• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Chromosome-level genome assembly of the dotted gizzard shad (Konosirus punctatus) provides insights into its adaptive evolution

    2022-04-28 06:47:58Bing-JianLiu,KunZhang,Shu-FeiZhang
    Zoological Research 2022年2期

    Konosirus punctatusis an economically important marine fishery resource and is widely distributed from the Indian to Pacific oceans.It is a good non-model species for genetic studies on salinity and temperature adaptation.However, a high-quality reference genome has not yet been reported.Here, an 800.00 Mb high-quality chromosome-level genome with a contig N50 length of 2.14 Mb was assembled using Illumina, Pacific Biosciences, and Hi-C sequencing technology.The assembled sequences were anchored to 24 pseudochromosomes by the Hi-C data.In total, 24 298 protein-coding genes were predicted, 91.08% of which were successfully annotated with putative functions.Furthermore,587 putative genes were identified as being under positive selection.This new high-qualityK.punctatusreference genome provides a fundamental resource for a deeper understanding of temperature and salinity adaptation and species conservation.

    The dotted gizzard shad (K.punctatus) (Clupeiformes:Clupeidae) is widely distributed along the coastlines of the Indian and Pacific oceans (Song et al., 2017).As a euryhaline fish,K.punctatuscan survive in both fresh and seawater(Kuroda et al., 2002) and their spawning grounds and timing are highly related to water temperature and salinity (Kong et al., 2004).The spawning period generally peaks at water temperatures of 17–19 °C (Shan et al., 2020) and the species is known to migrate into brackish water for breeding (Gwak et al., 2015).Thus, specific salinity and water temperature ranges appear to be basic biological factors required for spawning inK.punctatus(Kong et al., 2004).These biological properties makeK.punctatusa valuable model for studying the molecular mechanisms underlying the evolution of salinity and temperature adaptation.Furthermore, the primary food sources ofK.punctatusare phytoplankton, zooplankton, and algae (Gao et al., 2016), and thusK.punctatusplays an important role in material circulation and energy flow in marine ecosystems.However, with the continuous development and utilization of the ocean, the destruction of marine ecosystems and biological resources has intensified, including enormous damage toK.punctatushabitat (Li et al., 2017; McCay et al.,2006).Konosirus punctatushas a strong regenerative ability and abundant resources, but the resources have sharply declined in recent years (Liu et al., 2020).In recent years,advances in genomic technology, especially third-generation sequencing, has presented a novel opportunity to explore the genetic basis of environmental adaptations.Therefore, highquality genomes and population resources are essential to understand the critical biological processes related to these adaptations.Thus, high-quality genome assembly will not only benefit the above research areas but also improve our understanding of the adaptive evolution ofK.punctatus.

    We collected a single fish from Zhoushan, Zhejiang Province, China (N29°32′42.60″, E122°26′54.97″) in October 2019.Muscle, eye, gonad, gill, liver, and spleen tissues were collected and preserved in liquid nitrogen before DNA and RNA extraction.Muscle tissue was used for DNA sequencing and all tissues were used for transcriptome sequencing.DNA was extracted from muscle tissue using the phenol/chloroform DNA extraction method.The quantity and quality of DNA were determined using a Qubit fluorometer (Thermo Fisher Scientific, USA) and Agilent 2 100 Bioanalyzer (AgilentTechnologies, USA).Total RNA was extracted from all tissues using TRIzol reagent (Invitrogen, USA).The NanoDrop ND-1 000 spectrophotometer (Labtech, USA) and 2 100 Bioanalyzer(Agilent Technologies) were used to check RNA quality.The Illumina NovaSeq 6 000 and PacBio Sequel II platforms were applied for genomic sequencing to generate short and long genomic reads, respectively.Paired-end libraries were constructed with an insert size of 300 bp according to the standard Illumina protocols.A 20 kb DNA SMRTbell sequencing library was sequenced with the PacBio Sequel platform.

    In total, 89.92 Gb of clean data were generated by Illumina sequencing (Supplementary Table S1).Jellyfish v2.2.10 was used for K-mer analysis.K-mer analysis showed that the sample genome size was ~797 Mb but was 787 Mb after correction with a heterozygosity rate of 0.96% and repeat sequence ratio of 39.22% (Supplementary Table S2).In total,84.11 Gb of high-quality data were generated using the PacBio Sequel II platform.The PacBio long reads were used forde novogenome assembly with NextDenovo v2.3.1.Arrow in the GenomicConsensus package v2.3.3 was used to polish the genome using the PacBio long reads with MinCoverage.Two rounds of polishing using the Illumina short reads were then applied with Pilon v1.2.3.De-redundancy of the assembled genomes was performed using Purge_haplotigs v1.1.1.Finally, the PacBio sequencing data resulted in an 800 Mb assembly with a contig N50 of 23.07 Mb(Supplementary Table S3).Genome assembly completeness was evaluated using Benchmarking Universal Single-Copy Orthologs (BUSCO) v3.0.1 (Seppey et al., 2019) to search the genome in theActinopterygiidatabase, which included 4 584 single-copy orthologs.Based on BUSCO analysis of theK.punctatusgenome, the assembly contained 93.54% complete BUSCOs, 89.44% of which were complete and single copies and 4.10% of which were complete and duplicated(Supplementary Table S4).

    An Hi-C sequencing library was constructed to obtain a chromosome-level genome assembly.High-quality Hi-C reads were mapped to the polishedK.punctatusgenome using Bowtie v1.2.22.LACHESIS v1.03with default parameters was applied to perform genome assembly at the chromosome level using corrected contigs and valid Hi-C reads.Juicer v2.0 was used to construct species chromosome and genome-wide interaction maps to appraise the quality of genome assembly at the chromosome level.The Hi-C library generated 72.5 Gb of clean data (Supplementary Table S1).The quality of the sequenced data was evaluated, resulting in 469 685 574 clean reads and 68 764 334 007 bp of clean bases (Supplementary Table S5).Using LACHESIS, the assembled sequences were anchored to 24 pseudochromosomes (Figure 1A).Finally, theK.punctatusgenome assembly was 0.8 Gb with a contig N50 of 2.02 Mb and scaffold N50 of 32.23 Mb (Supplementary Tables S6, S7).For clarity, Figure 1B shows the distribution of gene density, repeat density, and GC density of the 24 pseudochromosomes of theK.punctatusgenome.BWA-MEM v0.7.10-r789 and BLASR v5.3.3 were used to evaluate the completeness and accuracy of the genome assembly.Based on evaluation of the genome assembly, we obtained 0.632%heterozygous single nucleotide polymorphisms (SNP) and 0.07% homozygous SNPs (Supplementary Table S8).In addition, the homozygous and heterozygous insertion-deletion(InDel) rates were 0.018% and 0.280%, respectively(Supplementary Table S8).Thus, the assembly showed a high rate of correct single bases.

    Figure 1 Genomic analyses of K.punctatus

    Homology comparison andde novoprediction were used to annotate the repetitive sequences of theK.punctatusgenome.RepeatMasker v4.0.7 and RepeatProteinMask v4.1.0 were used to search the genome sequences for known repeat elements based on the RepBase database.LTR_FINDER v1.0.2 and RepeatModeler v2.0 were used to establish thede novorepeat sequence library, and RepeatMasker v4.0.7 was used to predict genes.A total of 327.23 Mb of repeat sequences were detected, accounting for 40.88% of the assembled genome (Supplementary Table S9).In total,19.91% (159.37 Mb) of the repeat sequences were annotated using thede novomethod (Supplementary Table S9).Repetitive sequences primarily consisted of DNA transposable elements (151.38 MB; 18.91% assembly), long terminal repeat elements (72.75 Mb; 9.09%), and long interspersed elements(39.37 Mb, 4.92%) (Supplementary Table S10).Three strategies based on ab initio, homology, and RNA sequencing(RNA-seq) were applied to predict the protein-coding genes.AUGUSTUS v2.7 and GENSCAN v1.0 were used forab initiogene prediction.For homology-based prediction, protein sequences ofAnabas testudineus,Clupeaharengus,Amphiprionocellaris,Denticepsclupeoides, andAcanthochromis polyacanthuswere downloaded from the NCBI database and aligned to theK.punctatusgenome using tBLASTn (e-value=1e-5).GeneWise v2.4.0 was used to predict the exact gene structure of the corresponding genomic region in each blast.For transcriptome-based prediction,RNA-seq reads were directly mapped to the genome using TopHat v2.1.1.The mapped reads were subsequently assembled into gene models (Cufflinks-set) using CUFFLINKS v2.02.EvidenceModeler (EVM) v.1.1.1 was used to integrate the above three predicted gene sets into a non-redundant and more complete gene set.Finally, PASA v2.0.2 was applied to combine the transcriptome assembly results, correct the EVM annotation results, and add untranslated region (UTR),variable splicing, and other information to obtain a final gene set.In total, 24 298 protein-coding genes were predicted with an average gene length of 16 809 bp (Supplementary Table S11).Furthermore, 22 131 predicted genes (91.08%) were successfully annotated based on alignment with nucleotide,protein, and annotation databases (i.e., InterPro, NR,SwissProt, TrEMBL, KOG, GO, and KEGG) using BLAST+v2.2.28 (Supplementary Table S12).The annotations for noncoding RNA (ncRNA) included transfer RNA (tRNA),ribosomal RNA (rRNA), microRNA (miRNA), and small nuclear RNA (snRNA).tRNAscan-SE v1.3.1 was used to identify the tRNA sequence in the genome.As rRNA is highly conserved, the rRNA sequence of a closely related species was selected as the reference sequence, and rRNA in the genome was found via blast alignment with a threshold evalue<1e-10.The covariance model of the Rfam family and INFERNAL v1.1 were used to predict the miRNA and snRNA sequences in the genome.Finally, 338 miRNAs, 2 752 tRNAs,371 rRNAs, and 884 snRNAs were identified in the assembledgenome (Supplementary Table S13).

    Orthologous groups were constructed using ORTHOMCL v2.0.9 with default settings based on the filtered BLASTP results.Single-copy orthologous genes shared by all 11 species (i.e.,Larimichthyscrocea,Clupeaharengus,Denticeps clupeoides,Danio rerio,Astyanax mexicanus,Ictaluruspunctatus,Pangasianodonhypophthalmus,Onychostoma macrolepis,Triplophysa tibetana, andAmeiurus melas) were further aligned using MUSCLE v3.8.31.Based on comparative genomics, 21 276 gene families were identified,including 2 018 single-copy homologous gene families(Supplementary Table S14).In addition, 24 298 genes ofK.punctatuswere clustered into 16 782 gene families, including 1 409 unique gene families (Supplementary Table S14).jModelTest/ProTest was applied to select the optimal sequence substitution model.RAxML v8.2.12 was then applied to construct the phylogenetic tree of the 11 species using the maximum-likelihood (ML) approach.The MCMCTree tool in PAML v4.5 was used to calibrate the divergence dates for other nodes on the phylogenetic tree using single-copy orthologs obtained from the TimeTree database and seven reference divergence times.Results showed thatK.punctatusandClupea harenguswere clustered together, and the divergence time between the two species was 95 million years ago (Ma) (Figure 1C).

    Gene family expansion and contraction analyses were performed using statistical tests in CAFé v3.1.Based on the gene family groupings of the species, the branch-site model and likelihood ratio test (LRT) in CODEML in PAML v4.5 were used to estimate the non-synonymous to synonymous mutation (dN/dS) ratio.A total of 512 expanded gene families and 2 099 contracted gene families were identified in theK.punctatusgenome compared to the most recent common ancestor (Supplementary Table S15).A total of 587 positively selected genes (PSGs) were identified in theK.punctatusgenome (Supplementary Table S16).Several PSGs may play an important role in the adaptive evolution ofK.punctatus.Thus, further studies are needed to determine the putative roles of gene-related functions in adaptive evolution in these expanded, contracted, and PSG families.

    In this study, we assembled a high-quality chromosomelevel genome ofK.punctatus, only the second referencegenome in the family Clupeidae.This study provides valuable genomic data for further research on the molecular mechanisms underlying adaptation in broadly saline fish and the functional validation of candidate genes that contribute to environmental adaptation.

    DATA AVAILABILITY

    The whole genome project ofKonosirus punctatuswas deposited at NCBI/BioProject (PRJNA664835, PRJNA665107,PRJNA665552, PRJNA666237).The raw sequencing reads of DNA are available at SRA (Illumina raw reads: SRR12702103 and PacBio raw reads: SRR12827990), the raw sequencing reads of RNA are available at SRA (SRR12690112), and the raw sequencing reads of Hi-C are available at SRA(SRR12719226 and SRR12719225).The assembled genome was deposited at the National Genomic Data Center (https://bigd.big.ac.cn/gwh/) under accession No.GWHBFWL 00000000.The genome data were deposited in Figshare(https://figshare.com/s/46cf39eaa8bca2f04344).

    SUPPLEMENTARY DATA

    Supplementary data to this article can be found online.

    COMPETING INTERESTS

    The authors declare that they have no competing interests.

    AUTHORS’ CONTRIBUTIONS

    B.J..L, K.Z., S.F.Z., and Y.F.L.conceived and designed the research.B.J.L., K.Z., S.F.Z., Y.F.L., J.S.L., Y.P., X.J., Y.P.W.,S.X.Z., L.G., L.Q.L., and Z.M.L.conducted the experiments,analyzed the data, and wrote the manuscript.All authors read and approved the final version of the manuscript.

    Bing-Jian Liu1,2,3, Kun Zhang1,3, Shu-Fei Zhang2,Yi-Fan Liu1,3, Jia-Sheng Li1,3, Ying Peng1,3, Xun Jin1,3,Yun-Peng Wang1,3, Si-Xu Zheng1,3, Li Gong1,3,Li-Qin Liu1,3, Zhen-Ming Lü1,3,*1National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization,Zhejiang Ocean University,Zhoushan,Zhejiang316022,China

    2Guangdong Provincial Key Laboratory of Fishery Ecology and Environment;South China Sea Fisheries Research Institute,Chinese Academy of Fisheries Sciences,Guangzhou,Guangdong510300,China

    3National Engineering Research Center for Facilitated Marine Aquaculture,Marine Science and Technology College,Zhejiang Ocean University,Zhoushan,Zhejiang316022,China

    *Corresponding author, E-mail: nblzmnb@163.com

    www.av在线官网国产| 99九九在线精品视频| 各种免费的搞黄视频| 满18在线观看网站| 久久精品国产亚洲av涩爱| 涩涩av久久男人的天堂| 男人爽女人下面视频在线观看| 日本av手机在线免费观看| 亚洲av成人精品一二三区| 日韩一本色道免费dvd| 国产免费现黄频在线看| 欧美变态另类bdsm刘玥| www.自偷自拍.com| 精品福利观看| 丝袜美足系列| 久久ye,这里只有精品| 黄色片一级片一级黄色片| 母亲3免费完整高清在线观看| 国产欧美日韩精品亚洲av| 美女午夜性视频免费| 每晚都被弄得嗷嗷叫到高潮| 国产精品久久久久久精品电影小说| 五月天丁香电影| 高清不卡的av网站| 国产成人啪精品午夜网站| 国产麻豆69| 亚洲国产欧美一区二区综合| 大香蕉久久网| 国产av精品麻豆| 成年美女黄网站色视频大全免费| 国产亚洲精品第一综合不卡| 久久精品久久久久久久性| 免费在线观看视频国产中文字幕亚洲 | 免费看av在线观看网站| 热99国产精品久久久久久7| 高清不卡的av网站| www.熟女人妻精品国产| 亚洲av男天堂| 后天国语完整版免费观看| 在线看a的网站| 女人久久www免费人成看片| 熟女av电影| 成年动漫av网址| 亚洲av成人不卡在线观看播放网 | 国产日韩欧美视频二区| 超碰成人久久| 丁香六月欧美| 青青草视频在线视频观看| 中文精品一卡2卡3卡4更新| 美女主播在线视频| 丝袜人妻中文字幕| 日本a在线网址| 成人亚洲精品一区在线观看| 亚洲第一青青草原| 精品一区二区三卡| 久久人人97超碰香蕉20202| 侵犯人妻中文字幕一二三四区| netflix在线观看网站| 在线av久久热| 黄色片一级片一级黄色片| 超色免费av| 中文字幕人妻丝袜制服| 捣出白浆h1v1| 久久精品国产a三级三级三级| 久久久久久免费高清国产稀缺| 水蜜桃什么品种好| 免费日韩欧美在线观看| 亚洲成人手机| 欧美大码av| 高清av免费在线| 一级毛片 在线播放| 国产极品粉嫩免费观看在线| 青草久久国产| 亚洲av国产av综合av卡| 天天操日日干夜夜撸| 黄频高清免费视频| 美女高潮到喷水免费观看| 人妻 亚洲 视频| 国产日韩欧美亚洲二区| 亚洲国产欧美日韩在线播放| 亚洲欧美激情在线| 国产精品久久久久久精品电影小说| 亚洲欧美清纯卡通| 高清不卡的av网站| 黄色a级毛片大全视频| 国产人伦9x9x在线观看| av网站在线播放免费| 99热网站在线观看| 18禁黄网站禁片午夜丰满| 欧美精品人与动牲交sv欧美| 国产成人精品在线电影| 国产一区二区三区综合在线观看| 宅男免费午夜| 国产精品久久久人人做人人爽| 精品一区二区三卡| av在线老鸭窝| 日本91视频免费播放| 男人舔女人的私密视频| 黄色 视频免费看| 久久久精品区二区三区| 久久国产精品影院| 欧美精品啪啪一区二区三区 | 桃花免费在线播放| bbb黄色大片| 欧美日韩视频精品一区| 嫁个100分男人电影在线观看 | 咕卡用的链子| 亚洲欧美一区二区三区久久| 国产免费视频播放在线视频| 久久精品久久精品一区二区三区| 黄片播放在线免费| 久久综合国产亚洲精品| 久久午夜综合久久蜜桃| 中文字幕最新亚洲高清| 一级毛片电影观看| www.熟女人妻精品国产| 欧美少妇被猛烈插入视频| 美女扒开内裤让男人捅视频| 啦啦啦在线观看免费高清www| 99热全是精品| 免费在线观看视频国产中文字幕亚洲 | 精品熟女少妇八av免费久了| 别揉我奶头~嗯~啊~动态视频 | 最新的欧美精品一区二区| 天天躁夜夜躁狠狠久久av| 精品免费久久久久久久清纯 | 国产一卡二卡三卡精品| 免费看不卡的av| 人妻 亚洲 视频| 赤兔流量卡办理| 国产精品国产av在线观看| 考比视频在线观看| 亚洲视频免费观看视频| 午夜福利,免费看| 精品人妻熟女毛片av久久网站| 十八禁网站网址无遮挡| www.av在线官网国产| 日韩熟女老妇一区二区性免费视频| 女性生殖器流出的白浆| 老司机影院毛片| 国产伦人伦偷精品视频| 亚洲欧美一区二区三区黑人| 国产福利在线免费观看视频| 母亲3免费完整高清在线观看| 男女边摸边吃奶| 嫁个100分男人电影在线观看 | 韩国高清视频一区二区三区| 婷婷色av中文字幕| 成年av动漫网址| 丁香六月天网| 精品一品国产午夜福利视频| 国产精品国产av在线观看| 亚洲国产精品999| 国产欧美日韩精品亚洲av| 女人久久www免费人成看片| 大陆偷拍与自拍| 亚洲七黄色美女视频| a级毛片在线看网站| 青草久久国产| 18禁黄网站禁片午夜丰满| 免费不卡黄色视频| 中文字幕色久视频| 多毛熟女@视频| 国产成人av激情在线播放| 精品第一国产精品| 免费av中文字幕在线| 又大又黄又爽视频免费| 又大又爽又粗| 在线看a的网站| 免费高清在线观看视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 日本wwww免费看| 中文字幕色久视频| 男女国产视频网站| 一级毛片女人18水好多 | 欧美激情极品国产一区二区三区| 成人亚洲精品一区在线观看| 51午夜福利影视在线观看| 久久精品成人免费网站| 别揉我奶头~嗯~啊~动态视频 | 欧美黄色淫秽网站| 欧美国产精品一级二级三级| 人人妻人人添人人爽欧美一区卜| 91精品国产国语对白视频| 美国免费a级毛片| 下体分泌物呈黄色| 午夜两性在线视频| 飞空精品影院首页| 亚洲 国产 在线| 免费少妇av软件| 午夜福利,免费看| 成在线人永久免费视频| 最近最新中文字幕大全免费视频 | 曰老女人黄片| 99热全是精品| 亚洲av在线观看美女高潮| 精品一品国产午夜福利视频| 在线天堂中文资源库| 中文字幕人妻丝袜制服| 婷婷色麻豆天堂久久| 国产成人一区二区三区免费视频网站 | 日本wwww免费看| 国产成人啪精品午夜网站| 青春草亚洲视频在线观看| 精品第一国产精品| 精品少妇内射三级| 在线 av 中文字幕| 亚洲精品国产区一区二| 精品亚洲成a人片在线观看| 国产av一区二区精品久久| 国产亚洲欧美在线一区二区| 纵有疾风起免费观看全集完整版| 成年人黄色毛片网站| 亚洲av男天堂| 在线观看国产h片| 中国美女看黄片| 男女边摸边吃奶| 少妇人妻 视频| 国产精品欧美亚洲77777| 免费一级毛片在线播放高清视频 | 午夜精品国产一区二区电影| 日韩 欧美 亚洲 中文字幕| 久久精品国产亚洲av涩爱| 免费观看av网站的网址| 亚洲美女黄色视频免费看| 国产精品亚洲av一区麻豆| 久久热在线av| 最近手机中文字幕大全| 丰满饥渴人妻一区二区三| 极品少妇高潮喷水抽搐| a级片在线免费高清观看视频| 国产高清不卡午夜福利| 亚洲人成电影观看| 日韩一卡2卡3卡4卡2021年| 国产片内射在线| 天天躁日日躁夜夜躁夜夜| 亚洲中文字幕日韩| 91成人精品电影| 91精品三级在线观看| 在线看a的网站| 日韩伦理黄色片| 丰满人妻熟妇乱又伦精品不卡| 好男人视频免费观看在线| 亚洲精品成人av观看孕妇| 新久久久久国产一级毛片| 人妻一区二区av| 国产伦人伦偷精品视频| 别揉我奶头~嗯~啊~动态视频 | 欧美另类一区| 欧美乱码精品一区二区三区| 热re99久久精品国产66热6| 国产真人三级小视频在线观看| 亚洲av电影在线进入| 免费人妻精品一区二区三区视频| av又黄又爽大尺度在线免费看| 欧美日韩视频高清一区二区三区二| 国产精品熟女久久久久浪| 纯流量卡能插随身wifi吗| 国产午夜精品一二区理论片| 欧美激情高清一区二区三区| 欧美精品一区二区免费开放| 熟女少妇亚洲综合色aaa.| netflix在线观看网站| 免费看av在线观看网站| 午夜免费观看性视频| 老司机影院毛片| 国产三级黄色录像| 免费看十八禁软件| 性少妇av在线| 国产精品三级大全| 久久久国产一区二区| 欧美大码av| 青春草亚洲视频在线观看| 老司机影院成人| 久久精品国产a三级三级三级| 欧美黄色片欧美黄色片| 男女下面插进去视频免费观看| 国产成人一区二区三区免费视频网站 | 亚洲国产欧美在线一区| 大片免费播放器 马上看| 啦啦啦啦在线视频资源| 日韩电影二区| 最近中文字幕2019免费版| 观看av在线不卡| 久久国产精品人妻蜜桃| 国产老妇伦熟女老妇高清| 亚洲av在线观看美女高潮| 精品人妻熟女毛片av久久网站| 日韩av不卡免费在线播放| 狂野欧美激情性xxxx| 色播在线永久视频| 晚上一个人看的免费电影| 久久亚洲国产成人精品v| 欧美在线一区亚洲| 一本色道久久久久久精品综合| 免费一级毛片在线播放高清视频 | 少妇被粗大的猛进出69影院| 国产免费福利视频在线观看| 老司机午夜十八禁免费视频| 高清不卡的av网站| 久久久久久免费高清国产稀缺| 少妇被粗大的猛进出69影院| 大型av网站在线播放| 爱豆传媒免费全集在线观看| 美女福利国产在线| 欧美日韩亚洲高清精品| 91麻豆精品激情在线观看国产 | 亚洲av在线观看美女高潮| 亚洲国产日韩一区二区| 91国产中文字幕| 美女福利国产在线| 日韩精品免费视频一区二区三区| 欧美日韩成人在线一区二区| 啦啦啦视频在线资源免费观看| 亚洲av在线观看美女高潮| 欧美精品人与动牲交sv欧美| xxxhd国产人妻xxx| 欧美97在线视频| 久久九九热精品免费| 亚洲国产欧美网| 在线观看免费视频网站a站| 国产精品一国产av| 欧美国产精品va在线观看不卡| 人人妻人人爽人人添夜夜欢视频| 免费高清在线观看日韩| 亚洲熟女精品中文字幕| 青春草亚洲视频在线观看| 亚洲五月色婷婷综合| 人妻 亚洲 视频| 日韩av不卡免费在线播放| 一级片'在线观看视频| www日本在线高清视频| 亚洲欧美色中文字幕在线| 欧美激情高清一区二区三区| 七月丁香在线播放| 丰满少妇做爰视频| av天堂在线播放| 天天添夜夜摸| 亚洲av男天堂| netflix在线观看网站| 97在线人人人人妻| 丝袜美腿诱惑在线| 免费不卡黄色视频| 精品卡一卡二卡四卡免费| 国产爽快片一区二区三区| 亚洲国产日韩一区二区| 最黄视频免费看| 脱女人内裤的视频| 国产欧美日韩一区二区三区在线| 熟女av电影| 嫁个100分男人电影在线观看 | 精品一区二区三卡| 欧美在线一区亚洲| 欧美另类一区| 我要看黄色一级片免费的| 国产又爽黄色视频| av有码第一页| 国产精品秋霞免费鲁丝片| 午夜91福利影院| 国产亚洲精品第一综合不卡| 天堂中文最新版在线下载| e午夜精品久久久久久久| 我要看黄色一级片免费的| 亚洲成人免费av在线播放| 欧美xxⅹ黑人| 99久久精品国产亚洲精品| 青青草视频在线视频观看| 久久久久国产精品人妻一区二区| kizo精华| 色精品久久人妻99蜜桃| 欧美大码av| 亚洲精品在线美女| 人人妻人人爽人人添夜夜欢视频| 免费人妻精品一区二区三区视频| 高潮久久久久久久久久久不卡| 欧美亚洲日本最大视频资源| 老汉色av国产亚洲站长工具| 99热国产这里只有精品6| 久久 成人 亚洲| 乱人伦中国视频| 久久中文字幕一级| 一级片'在线观看视频| 水蜜桃什么品种好| 久久毛片免费看一区二区三区| 欧美日韩成人在线一区二区| 精品少妇久久久久久888优播| 国产高清视频在线播放一区 | 亚洲中文av在线| 激情视频va一区二区三区| 黄色毛片三级朝国网站| 亚洲,一卡二卡三卡| 一个人免费看片子| 女警被强在线播放| 天堂俺去俺来也www色官网| 老鸭窝网址在线观看| 国产在视频线精品| 亚洲av美国av| 99久久精品国产亚洲精品| 在线 av 中文字幕| 在线观看免费视频网站a站| 最黄视频免费看| 丝袜脚勾引网站| 午夜福利在线免费观看网站| 久久久久国产一级毛片高清牌| 曰老女人黄片| 国产伦理片在线播放av一区| 欧美人与性动交α欧美精品济南到| 日日夜夜操网爽| 精品亚洲成a人片在线观看| 亚洲天堂av无毛| 9191精品国产免费久久| 天天影视国产精品| 18在线观看网站| 色播在线永久视频| 女人精品久久久久毛片| 国产在视频线精品| 日韩电影二区| 69精品国产乱码久久久| 丝袜美足系列| 久久久国产欧美日韩av| 日本a在线网址| 国产日韩一区二区三区精品不卡| 国产在线一区二区三区精| 性色av乱码一区二区三区2| 欧美中文综合在线视频| 亚洲国产欧美日韩在线播放| 亚洲激情五月婷婷啪啪| 精品卡一卡二卡四卡免费| 捣出白浆h1v1| 亚洲精品国产色婷婷电影| 欧美av亚洲av综合av国产av| 男人操女人黄网站| 手机成人av网站| 欧美黑人精品巨大| 精品熟女少妇八av免费久了| 亚洲五月色婷婷综合| 1024香蕉在线观看| 国产黄频视频在线观看| 人人澡人人妻人| 中文字幕制服av| 狠狠婷婷综合久久久久久88av| 欧美中文综合在线视频| 亚洲五月色婷婷综合| 免费在线观看完整版高清| 国产熟女午夜一区二区三区| 真人做人爱边吃奶动态| 波多野结衣av一区二区av| 日韩av不卡免费在线播放| xxxhd国产人妻xxx| 精品人妻一区二区三区麻豆| 满18在线观看网站| 国产精品一区二区免费欧美 | 王馨瑶露胸无遮挡在线观看| 亚洲国产看品久久| 超色免费av| 高清不卡的av网站| 新久久久久国产一级毛片| 国产成人精品久久久久久| 国产人伦9x9x在线观看| av天堂在线播放| 久久精品成人免费网站| 久久精品国产综合久久久| 人妻一区二区av| 男女高潮啪啪啪动态图| av在线app专区| 在线观看免费午夜福利视频| 国产精品熟女久久久久浪| 日韩制服丝袜自拍偷拍| 久久免费观看电影| 美女福利国产在线| 久久精品aⅴ一区二区三区四区| 欧美日韩福利视频一区二区| 中文字幕精品免费在线观看视频| 欧美黑人精品巨大| 国产成人精品久久二区二区91| 制服人妻中文乱码| 热re99久久精品国产66热6| 欧美日本中文国产一区发布| 国产精品欧美亚洲77777| h视频一区二区三区| 国产精品 欧美亚洲| 亚洲人成网站在线观看播放| 别揉我奶头~嗯~啊~动态视频 | 国产成人a∨麻豆精品| avwww免费| 亚洲人成电影免费在线| 美女国产高潮福利片在线看| 十八禁网站网址无遮挡| 婷婷丁香在线五月| 老汉色∧v一级毛片| 亚洲欧美精品自产自拍| 亚洲欧美日韩高清在线视频 | 国产成人免费观看mmmm| 一级黄片播放器| 叶爱在线成人免费视频播放| 看免费av毛片| 在线天堂中文资源库| 精品一区二区三区av网在线观看 | 又大又爽又粗| 丰满少妇做爰视频| 人人妻人人爽人人添夜夜欢视频| 各种免费的搞黄视频| 999精品在线视频| 国产精品久久久久久人妻精品电影 | 亚洲欧美中文字幕日韩二区| 亚洲久久久国产精品| 成人三级做爰电影| 亚洲国产成人一精品久久久| 天天操日日干夜夜撸| 热re99久久国产66热| 91麻豆精品激情在线观看国产 | 18禁观看日本| 男女边摸边吃奶| 色播在线永久视频| 1024香蕉在线观看| 一本—道久久a久久精品蜜桃钙片| 婷婷色av中文字幕| 欧美精品一区二区大全| 国产成人a∨麻豆精品| 午夜免费男女啪啪视频观看| 七月丁香在线播放| 国产无遮挡羞羞视频在线观看| 国产精品久久久久久人妻精品电影 | 在线观看www视频免费| 久久99一区二区三区| 中文字幕高清在线视频| 1024香蕉在线观看| 精品欧美一区二区三区在线| 好男人电影高清在线观看| 色精品久久人妻99蜜桃| 国语对白做爰xxxⅹ性视频网站| 久久久久精品人妻al黑| 久久久精品94久久精品| 亚洲成人免费av在线播放| 久久精品久久久久久噜噜老黄| 99热全是精品| 满18在线观看网站| 黄色a级毛片大全视频| 80岁老熟妇乱子伦牲交| 久久久久国产一级毛片高清牌| 亚洲av成人不卡在线观看播放网 | 亚洲精品久久久久久婷婷小说| 亚洲欧美清纯卡通| 国产欧美亚洲国产| 久久影院123| 人妻 亚洲 视频| 777米奇影视久久| 国产深夜福利视频在线观看| 国产精品一国产av| 亚洲精品成人av观看孕妇| 最近最新中文字幕大全免费视频 | 99re6热这里在线精品视频| 久久久久国产一级毛片高清牌| 老熟女久久久| 日本午夜av视频| 国产精品国产三级国产专区5o| cao死你这个sao货| 一区二区三区乱码不卡18| 久久鲁丝午夜福利片| 国产一区二区 视频在线| 午夜福利乱码中文字幕| 日本vs欧美在线观看视频| 曰老女人黄片| 秋霞在线观看毛片| 中文字幕另类日韩欧美亚洲嫩草| 日本av手机在线免费观看| 热99久久久久精品小说推荐| 亚洲精品国产一区二区精华液| 丝袜喷水一区| 七月丁香在线播放| 一个人免费看片子| 99久久精品国产亚洲精品| 少妇 在线观看| 成年人黄色毛片网站| 亚洲av综合色区一区| 成人手机av| 久久久精品区二区三区| 99国产精品一区二区蜜桃av | 国产成人91sexporn| av在线app专区| 男女边吃奶边做爰视频| 一本一本久久a久久精品综合妖精| 在线观看国产h片| 国产一卡二卡三卡精品| 91老司机精品| 亚洲,欧美精品.| 亚洲欧洲精品一区二区精品久久久| 午夜免费观看性视频| 一级片'在线观看视频| 国产成人系列免费观看| 日本vs欧美在线观看视频| 国产在线一区二区三区精| 亚洲欧美成人综合另类久久久| 好男人电影高清在线观看| 精品国产乱码久久久久久小说| 欧美成人精品欧美一级黄| 日本午夜av视频| 亚洲国产欧美日韩在线播放| 久9热在线精品视频| 久久久久久免费高清国产稀缺| 两性夫妻黄色片| 婷婷色av中文字幕| 免费观看a级毛片全部| 999精品在线视频| 亚洲天堂av无毛| 丝袜在线中文字幕| 久9热在线精品视频| 国产欧美日韩一区二区三区在线| 一区在线观看完整版| 亚洲国产成人一精品久久久| 最黄视频免费看| 国产深夜福利视频在线观看| 亚洲成国产人片在线观看| 国产xxxxx性猛交| av又黄又爽大尺度在线免费看|