色视频,在线免费观看| 免费看日本二区| 国产av在哪里看| 午夜激情欧美在线| 久久久午夜欧美精品| 国产成人aa在线观看| 国产高清视频在线播放一区| 99久国产av精品国产电影| 国产亚洲精品久久久久久毛片| 久久韩国三级中文字幕| 亚洲专区国产一区二区| 一级毛片我不卡| 在线观看66精品国产| 狠狠狠狠99中文字幕| 国产精品99久久久久久久久| 最近中文字幕高清免费大全6| 亚洲,欧美,日韩| 亚洲性夜色夜夜综合| 午夜视频国产福利| 我要看日韩黄色一级片| 亚洲欧美成人精品一区二区| 99九九线精品视频在线观看视频| 熟妇人妻久久中文字幕3abv| 我要搜黄色片| 国内精品一区二区在线观看| 性插视频无遮挡在线免费观看| 欧美不卡视频在线免费观看| 久久午夜福利片| 三级男女做爰猛烈吃奶摸视频| 性插视频无遮挡在线免费观看| 精品福利观看| 日韩欧美精品免费久久| 在线a可以看的网站| 国产成人a∨麻豆精品| 欧美日韩国产亚洲二区| 亚州av有码| 亚洲成a人片在线一区二区| 亚洲一区二区三区色噜噜| 久久韩国三级中文字幕| 中文字幕av在线有码专区| 免费看a级黄色片| 中国美女看黄片| 欧美日韩国产亚洲二区| 亚洲国产精品sss在线观看| 最近手机中文字幕大全| 久久亚洲国产成人精品v| 最新中文字幕久久久久| 99久久精品国产国产毛片| av专区在线播放| 一级a爱片免费观看的视频| 国产精品一二三区在线看| 99国产极品粉嫩在线观看| a级毛色黄片| 亚洲美女黄片视频| 中出人妻视频一区二区| 国产精品av视频在线免费观看| 亚洲久久久久久中文字幕| 婷婷六月久久综合丁香| 国产精品一区二区免费欧美| 女生性感内裤真人,穿戴方法视频| 看片在线看免费视频| 97在线视频观看| 亚洲av中文字字幕乱码综合| 偷拍熟女少妇极品色| 国产探花极品一区二区| 六月丁香七月| 国产午夜福利久久久久久| 日韩亚洲欧美综合| 国产精品久久久久久亚洲av鲁大| 免费看日本二区| 一a级毛片在线观看| 欧美国产日韩亚洲一区| 五月玫瑰六月丁香| 中文字幕av在线有码专区| 中国国产av一级| 国产成人一区二区在线| 久久韩国三级中文字幕| 亚洲电影在线观看av| 99在线视频只有这里精品首页| 久久热精品热| 成人二区视频| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲欧美日韩卡通动漫| 中文亚洲av片在线观看爽| 在现免费观看毛片| 亚洲成人av在线免费| 丝袜美腿在线中文| 亚洲激情五月婷婷啪啪| 一个人观看的视频www高清免费观看| 99久久精品一区二区三区| 亚洲精品日韩av片在线观看| 少妇熟女欧美另类| 中文字幕av成人在线电影| 亚洲国产精品成人久久小说 | 日本-黄色视频高清免费观看| 国产成人a∨麻豆精品| 精品福利观看| 夜夜爽天天搞| 三级经典国产精品| 亚洲五月天丁香| 国产高清不卡午夜福利| 欧美成人一区二区免费高清观看| 熟妇人妻久久中文字幕3abv| 精品久久国产蜜桃| 99热精品在线国产| 我的女老师完整版在线观看| 成人二区视频| 国产精品久久久久久亚洲av鲁大| 给我免费播放毛片高清在线观看| 黄色一级大片看看| 露出奶头的视频| 精品国内亚洲2022精品成人| 看非洲黑人一级黄片| 久久久久性生活片| 欧美一区二区精品小视频在线| 插阴视频在线观看视频| 大香蕉久久网| 精品免费久久久久久久清纯| 亚洲欧美成人精品一区二区| 麻豆国产97在线/欧美| 成人av一区二区三区在线看| 丰满人妻一区二区三区视频av| 中文字幕熟女人妻在线| 观看免费一级毛片| 日本与韩国留学比较| 非洲黑人性xxxx精品又粗又长| av在线蜜桃| 欧美xxxx黑人xx丫x性爽| 欧美+日韩+精品| 国产一区二区在线av高清观看| 少妇的逼水好多| 精品免费久久久久久久清纯| 在线天堂最新版资源| 国产欧美日韩一区二区精品| 国产精品无大码| 99久久成人亚洲精品观看| 亚洲熟妇熟女久久| 日本熟妇午夜| 亚洲四区av| av中文乱码字幕在线| 在线观看午夜福利视频| 久久精品人妻少妇| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久久久大av| 自拍偷自拍亚洲精品老妇| 亚洲人成网站在线播| 日本精品一区二区三区蜜桃| 尾随美女入室| 午夜老司机福利剧场| 天天躁夜夜躁狠狠久久av| 99久国产av精品| 99热只有精品国产| 日韩成人伦理影院| 成人无遮挡网站| 老熟妇仑乱视频hdxx| 亚洲精品456在线播放app| 日日撸夜夜添| 久久久精品欧美日韩精品| 大香蕉久久网| 麻豆国产av国片精品| 免费av毛片视频| 成人一区二区视频在线观看| 91在线精品国自产拍蜜月| 亚洲国产高清在线一区二区三| 少妇熟女欧美另类| 99久久精品热视频| 国产在线男女| 天天躁日日操中文字幕| aaaaa片日本免费| 日本 av在线| 99热精品在线国产| 亚洲欧美日韩卡通动漫| 在线a可以看的网站| 精品人妻熟女av久视频| 少妇丰满av| 啦啦啦韩国在线观看视频| 精品免费久久久久久久清纯| 午夜福利在线观看免费完整高清在 | 国产精品久久久久久av不卡| 我的老师免费观看完整版| 成人综合一区亚洲| 一级av片app| 亚洲一级一片aⅴ在线观看| 亚洲国产日韩欧美精品在线观看| 日日摸夜夜添夜夜爱| 我的老师免费观看完整版| 91精品国产九色| 国产高清视频在线观看网站| 国产成人freesex在线 | 1024手机看黄色片| 99久国产av精品| 亚洲18禁久久av| 国产探花极品一区二区| 久久久色成人| 五月伊人婷婷丁香| 一级毛片aaaaaa免费看小| 女人十人毛片免费观看3o分钟| 悠悠久久av| 亚洲av电影不卡..在线观看| 有码 亚洲区| 色综合色国产| 欧美xxxx性猛交bbbb| 草草在线视频免费看| 日韩一区二区视频免费看| 久久韩国三级中文字幕| 嫩草影视91久久| av黄色大香蕉| 我要搜黄色片| av天堂中文字幕网| 99久国产av精品国产电影| 午夜福利高清视频| 高清毛片免费看| 亚洲精品国产成人久久av| 国产aⅴ精品一区二区三区波| 国产 一区精品| 亚洲欧美日韩无卡精品| 精品无人区乱码1区二区| 国产一区二区三区av在线 | 国产中年淑女户外野战色| 我的老师免费观看完整版| 男人的好看免费观看在线视频| 日本-黄色视频高清免费观看| 成人av在线播放网站| 22中文网久久字幕| 最近的中文字幕免费完整| 人人妻,人人澡人人爽秒播| 精品午夜福利视频在线观看一区| 国产一区二区在线av高清观看| 亚洲经典国产精华液单| 99热全是精品| 亚洲一级一片aⅴ在线观看| 搞女人的毛片| 国产人妻一区二区三区在| 热99在线观看视频| 国产精品人妻久久久久久| 春色校园在线视频观看| 美女大奶头视频| 国产欧美日韩精品一区二区| 久久午夜福利片| 色在线成人网| 成人一区二区视频在线观看| 亚洲五月天丁香| 日本与韩国留学比较| 国产色婷婷99| 免费搜索国产男女视频| 国产av在哪里看| 精品久久久噜噜| 少妇猛男粗大的猛烈进出视频 | 欧美日韩综合久久久久久| 干丝袜人妻中文字幕| 哪里可以看免费的av片| 婷婷精品国产亚洲av| 成年免费大片在线观看| 国产av不卡久久| av天堂中文字幕网| 久久久国产成人精品二区| 亚洲熟妇熟女久久| 国产高清不卡午夜福利| 国产单亲对白刺激| 国产一区二区亚洲精品在线观看| 国产高清不卡午夜福利| 又爽又黄无遮挡网站| 亚洲国产欧美人成| 全区人妻精品视频| 成人亚洲精品av一区二区| 中文字幕熟女人妻在线| 身体一侧抽搐| 内地一区二区视频在线| 国产精品女同一区二区软件| 国产精品综合久久久久久久免费|