陳禮英
摘 要:小學(xué)生數(shù)學(xué)水平之間差別的重要因素并不是不會相應(yīng)的知識,而是缺少解決問題的思維和技術(shù),不懂得思考方向和思考的突破點(diǎn),不懂得怎樣進(jìn)行分析。“授人以魚,不如授人以漁?!苯處熢诮虒W(xué)中需要重視對孩子解決問題能力的培養(yǎng),這是我們目前新課改的主要思想,更是我們作為小學(xué)數(shù)學(xué)老師必須仔細(xì)考慮的問題之一。
關(guān)鍵詞:小學(xué)數(shù)學(xué);解決問題;教學(xué)策略
【中圖分類號】G623.5? ? ? ? ? ? 【文獻(xiàn)標(biāo)識碼】A? ? ? ? ? ? ?【文章編號】1005-8877(2022)12-0023-03
My Opinions on Teaching Strategies for Problem Solving in Primary School Mathematics
CHEN Liying (Sanguantang Primary School, Shaxian District, Sanming City, Fujian Province, China)
【Abstract】The important factor for the difference between primary school students' mathematics level is not the lack of corresponding knowledge, but the lack of problem-solving thinking and technology, the lack of thinking direction and breakthrough points, and the lack of understanding of how to analyze. "It is better to teach a man to fish than to give him a fish." Teachers need to pay attention to the cultivation of children's problem-solving ability in teaching. This is the main idea of the current new curriculum reform, and it is also one of the issues that primary school mathematics teachers must carefully consider.
【Keywords】Primary school mathematics; Problem solving; Teaching strategies
如今的小學(xué)數(shù)學(xué)課標(biāo)提出解決問題的教學(xué),要求老師把所學(xué)知識溶于生活情景之中,讓學(xué)生們在情景中理解問題、發(fā)現(xiàn)問題、提出問題,聯(lián)系已經(jīng)掌握的數(shù)學(xué)知識,經(jīng)過學(xué)生的探索、老師的開發(fā)引導(dǎo),使學(xué)生們既解決了問題,也掌握了所教授的數(shù)學(xué)知識,最終形成知識能力,而且還得到一定的生活體會。
如今的數(shù)學(xué)教科書給我們提供了豐富的內(nèi)容,如植樹的問題、烙餅的問題、找規(guī)律的問題等等,這些數(shù)學(xué)知識和我們的生活實(shí)踐密切相關(guān)。我們應(yīng)該怎樣運(yùn)用一些教學(xué)技巧和策略,去指導(dǎo)學(xué)生學(xué)會學(xué)習(xí),并把這些學(xué)習(xí)技巧應(yīng)用到解決問題中呢?這其實(shí)是在課堂教學(xué)中充分利用學(xué)生的主體地位,讓學(xué)生們積極參加與體會所學(xué)知識、由不懂到懂的過程。在這樣的過程中大大改善學(xué)生學(xué)習(xí)數(shù)學(xué)的意識,培養(yǎng)和激發(fā)學(xué)生獨(dú)立自主學(xué)習(xí)的能力,培養(yǎng)學(xué)生創(chuàng)設(shè)性的思維方式。
1.對于學(xué)生來說,審題是前提
學(xué)會解決問題的前提條件是先學(xué)會審題,但是我們要怎么樣才可以把握題意呢?
一是引導(dǎo)學(xué)生學(xué)會讀題和審題的技巧,指導(dǎo)其去尋找題目中的關(guān)鍵字和關(guān)鍵詞,這樣可以培養(yǎng)學(xué)生認(rèn)真審題的好習(xí)慣。
二是指導(dǎo)學(xué)生認(rèn)真分析題目,弄清題意,確定題目當(dāng)中各個(gè)已知條件之間的關(guān)系,指導(dǎo)學(xué)生尋找出已知的各種信息和我們需要解決的問題。
在實(shí)踐解題過程中,我們要指導(dǎo)學(xué)生先審題,這樣學(xué)生對題意會有一個(gè)初步的了解。然后,把已經(jīng)給出的條件和需要解決的問題清楚地羅列出來,通過這種方式去判斷題目中的“關(guān)鍵字”和“關(guān)鍵詞”,這樣也就找到了解題的關(guān)鍵點(diǎn),然后根據(jù)題目中的相關(guān)信息進(jìn)行整理。以這樣的方式去指導(dǎo)學(xué)生,可以有效地讓學(xué)生避免無關(guān)條件信息的干擾。通過這種方式去找關(guān)鍵詞,已知條件就可以被一步步地發(fā)掘出來,學(xué)生的思路也會逐步地清晰起來。在這個(gè)環(huán)節(jié)中,教師要指導(dǎo)學(xué)生直奔主題,不要讓學(xué)生的思維定式造成影響。因?yàn)樵诰唧w的審題過程中,很多學(xué)生還是會出現(xiàn)太過謹(jǐn)慎的情況,對題目中的輔助條件或者是無關(guān)條件太過重視,從而造成思維混亂。這種情況大部分同學(xué)都出現(xiàn)過,所以,指導(dǎo)學(xué)生學(xué)會通過關(guān)鍵字和關(guān)鍵詞找到相關(guān)的信息,成為解題當(dāng)中非常重要的一步。
審題可以采取“三步法”,第一步粗讀,就是讀一下題目主要是講一件什么事情,比如說是求速度、求周長還是求面積等;第二步就是細(xì)讀,要找到題目中已知的條件,要求什么問題,是否有需要轉(zhuǎn)換的單位等等,如一塊木板長2米,寬50厘米,求周長,這里就需要把50厘米轉(zhuǎn)換成0.5米,單位統(tǒng)一了才能求周長;第三步詳讀,這一步是最后一步,需要理清數(shù)量關(guān)系,需要確定先求什么,再求什么,確定步驟,這樣在解題時(shí)就會形成一個(gè)框架。
在實(shí)際教學(xué)中,很多學(xué)生會因?yàn)闆]有讀懂題目,而常常出錯(cuò),比如一根水管長6米,鋸掉三分之一,還有多少米?一根水管長6米,鋸掉三分之一米,還有多少米?這兩題就只有一個(gè)字的差別,但是含義完全不同,如果沒有讀清楚,就容易弄錯(cuò)。在小學(xué)階段的數(shù)學(xué)教學(xué)中,各類習(xí)題或者考試,都要求對題目進(jìn)行仔細(xì)分析,從而得出答案。因此,審題過程是非常關(guān)鍵的。也可以說,學(xué)生的審題過程相當(dāng)于學(xué)生的自學(xué)過程,在考試過程中,我們要認(rèn)真審題,靈活運(yùn)用有效地提高審題質(zhì)量,使得審題能力不斷提高。
2.用舊知換新知,化未知為已知
學(xué)習(xí)是一個(gè)不斷反復(fù)的過程,數(shù)學(xué)知識是有一定的關(guān)聯(lián)性的,因此我們可以利用“溫故而知新”的學(xué)習(xí)方法,這樣可以獲得非常好的學(xué)習(xí)效果。特別是小學(xué)生到了高年級以后,更要注意多使用“溫故而知新”法,數(shù)學(xué)的學(xué)習(xí)過程就是不斷換化的過程,解決問題就是把題目中的未知因素?fù)Q化為已知因素,把新知因素?fù)Q化為舊知因素,所以,引導(dǎo)學(xué)生學(xué)習(xí)把新知轉(zhuǎn)化為舊知,把未知轉(zhuǎn)化為已知的思維方式,對學(xué)生學(xué)習(xí)解決問題是非常關(guān)鍵的,這種換化的數(shù)學(xué)策略在我們小學(xué)各冊教學(xué)教材中都會出現(xiàn)。經(jīng)過對以往知識的回顧,把所學(xué)的新舊知識共同組成“個(gè)人知識庫”。例如,在我們學(xué)習(xí)三角形的面積時(shí),就會涉及正方形的面積;在學(xué)習(xí)菱形的面積時(shí),就會涉及正方形的面積;學(xué)習(xí)梯形的面積時(shí),就會涉及菱形的面積。
3.假設(shè)問題情境、培養(yǎng)學(xué)習(xí)興趣
在以往解決問題的教學(xué)中,需要解答的問題一般是教師提前預(yù)設(shè)好、直接拋給學(xué)生的,所以很多學(xué)生一般情況下是不會主動向老師提問的,并且學(xué)生去解決這些問題的目的,僅僅是找答案,而不會去思考為什么需要解決這個(gè)問題,怎樣才能快速地解決問題,所以也就無所謂去探索問題了。正因?yàn)檫@樣,學(xué)生在解決問題時(shí)想起的僅僅是一種表面的現(xiàn)象,對解決問題的思維方式得不到較好的發(fā)展,而學(xué)生對數(shù)學(xué)的情感、數(shù)學(xué)的思想在教學(xué)中也得不到培養(yǎng)。因此,要想使學(xué)生得到數(shù)學(xué)知識、數(shù)學(xué)方法、數(shù)學(xué)思想上的全面提高,達(dá)到較強(qiáng)的數(shù)學(xué)意識,首先要設(shè)計(jì)生動的問題情境,激發(fā)學(xué)生深入問題中。
創(chuàng)造“問題情境”就是說在課本的學(xué)習(xí)和學(xué)生的學(xué)習(xí)之間營造一種氛圍,讓學(xué)生進(jìn)入一種和問題相關(guān)的情境當(dāng)中。這樣的過程就是“探索—思考—發(fā)現(xiàn)—解決”問題的過程。這種過程,是把想要解決的問題,有計(jì)劃地、合理性地融入各式各樣的適合學(xué)生教學(xué)實(shí)際的情境當(dāng)中,在學(xué)生們的心靈上營造一種懸念,把學(xué)生的注意力、思維力、記憶力全部調(diào)動起來,進(jìn)而達(dá)到學(xué)習(xí)知識的最佳效果。
解決一個(gè)問題很重要,但更重要的是問題的提出。所以,教師在課堂教學(xué)中應(yīng)該按照所學(xué)知識的難易程度,針對學(xué)生的學(xué)習(xí)能力和認(rèn)知能力,用心策劃有效的問題。在問題的策劃中,需要注意問題不同的層次性和邏輯性。教師所提的問題可以分三個(gè)步驟:首先是所學(xué)知識的鋪設(shè)的問題;其次是所學(xué)知識的邏輯化問題;最后是所學(xué)知識的應(yīng)用問題。這三個(gè)問題是互相關(guān)聯(lián)的問題組。為學(xué)生創(chuàng)造解決問題的情境,指導(dǎo)學(xué)生主動去找尋問題、找尋解決問題的方式,從而開始探究式學(xué)習(xí)方式。教師如果能夠做到這樣,就能夠激發(fā)學(xué)生求知的欲望以及思維的能力。
4.指導(dǎo)自主學(xué)習(xí)、培養(yǎng)自主意識
學(xué)生是學(xué)習(xí)的主人,教師是起主導(dǎo)作用的,我們要突出學(xué)生的“主體”地位,給學(xué)生供應(yīng)充足的自主探究的空間,充分發(fā)揮學(xué)生的各種潛力,激勵(lì)學(xué)生利用已經(jīng)掌握的數(shù)學(xué)知識進(jìn)行自主的猜想,用自主的科學(xué)的方式去探究問題,從不同的方向去找尋解決問題的途徑,指導(dǎo)學(xué)生自主收獲解決問題的方法和策略,使其自主意識在學(xué)習(xí)的過程中不斷增強(qiáng)。自主探索可以分為以下五個(gè)環(huán)節(jié)。
第一環(huán)節(jié):理解所學(xué)問題;第二環(huán)節(jié):選擇一個(gè)方案;第三環(huán)節(jié):嘗試這個(gè)方案;第四環(huán)節(jié):檢查這個(gè)方案;第五環(huán)節(jié):反思這個(gè)方案。
以上這五個(gè)環(huán)節(jié),不是一個(gè)個(gè)單獨(dú)進(jìn)行的,在這個(gè)過程中會不斷地反復(fù)、不斷地發(fā)現(xiàn),我們要根據(jù)問題的具體情境,靈活運(yùn)用。在實(shí)際教學(xué)中,我們可以適當(dāng)?shù)赝怀龌蛘呦麥p某一個(gè)環(huán)節(jié),這樣更有利于解決問題。比如,在教學(xué)一道例題時(shí),可以讓學(xué)生提出各自不同的問題,老師也可以反問學(xué)生:你想解決哪一個(gè)問題呢?你想選擇哪種方式去解決問題呢?你還有沒有其他不同的解決問題的方式方法?這種讓學(xué)生自由選擇問題的教學(xué),指導(dǎo)學(xué)生多方面多角度地去思考問題,不僅體現(xiàn)了學(xué)生的主體地位,還體現(xiàn)了學(xué)生的自主意識。
5.發(fā)現(xiàn)思維經(jīng)過、改進(jìn)解決辦法
我們作為老師,教學(xué)生數(shù)學(xué),不僅僅是教學(xué)生學(xué)會做數(shù)學(xué)題,還要教會學(xué)生數(shù)學(xué)的思維方式,培養(yǎng)學(xué)生獨(dú)特的、靈活的、緊密的等好的思維習(xí)慣。在培養(yǎng)學(xué)生的思維過程中,我們總是在不斷探索中尋求簡潔的方式,在教學(xué)中變靈活,不斷地學(xué)會縝密、學(xué)會思考,在不斷的學(xué)習(xí)中形成較好的認(rèn)知結(jié)構(gòu),這樣可以避免兩極分化的情況。
6.指導(dǎo)課后評價(jià)、改善解決策略
我們教學(xué)“解決問題”的目的并不是只解決一個(gè)或幾個(gè)問題的本身,而是讓學(xué)生們課堂上的學(xué)習(xí)積累解決問題的經(jīng)驗(yàn)、了解探究的過程,從而學(xué)會解決問題方法、思路和策略,這樣才能使學(xué)生學(xué)會去解決各種各樣不同的問題。指導(dǎo)學(xué)生在解決問題的過程中,課后評價(jià)是培養(yǎng)學(xué)生數(shù)學(xué)思維和解決策略非常重要的一個(gè)環(huán)節(jié),也是以往的教學(xué)中沒有重視的一個(gè)環(huán)節(jié)。在解決問題的探究過程中,常常會出現(xiàn)很多不一樣的方式和結(jié)果,教師要給學(xué)生們充分的空間,鼓勵(lì)學(xué)生們發(fā)表他們的意見和建議,同時(shí)還要注重保護(hù)好學(xué)生的積極性。問題解決之后,老師還要懂得指導(dǎo)學(xué)生們說出不同的答案,引導(dǎo)他們找出最好的解決方式。我們在教學(xué)中可以讓學(xué)生學(xué)會說明自己的解題步驟是否是最簡潔的,自己的推理過程是否是嚴(yán)密的,進(jìn)而有效地去評價(jià)解題的結(jié)果,這樣不僅有利于學(xué)生的發(fā)展性成長,還有利于促進(jìn)學(xué)生們真真正正提高數(shù)學(xué)技能。
在評價(jià)和反思的過程中,教師要精心設(shè)計(jì),引導(dǎo)學(xué)生反思解決問題的方式,如可以這樣問:問他人是怎樣想的?怎樣做的?引導(dǎo)學(xué)生思考評價(jià)方式是否合理,如可以這樣問:這樣的方式對嗎?是否有什么地方不合理?引導(dǎo)學(xué)生認(rèn)識評價(jià)方式具有多樣性,如可以這樣問:還要其他方式嗎?你是否有更合理分方式?詢問學(xué)生在解題過程中使用了哪些策略,并對這個(gè)過程進(jìn)行加工、歸納,從而可以達(dá)到舉一反三的效果。
另外,課后評價(jià)還是一個(gè)可以讓學(xué)生體會成功、體會進(jìn)步的重要過程,可以讓學(xué)生增強(qiáng)自信心;可以讓學(xué)習(xí)能力弱的特殊學(xué)生得到鞭策;還可以讓有創(chuàng)新思維的學(xué)生得到張揚(yáng)。例如,在教學(xué)解答這樣的例題時(shí):在一個(gè)正方形的花圃四周種花,每一邊有30棵,請問花圃四周一共種了多少顆花?有不少學(xué)生會這樣列算式:30×4 =120(棵),在這個(gè)時(shí)候我們就可以指導(dǎo)學(xué)生畫出每一邊種4棵或者5棵的簡易圖畫,這樣比較形象地觀察一下,學(xué)生就可以很快發(fā)現(xiàn)問題所在,從學(xué)生們畫的圖中可以看出,如果每邊種4棵的話,總共要種12棵,而并不是4×4=16(棵)。用同樣的方法去理解,如果每邊種5棵的情況,讓學(xué)生畫出簡易圖,每邊種5棵是16棵,而并不是5×4=20棵。這樣大家討論一下,為什么每邊種4棵或者種5棵都比原來的少了4棵呢?通過學(xué)生認(rèn)真觀察簡易圖,可以發(fā)現(xiàn)四個(gè)頂點(diǎn)上的4棵算了兩次,因此,需要把重復(fù)計(jì)算的4棵減去。事實(shí)證明,在數(shù)學(xué)教學(xué)過程中,合理地進(jìn)行反思和評價(jià),可以非常好地調(diào)動學(xué)生的內(nèi)在動力,大大提高學(xué)生的學(xué)習(xí)積極性。
7.興趣是好老師、合作是好升華
在教學(xué)過程中,教師要充分讓學(xué)生體會到成功的喜悅,通過聯(lián)系學(xué)生的生活實(shí)踐,激發(fā)學(xué)生的學(xué)習(xí)興趣,改變教學(xué)策略,讓課堂充滿活力。同時(shí),做好作業(yè)的等級批改,為學(xué)生布置的作業(yè)需要有層次、有趣味。重視學(xué)生的能力培養(yǎng),充分發(fā)揮學(xué)生的特長,給學(xué)生自我展示的平臺,進(jìn)而讓學(xué)生喜歡學(xué)習(xí),樂于學(xué)習(xí)。在教學(xué)過程中,合作交流也是不可或缺的,在教學(xué)中培養(yǎng)學(xué)生合作精神,取長補(bǔ)短,展示每一個(gè)學(xué)生不同的思維,不同解題技巧,讓學(xué)生在比較學(xué)習(xí)中提高解決問題的能力。
解決問題已經(jīng)是數(shù)學(xué)教育上的關(guān)注熱點(diǎn),所以我們也要以不變應(yīng)萬變,讓學(xué)生學(xué)會解決問題的各種技巧,學(xué)會各種學(xué)習(xí)方法,提高學(xué)生學(xué)習(xí)的應(yīng)用意識,提高學(xué)生學(xué)習(xí)的應(yīng)用能力,為培養(yǎng)我們新的下一代人才打下堅(jiān)實(shí)的基礎(chǔ)。
參考文獻(xiàn)
[1]中華人民共和國教育部.義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)[S].北京:北京師范大學(xué)出版社,2011.
本文系沙縣區(qū)進(jìn)修學(xué)校課題“小學(xué)數(shù)學(xué)教學(xué)中解決問題策略的研究”(課題立項(xiàng)編號:SXJYKT-20108)的研究成果之一。