• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Population genomics reveals that natural variation in PRDM16 contributes to cold tolerance in domestic cattle

    2022-04-28 06:48:02ChunLongYanJunLinYuanYuanHuangQingShanGaoZhengYuPiaoShouLiYuanLiChenXueRenRongCaiYeMengDongHanLinZhangHuiQiaoZhouXiaoXiaoJiangWanZhuJinXuMingZhouChangGuoYan
    Zoological Research 2022年2期

    Chun-Long Yan, Jun Lin, Yuan-Yuan Huang, Qing-Shan Gao, Zheng-Yu Piao, Shou-Li Yuan, Li Chen,Xue Ren, Rong-Cai Ye, Meng Dong, Han-Lin Zhang, Hui-Qiao Zhou, Xiao-Xiao Jiang, Wan-Zhu Jin,*,Xu-Ming Zhou,*, Chang-Guo Yan

    1 College of Agriculture, Yanbian University, Yanji, Jilin 133000, China

    2 Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China

    3 University of Chinese Academy of Sciences, Beijing 100049, China

    4 North-East Cold Region Beef Cattle Science & Technology Innovation Ministry of Education Engineering Research Center, Yanbian University, Yanji, Jilin 133000, China

    5 Annoroad Gene Technology Co.Ltd, Beijing 100176, China

    ABSTRACT

    Keywords: Population genomics; Cattle; Cold tolerance; PRDM16; Brown adipose tissue

    lNTRODUCTlON

    Temperature is one of the most important environmental factors driving evolutionary change in organisms (Parsons,2005).Mammals require a constant body temperature toensure optimal biological activity (Haim & Levi, 1990; Hayes &Garland, 1995).This leads to strong selection pressure on the heat production system, including shivering and non-shivering thermogenesis (Cannon & Nedergaard, 2004).Shivering thermogenesis produces heat in the short term (Heldmaier et al, 1989), whereas non-shivering thermogenesis is a noncontractile process that can compensate for the defects of shivering thermogenesis and effectively maintain body temperature (Cannon & Nedergaard, 2004).Although white adipose tissue (WAT) stores excessive energy as triglycerides, brown adipose tissue (BAT), which is activated by cold exposure, is recognized as a major source of adaptive non-shivering thermogenesis (Hughes et al, 2009; Nicholls &Locke, 1984; Rowlatt et al, 1971; Saito et al, 2008).For example, uncoupling protein-1 (UCP1) in BAT dissipates energy into heat through uncoupled respiration, resulting in increased fatty acid oxidation and heat production(Klingenberg, 1999).The thermogenic capacity of BAT is particularly effective for maintaining core body temperature in small mammals and infants (Cannon & Nedergaard, 2004).Nevertheless, the thermogenic program in adipose tissue is a complex transcriptional regulation process that has not been fully dissected.The widely reported transcriptional regulators of adipocytes include peroxisome proliferator-activated receptor-gamma (PPARγ), peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC1-α), Forkhead box C2(FoxC2) and PRD1-BF-1-RIZ1 homologous domain-containing protein-16 (PRDM16) (Kajimura et al, 2010).Among these proteins, PPARγ plays a leading role in the differentiation of all adipocytes (Barak et al, 1999; Nedergaard et al, 2005;Tontonoz et al, 1994).PGC1-α acts together with PPARγ or the thyroid hormone receptor for adaptive thermogenesis(Handschin & Spiegelman, 2006; Puigserver et al, 1998).FoxC2 can increase BAT levels to enhance insulin sensitivity,and PRDM16 can induce the browning of WAT and fibroblasts by driving brown adipogenesis while suppressing white fat adipogenesis (Seale et al, 2007).

    Cattle are intimately associated with human civilization and culture.At present, there are about 53 cattle breeds in China,and two recognized species: i.e.,B.taurusandB.indicus(Lai et al, 2006; Lei et al, 2006).Archaeological studies support the claim thatB.tauruswas imported into northern China and northeast Asia from north Eurasia between 5 000–4 000 BP(Cai et al, 2014), and thatB.indicusmigrated from the Indian subcontinent to East Asia around 3 000 BP (Payne & Hodges,1997).Interestingly, the habitats of these cattle and the average annual temperature in which they were domesticated vary widely.Several recent studies have investigated cold adaptation mechanisms in cattle at the genomic level,providing valuable resources for future research (Buggiotti et al, 2021; Ghoreishifar et al, 2020; Hu et al, 2021; Igoshin et al,2021); however, most reported candidate genes/variations lack validation.Here, to detect the molecular footprints underlying cold adaptations in domestic cattle, we sequenced the genomes of 28 cattle, including 14 cold-tolerant cattle lineages (annual average temperature of habitat: 2–6 ℃) and 14 cold-intolerant cattle lineages (annual average temperature of habitat: 20–25 ℃).Through characterization of population history and selective sweeps, we identifiedPRDM16as a candidate gene under selection, which is responsible for the modification of BAT function and underpins cold-tolerance in northern cattle.

    MATERlALS AND METHODS

    Genome sequencing

    We sampled a total of 28 cattle from four different regions in China (i.e., Mongolia, Yanbian, Hainan, and Yunnan).DNA was extracted from the blood of each individual, and degradation was monitored based on its concentration by spectrometry, fluorometry, and 1% agarose gel electrophoresis.Paired-end libraries with an insert size of 150 bp were constructed for each individual and sequenced using the HiSeq X Ten Sequencing System (Illumina, USA).Other cattle genomes were obtained from the NCBI database(Supplementary Table S1).We mapped clean reads after filtering sequencing data to theB.taurusgenome assembly(version ARS-UCD1.2) using BWA v0.7.17 (Li & Durbin,2009).Duplicate reads were removed using Picard tools MarkDuplicates (http://broadinstitute.github.io/picard/).All potential single nucleotide polymorphism (SNP) sites were extracted and filtered using GATK (Mckenna et al, 2010) with HaplotypeCaller.Filtering was performed under the following settings: QD<2.0, ReadPosRankSum<-8.0, FS>60.0,QUAL<30.0, DP<4.0, MQ<40.0, MappingQualityRankSum<-12.5.ANNOVAR (Wang et al, 2010) and an existing genome annotation file (GFF/GTF) were used to make corresponding annotations on the detected SNPs.All experimental procedures were performed in accordance with the Regulations for the Administration of Affairs Concerning Experimental Animals approved by the State Council of the People’s Republic of China (Document No: 1 118 091 400 014).

    Phylogenetic and population structure

    Principal component analysis (PCA) was carried out using EIGENSOFT (Price et al, 2006).A phylogenetic tree was constructed from the SNP data using the neighbor-joining method in PHYLIP (Plotree & Plotgram, 1989), and graphical demonstration was performed using Newick Utilities (Junier &Zdobnov, 2010).Population structure was further inferred using ADMIXTURE (Alexander et al, 2009) with component(K) set from 2 to 10 and the bestKdetermined using crossvalidation (CV) analysis.

    Linkage disequilibrium (LD) and pairwise sequentially Markovian coalescent (PSMC) analysis

    The LD patterns for different breeds were calculated using the squared correlation coefficient (r2) between pairwise SNPs with PopLDdecay script (https://github.com/BGI-shenzhen/PopLDdecay).The PSMC model (https://github.com/lh3/psmc)parameters were set to: -N25 -t15 -r5 -p "4+25*2+4+6", and mutation rate and generation time were set to: μ=1.1×10-8and g=5, respectively.The mutation rate was estimated usingbasemlin the PAML package.

    Selective sweep analysis

    The population-differentiation statistic (FST) (using VCFtools)(Danecek et al, 2011) and nucleotide diversity (Pi) and Tajima’sD(using VariScan v2.0) were estimated using 50 kbsliding windows with a 25 kb step size along each chromosome.Windows in the top 5% ofFSTvalues were selected as candidate windows to obtain corresponding candidate genes.Fisher’s exact test was performed on synonymous and non-synonymous SNPs in the exon region using PLINK v1.9 (Purcell et al, 2007) to determine the final candidate genes.Before this step, PLINK v1.9 was used to remove sites with strong LD correlation (--indep-pairwise 50 5 0.5), and non-synonymous sites were used for Fisher’s exact test (--fisher).Finally, theQ-value was calculated using the R package fdrtool, and the site with q<0.01 was selected as the candidate locus to obtain corresponding candidate genes.Enrichment analysis was conducted using gprofiler2 (Kolberg et al, 2020).

    Cell culture

    Lentiviruses with PRDM16 variants were produced by transfecting HEK293T cells with core plasmids and two helper plasmids (psPAX2 and pMD2G).The transfections were implemented using the polyethylenimine (PEI) method at a PEI:core plasmid:psPAX2:pMD2G ratio of 27:4:3:2.The medium was changed 4–6 h after transfection.After 48 h, the virus-containing medium was harvested and filtered.The 3T3-L1 cells were then incubated overnight (37 ℃, 5% CO2) with the viral supernatant and 8 μg/mL polybrene.For browning differentiation, confluent 3T3-L1 cells were incubated for 2 days in a brown adipogenic induction cocktail (Dulbecco’s Modified Eagle Medium (DMEM) containing 10% fetal bovine serum (FBS), 20 nmol/L insulin, 1 nmol/L 3,3,5-triiodo-L-thyronine (T3), 0.5 mmol/L isobutylmethylxanthine, 0.125 μmol/L indomethacin, and 1 mmol/L dexamethasone).The cells were then maintained in differentiation medium (DMEM containing 10% FBS, 20 nmol/L insulin, and 1 nmol/L T3) for 6 days (37 ℃, 5% CO2).The induction medium was changed every 2 days.At day 8, fully differentiated brown adipocytes were applied for all experiments in this study.

    RNA isolation and quantitative real-time polymerase chain reaction (qRT-PCR)

    Total RNA from tissues and cells was extracted with Trizol reagent (Thermo Fisher Scientific, USA).Reverse transcription of 2 μg of total RNA was performed with a highcapacity cDNA reverse transcription kit (Promega, USA).qRTPCR was performed with a SYBR Green Master Mix(Promega, USA) and detected using a Prism VIIA7 Real-Time PCR System (Applied Biosystems, USA).Primers were designed using Primer Quest (Integrated DNA Technologies,USA).Primer sequences are provided in Supplementary Table 2.

    Western blot analysis

    Cells were lysed in RIPA buffer containing 150 mmol/L sodium chloride, 1.0% TritonX-100, 0.5% sodium deoxycholate, 0.1%sodium dodecyl sulfate (SDS), and 50 mmol/L Tris with freshly added protease and phosphatase inhibitor cocktail (Roche Diagnostics Corp, USA).Equal amounts of protein were distributed in 10% SDS-polyacrylamide gel After electrophoresis, the proteins were transferred to a polyvinylidene fluoride (PVDF) membranes, incubated with blocking buffer (5% fat-free milk) for 1 h at room temperature,and blotted with the following antibodies overnight (4 ℃): anti-PRDM16 (Cat# AF6295, RRID:AB_10 717 965; R&D Systems,USA), anti-UCP1 (Cat# ab209483, RRID: AB_2 722 676;Abcam, UK), anti-PPARγ (Cat# 2 430; RRID: AB_823 599;CST, USA), anti-HSP90 (Cat# 4 874; RRID: AB_2 121 214;CST, USA) and anti-β-actin (Cat# A5441, RRID:AB_476 744,Sigma, USA).The dilution ratio of anti-PRDM16, anti-UCP1,anti-PPARγ and anti-HSP90 was 1:1 000 and the dilution ratio of anti-β-actin was 1:10000.The membranes were then incubated with horseradish peroxidase (HRP)-conjugated secondary antibodies for 1 h at room temperature.Signals were visualized using a Mini ChemiTM580 (Sage Creation Science, China) with Super Signal West Pico Chemiluminescent Substrate (Pierce, USA).

    Statistical analysis

    Data are expressed as mean±standard error (SE).Comparisons between groups were performed with one-way analysis of variance (ANOVA) or Student’st-test.Statistical significance was set toP<0.05.

    RESULTS

    Genome sequencing and population history

    Whole-genome sequencing of 28 cattle with an average depth of 33.66× obtained 17.3 billion clean reads (Figure 1A;Supplementary Figure S1 and Table S3).In total, 45.2 million single nucleotide polymorphisms (SNPs) were identified, most of which were located in the intergenic (61.51%) and intron(35.75%) regions (Supplementary Table S4).Neighbor-joining trees and PCA based on total SNPs clustered the cattle into two main groups: i.e., northern and southern groups(Figure 1B, C).The first principal component (PC1),representing 32.41% of total variation, separated the samples into northern and southern cattle (Figure 1C).We further analyzed the genomes and found that the rates of LD decay were greater in the southern cattle than in the northern cattle.Half distances (half ofr2) were 18.3 kb (r2=0.37), 12.9 kb(r2=0.26), and 6.3 kb (r2=0.27) for the northern (Mongolia: MG and Yanbian: YB) cattle, Hainan (HN) cattle, and Yunnan (YN)cattle, respectively (Figure 1D).ADMIXTURE analyses with different component (K) values, includingK=2, clearly indicated that the cattle samples could be classified into northern and southern groups (Figure 1E).

    The demographic history of cattle was determined using the PSMC model (Li & Durbin, 2011).Results showed two expansions and two bottlenecks, with population peaks at ~50 and ~700 kilo years ago (kya) and population bottlenecks at~30 and 400 kya, respectively (Figure 1F).There were two sharp declines in population, which both occurred during the glacial period (Naynayxungla Glaciation and Last Glacial Maximum), consistent with the idea that environmental temperature has a determinable impact on population size.Similar historical patterns have been reported in many other mammals, such as the giant panda, yak, and snub-nosed monkey (Qiu et al, 2015; Zhao et al, 2013; Zhou & Pawlowski,2014).Global glaciations are the most probable cause of sudden change in the global climate and can directly affect species populations.Indeed, we found that after theNaynayxungla Glaciation (780-500 kya), northern cattle experienced a long-term bottleneck period until 70 kya.In contrast, the effective population size (Ne) of southern cattle recovered rapidly after the Naynayxungla Glaciation(Figure 1F), consistent with previous studies (Chen et al,2018; Lan et al, 2018; Mei et al, 2018); this could be explained by the improved living environment in southern areas during glaciation (Murray et al, 2010).At ~60 kya, HN and YN cattle showed differentNetrends.TheNeof HN cattle increased rapidly (Figure 1F), likely due to the geographical location of Hainan, a small and comparatively isolated island that lacks natural predators, which promoted the survival and reproduction of cattle.According to mitochondrial DNA haplotypes,B.taurus(northern cattle) andB.indicus(southern cattle) were both derived from extinct wild aurochs(B.primigenius), with divergence between the two species dating back 250 kya (Bradley et al, 1996).

    Figure 1 Population genetic analysis

    Genomic scan of selective sweeps

    To identify genetic modifications that occurred under different temperatures, we analyzed selective sweeps between the cattle groups: i.e., northern (MG and YB) and southern (YN and HN) cattle.Selective sweep analysis was performed for whole genomes based on the distribution ofFSTvalues.First,we identified highly differentiated regions usingFST, and then determined the top 5% in 50 kb windows with 25 kb steps.Final candidate genes were then determined and ranked using Fisher’s exact test (q<0.01).In total, 197 candidate genes were identified with strong selective sweep signals(Supplementary Table S5).The most significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway of the candidate genes (e.g.,SCP2,Cpt2, andAPOA5) was the PPAR signaling pathway (P=1.6×10-2) (Supplementary Table S6).SCP2 expression significantly alters the structure of lipid droplets (Atshaves et al, 2001) and affects the functionof BAT inCpt2A-/-mice, thereby hindering their ability to adapt to temperature changes (Lee et al, 2015).Furthermore,Cpt2A-/-interscapular BAT fails to induce the expression of thermogenic genes such asUCP1andPGC1-ain response to adrenergic stimulation (Lee et al, 2016).APOA5treatment can also increase the expression of theUCP1gene in adipocytes(Zheng et al, 2017).Furthermore, many fatty acids positively affect thermogenesis by activating BAT (Heeren & Scheja,2018; Li et al, 2018; Quan et al, 2020; Takato et al, 2017).We also found many candidate genes (e.g.,PDE3B,CPT2, andALDOB) involved in fatty acid, fructose, and mannose metabolism and associated with signaling pathways, such as the insulin signaling pathway (Supplementary Table S7).Knockout ofPDE3Bin mice has demonstrated that this gene is involved in the formation of BAT in epididymal WAT depots(Guirguis et al, 2013).ALDOBis involved in insulin biosynthesis and secretion, as well as insulin receptor signaling (Gerst et al, 2018).Insulin pathways and fat metabolism are inseparable and can affect the development of BAT, leading to obesity and insulin resistance (Lynes et al,2015; Montanari et al, 2017).Consistently, in our study, Gene Ontology (GO) enrichment analysis revealed two candidate genes (PRDM16andASXL1) related to fat cell differentiation(GO:0045598), brown fat differentiation (GO:0050873), and white fat cell differentiation (GO:0050872) (Figure 2A;Supplementary Tables S8, S9).

    Among genes with selective sweep signals, two candidate genes (PRDM16andCPT2) were involved in thermogenesis;PRDM16was of the most interest as it is known to increase thermogenesis by promoting the expression of the key geneUCP1(Seale et al, 2007) (Figure 2B, C).Analysis indicated that there was no strong LD among thePRDM16SNPs(Figure 2C).PRDM16had the lowestP-value (P=3.8×10-11)and highestFST(0.52) among genes related to thermogenesis(Figure 2D, E).In addition, although nucleotide diversity (Pi)(0.8×10-3) ofPRDM16was similar to that of other thermogenesis-related genes, Tajima’sDanalysis supported the idea thatPRDM16was under selection (D=–1.661)(Figure 2D, E).ThePRDM16genotypes found in the northern and southern cattle were well distinguished and consistent with the phylogenetic tree created using the SNPs of this gene(Figure 3A).We discovered five non-synonymous single nucleotide variants (SNVs), one of which (c.2336 T>C,p.L779P) was found at a higher level (93%) in southern cattle than in northern cattle (Figure 3B, C; Supplementary Table S10).

    Next, we compared the PRDM16 protein sequences to other species (Figure 3C;Supplementary Figure S2), and found that the substitution at Leu779in thePRDM16gene in northern cattle was the same as that in species with complete BAT function (e.g., mouse, rat, and hamster) (Figure 3C).In rodents, BAT is intact and persists throughout their lifetime,and thermogenesis activity is complete (Kirov et al, 1996;Scarpace et al, 1994).However, in many large mammals,such as humans and sheep, BAT function is available during infancy but can only be activated under certain conditions inadults (Lidell et al, 2013; Nahon et al, 2020).Conversely, the proline substitution in southern cattle was the same as that in species with incomplete or null BAT function (e.g., sheep, pig,whale, horse, platypus, elephant, sirenian, marsupial, human,and rabbit) (Figure 3C).Moreover, we explored the genetic pattern of these substitutions (c.2336 T>C, p.L779P) across cattle genomes worldwide, and found that cattle in cold regions had a higher frequency of the c.2336 C>T mutation,consistent with the pattern in China (Figure 3D).Thus, we hypothesized that the substitution of residue 779 in thePRDM16gene is probably related to BAT function, and this locus is likely to play a role in cold tolerance.

    Figure 2 Selection feature of thermogenic candidate gene

    Figure 3 Genetic polymorphism of PRDM16 across cattle populations

    Mutation (c.2336 T>C) effects of PRDM16

    To determine the biochemical function of the substitution inPRDM16, 3T3-L1 cells (preadipocyte cell line) ectopically expressing the cattlePRDM16andPRDM16MU (c.2336 T>C, L779P mutation ofPRDM16) coding sequences were generated and induced to differentiate towards beige adipocytes (Figure 4A).The overexpression efficiency was kept at equivalent levels (Figure 4B, E).After fulldifferentiation, no differences in morphological characteristics between thePRDM16andPRDM16MU groups were observed (Figure 4C).In addition, we did not find significant differences in the mRNA and protein expression levels of PPARγ, a key adipogenesis-regulating gene, between thePRDM16andPRDM16MU groups (Figure 4D, E).However,the differentiation efficiencies of PPARγ mRNA and protein expression were lower in the control group (cells infected with an empty vector) than in thePRDM16andPRDM16MU groups, supporting the idea thatPRDM16loss significantly impedes brown adipocyte differentiation, andPRDM16overexpression significantly increases brown adipocytes(Seale et al., 2007).Despite the similar differentiation efficiency between the two ectopicPRDM16-overexpressing groups, the mRNA expression levels of four BAT-selective genes (i.e.,UCP1,C/EBPβ,PGC1-α, andCIDEA) were significantly lower in thePRDM16MU group than in the PRDM16 group (Figure 4F).Moreover,PRDM16overexpression increasedUCP1expression to a much greater degree than that found inPRMD16MU (Figure 4F, G).These results indicate that the L779P mutation significantly impaired normal PRDM16 function in the formation of brown adipocytes in southern cattle, which live in warmer areas relative to northern cattle.

    Figure 4 PRDM16 779P allele reduced brown adipogenesis

    DlSCUSSlON

    We compared the whole genomes of northern and southern cattle in China, which live in extremely cold and warm environments, respectively.We identified a total of 197 candidate genes with selective sweep signals.However, these genes should be subjected to further validation given the many challenges in accurate detection of selective sweeps across genomes.For example, the current methodology could be confounded by many processes, such as recombination and drift, and the effects of changing demography over time(Horscroft et al, 2019).Nevertheless, we found that one candidate gene,PRDM16, is a forceful genome effector that facilitates cold adaptation.PRDM16is a key transcriptional regulator in beige adipocyte formation, which stimulates authentic brown fat cells (Seale et al, 2007).In previous research, althoughPRDM16was introduced before cell differentiation, nearly all adipocytes were activated to express BAT-selective genes (Seale et al, 2007).In this study, we found that BAT-selective genes were up-regulated in PRDM16-overexpressing 3T3-L1 cells compared to controls,indicating that thePRDM16mutation influences gene function in brown adipogenesis.PRDM16 regulates thermogenic genes by forming complexes with various transcription factors,includingC/EBPβ,PGC-1α,PPARα, andPPARγ(Kajimura et al, 2010).Here, although the same differentiation efficiency was induced, suppression ofC/EBPβandPGC-1αmRNA expression levels in thePRDM16MU group indicated reduced transcription complex formation and thermogenesis-related gene expression, e.g.,UCP1, compared to thePRDM16group.Functional differences inPRDM16caused by sequence variation could explain why northern cattle are more cold-tolerant than southern cattle.For example,B.indicusmay experience higher mortality thanB.taurusin cold conditions (Carstens, 1994), possibly due to exhausting their post-natal BAT lipids (Smith et al, 2004).Therefore, on the one hand, well-functioningPRDM16is required for northern cattle to resist extreme cold, and on the other hand, functional inactivation ofPRDM16impairs beige adipocyte formation,which is beneficial for the environmental adaptability of southern cattle.These findings help improve our understanding of adaptive genetic variations in cattle and other livestock species living in different temperature regions.

    DATA AVAlLABlLlTY

    This whole-genome shotgun project was deposited in the NCBI under BioProjectID PRJNA737584 and in GSA under accession No.subCRA008925 and in Science Data Bank under DOI: 10.11922/sciencedb.01524.

    SUPPLEMENTARY DATA

    Supplementary data to this article can be found online.

    COMPETlNG lNTERESTS

    The authors declare that they have no competing interests.

    AUTHORS’ CONTRlBUTlONS

    C.G.Y., X.M.Z., and W.Z.J.designed the research, analyzed data, and revised the manuscript.C.L.Y., J.L., and Y.Y.H.performed experiments, analyzed data, and wrote the manuscript.Q.S.G.and Z.Y.P.collected samples, performed experiments, and analyzed data.S.L.Y.and X.R.analyzed data.L.C.revised the manuscript.R.C.Y, M.D., H.L.Z., H.Q.Z.,and X.X.J.collected samples.All authors read and approved the final version of the manuscript.

    ACKNOWLEDGEMENTS

    We thank Dr.Inge Seim for value suggestions and comments.

    久久久久久大精品| .国产精品久久| 一级黄色大片毛片| 夜夜看夜夜爽夜夜摸| 天堂中文最新版在线下载 | 熟妇人妻久久中文字幕3abv| 夫妻性生交免费视频一级片| 久久久成人免费电影| 欧美日韩乱码在线| 国产精品蜜桃在线观看 | 亚洲av成人av| 人妻少妇偷人精品九色| 看片在线看免费视频| 国内精品美女久久久久久| 国产成人91sexporn| 99国产精品一区二区蜜桃av| 高清毛片免费看| 日本熟妇午夜| 日韩精品有码人妻一区| 夜夜爽天天搞| 精品久久久久久成人av| 亚洲成人av在线免费| 男人舔女人下体高潮全视频| 久久午夜福利片| 精品久久久久久成人av| 在线a可以看的网站| 3wmmmm亚洲av在线观看| 亚洲aⅴ乱码一区二区在线播放| 欧美3d第一页| 国产毛片a区久久久久| 深夜a级毛片| 黄色视频,在线免费观看| 精品人妻熟女av久视频| 日韩在线高清观看一区二区三区| 久久久午夜欧美精品| 国国产精品蜜臀av免费| 国产亚洲精品久久久com| 国产精品一区www在线观看| 国产精品一二三区在线看| 99热这里只有精品一区| 特大巨黑吊av在线直播| 老司机福利观看| 日韩大尺度精品在线看网址| 日韩,欧美,国产一区二区三区 | 一区二区三区高清视频在线| 成人三级黄色视频| 国产精品一及| 嫩草影院入口| 国产一级毛片在线| 亚洲三级黄色毛片| 亚洲无线观看免费| 高清午夜精品一区二区三区 | 国产亚洲欧美98| 午夜精品一区二区三区免费看| 伦理电影大哥的女人| 久久99精品国语久久久| 日韩欧美三级三区| 狠狠狠狠99中文字幕| 91在线精品国自产拍蜜月| 狂野欧美白嫩少妇大欣赏| 中出人妻视频一区二区| 亚洲av成人精品一区久久| 亚洲国产日韩欧美精品在线观看| av天堂中文字幕网| 精品久久久久久久久亚洲| 噜噜噜噜噜久久久久久91| 亚洲欧美日韩高清专用| 熟女电影av网| 久久99精品国语久久久| 亚洲国产欧美人成| 亚洲四区av| 中文字幕人妻熟人妻熟丝袜美| 免费看光身美女| 亚洲精品乱码久久久久久按摩| 国产精品久久久久久精品电影| 99在线人妻在线中文字幕| 欧美xxxx黑人xx丫x性爽| 国产单亲对白刺激| 97超碰精品成人国产| 国产爱豆传媒在线观看| 国产伦精品一区二区三区视频9| 狠狠狠狠99中文字幕| 日韩亚洲欧美综合| 精品日产1卡2卡| 欧美高清成人免费视频www| 欧美区成人在线视频| 国产一区二区三区av在线 | 国产精品蜜桃在线观看 | 欧美日本亚洲视频在线播放| 国产亚洲91精品色在线| 欧美成人一区二区免费高清观看| 91精品国产九色| 国产亚洲精品av在线| 精品一区二区三区人妻视频| 最好的美女福利视频网| 看片在线看免费视频| 欧美激情久久久久久爽电影| 亚洲成人久久性| 少妇被粗大猛烈的视频| 男女边吃奶边做爰视频| 天天躁日日操中文字幕| 国产中年淑女户外野战色| 精品久久久久久成人av| 亚洲成av人片在线播放无| 免费观看在线日韩| av免费观看日本| 亚洲18禁久久av| 亚洲国产精品成人综合色| 秋霞在线观看毛片| 成人综合一区亚洲| 国产精品一区二区在线观看99 | 国产精品一区二区三区四区免费观看| 国产亚洲精品久久久久久毛片| 亚洲国产精品sss在线观看| 久久久久久久久久黄片| 国产高清有码在线观看视频| 亚洲国产色片| 久久精品国产亚洲av天美| 欧美一级a爱片免费观看看| 国内精品一区二区在线观看| 边亲边吃奶的免费视频| www.色视频.com| 狂野欧美激情性xxxx在线观看| 97热精品久久久久久| 亚洲成a人片在线一区二区| 又黄又爽又刺激的免费视频.| 国产成人freesex在线| 国产精品一区二区性色av| 国内揄拍国产精品人妻在线| 日韩强制内射视频| 麻豆成人午夜福利视频| 天堂影院成人在线观看| 小说图片视频综合网站| 黄片wwwwww| 欧美性猛交╳xxx乱大交人| 亚洲精品国产av成人精品| 日韩成人av中文字幕在线观看| 一边摸一边抽搐一进一小说| 老师上课跳d突然被开到最大视频| 欧美潮喷喷水| 精品久久久久久久久久免费视频| av.在线天堂| 免费不卡的大黄色大毛片视频在线观看 | av天堂在线播放| 亚洲欧洲国产日韩| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 一级二级三级毛片免费看| 欧美xxxx性猛交bbbb| 国产欧美日韩精品一区二区| 天堂中文最新版在线下载 | 亚洲乱码一区二区免费版| 久久久久久国产a免费观看| videossex国产| 精品日产1卡2卡| 赤兔流量卡办理| 亚洲欧美精品自产自拍| 亚洲av.av天堂| av在线播放精品| 久久99热6这里只有精品| av专区在线播放| 成人毛片a级毛片在线播放| 亚洲精品色激情综合| 99国产精品一区二区蜜桃av| 国产一级毛片在线| 一级毛片aaaaaa免费看小| 日本爱情动作片www.在线观看| 秋霞在线观看毛片| 日日摸夜夜添夜夜添av毛片| 此物有八面人人有两片| 18禁在线播放成人免费| 国产精品一二三区在线看| 99精品在免费线老司机午夜| 天堂中文最新版在线下载 | 国产精品99久久久久久久久| 热99在线观看视频| 日日干狠狠操夜夜爽| 韩国av在线不卡| 特级一级黄色大片| 亚洲欧洲国产日韩| 亚洲av一区综合| 嘟嘟电影网在线观看| 日韩欧美在线乱码| 神马国产精品三级电影在线观看| 又粗又硬又长又爽又黄的视频 | 午夜福利成人在线免费观看| av在线亚洲专区| 天天躁夜夜躁狠狠久久av| 国产精品人妻久久久影院| 好男人视频免费观看在线| 高清毛片免费看| 天天一区二区日本电影三级| 国产一区二区三区av在线 | 国产伦在线观看视频一区| 午夜福利高清视频| 亚洲国产欧美在线一区| 最后的刺客免费高清国语| 高清在线视频一区二区三区 | 精品久久久久久久久亚洲| 男人和女人高潮做爰伦理| 久久久久免费精品人妻一区二区| 亚洲一级一片aⅴ在线观看| 亚洲成a人片在线一区二区| 亚洲人成网站在线播放欧美日韩| 日韩成人av中文字幕在线观看| 久久久a久久爽久久v久久| 村上凉子中文字幕在线| 日韩 亚洲 欧美在线| 少妇高潮的动态图| 国产亚洲91精品色在线| 久久久国产成人免费| 亚洲自偷自拍三级| 在线观看美女被高潮喷水网站| 欧美色视频一区免费| 日本三级黄在线观看| 国语自产精品视频在线第100页| av免费观看日本| 一夜夜www| 干丝袜人妻中文字幕| 中文资源天堂在线| 亚洲精品乱码久久久久久按摩| 亚洲无线在线观看| 一进一出抽搐动态| 欧美潮喷喷水| 亚洲精品亚洲一区二区| 最近视频中文字幕2019在线8| 精品无人区乱码1区二区| 国产伦在线观看视频一区| 久久亚洲精品不卡| 91精品国产九色| 边亲边吃奶的免费视频| 卡戴珊不雅视频在线播放| 少妇的逼水好多| 久久久成人免费电影| 麻豆乱淫一区二区| 国产高清不卡午夜福利| av又黄又爽大尺度在线免费看 | 天天躁日日操中文字幕| 欧美xxxx性猛交bbbb| 亚洲在线观看片| 成人毛片60女人毛片免费| 国产精品国产三级国产av玫瑰| 成人无遮挡网站| 亚洲国产精品国产精品| h日本视频在线播放| 久久久成人免费电影| 成人无遮挡网站| 观看免费一级毛片| 天堂中文最新版在线下载 | 久久久精品94久久精品| 少妇熟女欧美另类| 黄色配什么色好看| 日韩制服骚丝袜av| 春色校园在线视频观看| 99久久精品一区二区三区| 日本五十路高清| 嫩草影院新地址| 九九爱精品视频在线观看| 国产精品久久久久久久电影| 国产av不卡久久| 人妻久久中文字幕网| 91久久精品电影网| 亚洲aⅴ乱码一区二区在线播放| 国产探花在线观看一区二区| 午夜福利在线在线| 最近中文字幕高清免费大全6| 精品人妻一区二区三区麻豆| 中文字幕av成人在线电影| 久久久久国产网址| 国产色爽女视频免费观看| 精品人妻视频免费看| 日本一二三区视频观看| 99久久精品一区二区三区| 一区二区三区高清视频在线| 一边亲一边摸免费视频| 欧美色欧美亚洲另类二区| 国产熟女欧美一区二区| 麻豆国产97在线/欧美| 久久精品久久久久久久性| 亚洲欧美日韩东京热| 国产真实伦视频高清在线观看| 女人十人毛片免费观看3o分钟| 尤物成人国产欧美一区二区三区| 亚洲欧美精品自产自拍| 中国国产av一级| 国产精品蜜桃在线观看 | 国产 一区精品| 69av精品久久久久久| 99热这里只有是精品50| 国产三级中文精品| 欧美激情在线99| 十八禁国产超污无遮挡网站| 日韩人妻高清精品专区| 成人午夜高清在线视频| 看片在线看免费视频| 亚洲精品色激情综合| 久久久久久久久久久丰满| 欧美又色又爽又黄视频| 一级黄片播放器| 91久久精品电影网| 人妻少妇偷人精品九色| 91久久精品电影网| 精品人妻熟女av久视频| 日本免费一区二区三区高清不卡| 99热只有精品国产| 少妇人妻精品综合一区二区 | 美女cb高潮喷水在线观看| 日本三级黄在线观看| 久久热精品热| 欧美在线一区亚洲| 亚洲av中文字字幕乱码综合| 91aial.com中文字幕在线观看| 日本免费a在线| 亚洲美女搞黄在线观看| 久久精品91蜜桃| 亚洲自偷自拍三级| 最近2019中文字幕mv第一页| 伊人久久精品亚洲午夜| 久久久久久久久久黄片| 人妻系列 视频| 夫妻性生交免费视频一级片| 一边亲一边摸免费视频| 嘟嘟电影网在线观看| 成年女人看的毛片在线观看| 国产一区二区三区在线臀色熟女| 内地一区二区视频在线| 边亲边吃奶的免费视频| 91在线精品国自产拍蜜月| 久久人妻av系列| 国产av在哪里看| 亚洲va在线va天堂va国产| 婷婷亚洲欧美| 六月丁香七月| 国产老妇女一区| 嫩草影院入口| 精品不卡国产一区二区三区| 一本久久中文字幕| 高清午夜精品一区二区三区 | 亚洲成人久久性| 99久国产av精品国产电影| 99视频精品全部免费 在线| 美女内射精品一级片tv| 三级男女做爰猛烈吃奶摸视频| 91久久精品国产一区二区成人| 日韩,欧美,国产一区二区三区 | 亚洲欧美精品综合久久99| 亚洲成人精品中文字幕电影| 久久99热6这里只有精品| 身体一侧抽搐| 最近中文字幕高清免费大全6| 成人综合一区亚洲| 免费观看a级毛片全部| av女优亚洲男人天堂| 天美传媒精品一区二区| 国产亚洲av嫩草精品影院| 免费av观看视频| 草草在线视频免费看| 少妇人妻精品综合一区二区 | 亚洲精品亚洲一区二区| 亚洲欧美中文字幕日韩二区| 亚洲在线自拍视频| av免费观看日本| 国产视频内射| 亚洲中文字幕一区二区三区有码在线看| 国产黄片视频在线免费观看| 十八禁国产超污无遮挡网站| 久久人人精品亚洲av| 国产淫片久久久久久久久| 伦理电影大哥的女人| 国产成人福利小说| 久久精品国产亚洲av天美| 亚洲精品乱码久久久久久按摩| 国产黄片视频在线免费观看| 久久久久免费精品人妻一区二区| 免费av毛片视频| 免费看av在线观看网站| 欧美+亚洲+日韩+国产| 麻豆国产av国片精品| 在线观看免费视频日本深夜| 亚洲aⅴ乱码一区二区在线播放| 熟妇人妻久久中文字幕3abv| 狂野欧美激情性xxxx在线观看| 99精品在免费线老司机午夜| 日日撸夜夜添| 日韩一区二区三区影片| 插逼视频在线观看| 成年女人永久免费观看视频| 成人亚洲精品av一区二区| 男女啪啪激烈高潮av片| 午夜福利在线观看吧| 国产午夜精品论理片| 久久久久久久久久黄片| 中文字幕免费在线视频6| 22中文网久久字幕| 男插女下体视频免费在线播放| 人妻制服诱惑在线中文字幕| 不卡一级毛片| 两个人视频免费观看高清| 成人综合一区亚洲| av国产免费在线观看| 亚洲国产精品成人久久小说 | 亚洲欧美日韩卡通动漫| 人人妻人人看人人澡| 国产精品人妻久久久影院| 老女人水多毛片| 久久精品久久久久久噜噜老黄 | 国产精品av视频在线免费观看| 国产精品久久视频播放| 联通29元200g的流量卡| 亚洲真实伦在线观看| 亚洲五月天丁香| 色5月婷婷丁香| 精品午夜福利在线看| 精品日产1卡2卡| 国产乱人视频| 亚洲精品国产av成人精品| 黄色一级大片看看| 最近视频中文字幕2019在线8| 国产成人a区在线观看| 久久精品久久久久久噜噜老黄 | 国模一区二区三区四区视频| 赤兔流量卡办理| 日本三级黄在线观看| 久久久久久九九精品二区国产| 深夜精品福利| 国产精品一二三区在线看| 人体艺术视频欧美日本| 五月玫瑰六月丁香| 久久99热6这里只有精品| 国产精品综合久久久久久久免费| 一级毛片我不卡| 波野结衣二区三区在线| 欧美在线一区亚洲| 国产伦理片在线播放av一区 | 国产成人a∨麻豆精品| 久久精品国产亚洲av涩爱 | 亚洲精华国产精华液的使用体验 | 精品久久久噜噜| avwww免费| 亚洲人与动物交配视频| 国产老妇女一区| 色播亚洲综合网| 国产精品人妻久久久久久| 免费不卡的大黄色大毛片视频在线观看 | 白带黄色成豆腐渣| 国产精品三级大全| 亚洲图色成人| 日韩人妻高清精品专区| 在线观看午夜福利视频| 91狼人影院| 噜噜噜噜噜久久久久久91| 日韩一区二区视频免费看| 99精品在免费线老司机午夜| 日韩三级伦理在线观看| 国产高清三级在线| 日韩三级伦理在线观看| 精品久久久久久久久久免费视频| 免费不卡的大黄色大毛片视频在线观看 | 18禁黄网站禁片免费观看直播| 亚洲成a人片在线一区二区| 国产精品久久久久久亚洲av鲁大| 亚洲精品亚洲一区二区| 一本一本综合久久| 亚洲第一区二区三区不卡| 高清毛片免费观看视频网站| 欧美日韩综合久久久久久| 嫩草影院入口| 夫妻性生交免费视频一级片| 卡戴珊不雅视频在线播放| 欧美人与善性xxx| 国产一区二区三区在线臀色熟女| 观看免费一级毛片| 丰满的人妻完整版| 高清毛片免费看| 国产不卡一卡二| 秋霞在线观看毛片| 亚洲国产高清在线一区二区三| 最近中文字幕高清免费大全6| 联通29元200g的流量卡| 99热网站在线观看| 蜜桃久久精品国产亚洲av| 国产一区二区在线观看日韩| 欧美色欧美亚洲另类二区| 亚洲精品久久久久久婷婷小说 | 免费观看人在逋| 欧美zozozo另类| 亚洲三级黄色毛片| 色综合亚洲欧美另类图片| 免费在线观看成人毛片| 天堂中文最新版在线下载 | 青春草亚洲视频在线观看| 老司机福利观看| 国产成人精品一,二区 | 精品欧美国产一区二区三| 国产黄片美女视频| 国产成人a∨麻豆精品| 三级经典国产精品| 毛片一级片免费看久久久久| 九草在线视频观看| а√天堂www在线а√下载| 一个人看视频在线观看www免费| 国国产精品蜜臀av免费| 成人一区二区视频在线观看| av又黄又爽大尺度在线免费看 | 麻豆成人午夜福利视频| 麻豆久久精品国产亚洲av| 欧美xxxx黑人xx丫x性爽| 久久久久久久久久久免费av| 国产一区二区三区在线臀色熟女| 国产av麻豆久久久久久久| 亚洲一级一片aⅴ在线观看| 中文字幕免费在线视频6| 国产精品福利在线免费观看| 熟女人妻精品中文字幕| 亚洲精品自拍成人| 麻豆乱淫一区二区| 国产成人精品久久久久久| 99久久无色码亚洲精品果冻| 91精品一卡2卡3卡4卡| 淫秽高清视频在线观看| 国产欧美日韩精品一区二区| АⅤ资源中文在线天堂| 精品国内亚洲2022精品成人| 又粗又硬又长又爽又黄的视频 | 女同久久另类99精品国产91| 天天躁日日操中文字幕| 老熟妇乱子伦视频在线观看| 深爱激情五月婷婷| 国产伦一二天堂av在线观看| 欧美性猛交╳xxx乱大交人| 国产色婷婷99| 亚洲av免费在线观看| 亚洲精品乱码久久久v下载方式| 免费观看a级毛片全部| 国产69精品久久久久777片| 2021天堂中文幕一二区在线观| 热99re8久久精品国产| 欧美精品一区二区大全| 亚洲欧美日韩高清专用| 日本-黄色视频高清免费观看| 能在线免费看毛片的网站| 国产精品1区2区在线观看.| 日日干狠狠操夜夜爽| 麻豆成人av视频| 国产精品爽爽va在线观看网站| 成人午夜精彩视频在线观看| 深夜精品福利| 青春草视频在线免费观看| 亚洲av免费在线观看| 老女人水多毛片| av免费在线看不卡| av黄色大香蕉| 91麻豆精品激情在线观看国产| 99久久人妻综合| 亚洲美女视频黄频| 精品日产1卡2卡| 日韩中字成人| 蜜桃亚洲精品一区二区三区| 少妇人妻一区二区三区视频| 国产日本99.免费观看| 国产乱人视频| 三级毛片av免费| 日本免费一区二区三区高清不卡| 99久国产av精品国产电影| 夜夜看夜夜爽夜夜摸| 男人的好看免费观看在线视频| 国产免费一级a男人的天堂| 麻豆乱淫一区二区| 日韩一本色道免费dvd| 国产亚洲欧美98| 婷婷六月久久综合丁香| 亚洲人成网站高清观看| 精品久久国产蜜桃| 不卡视频在线观看欧美| 在线观看午夜福利视频| 日本-黄色视频高清免费观看| 99热6这里只有精品| 久久精品国产自在天天线| 国产高清三级在线| 淫秽高清视频在线观看| 天天一区二区日本电影三级| 18禁在线无遮挡免费观看视频| 国产一级毛片七仙女欲春2| 熟女人妻精品中文字幕| 村上凉子中文字幕在线| 成年av动漫网址| 爱豆传媒免费全集在线观看| 啦啦啦观看免费观看视频高清| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产av不卡久久| 99精品在免费线老司机午夜| 亚洲最大成人av| 色综合色国产| 男人的好看免费观看在线视频| 22中文网久久字幕| 91精品国产九色| 免费电影在线观看免费观看| 成人午夜精彩视频在线观看| 我要搜黄色片| 三级男女做爰猛烈吃奶摸视频| av女优亚洲男人天堂| 最好的美女福利视频网| 九九爱精品视频在线观看| 国产精品人妻久久久影院| 亚洲精华国产精华液的使用体验 | 国产精品不卡视频一区二区| 亚洲av一区综合| 黄色日韩在线| 99久国产av精品国产电影| 国产av在哪里看| 欧美另类亚洲清纯唯美| 亚洲一级一片aⅴ在线观看| 波多野结衣巨乳人妻| а√天堂www在线а√下载| 国产老妇女一区| 日韩 亚洲 欧美在线|