• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characterization of NDM-5-producing Enterobacteriaceae isolates from retail grass carp(Ctenopharyngodon idella) and evidence of blaNDM-5-bearing IncHI2 plasmid transfer between ducks and fish

    2022-04-28 06:48:00LuChaoLvYaoYaoLuXunGaoWanYunHeMingYiGaoKaiBinMoJianHuaLiu
    Zoological Research 2022年2期

    Lu-Chao Lv, Yao-Yao Lu, Xun Gao, Wan-Yun He, Ming-Yi Gao, Kai-Bin Mo, Jian-Hua Liu,2,*

    1 College of Veterinary Medicine, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong 510642, China

    2 Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China

    ABSTRACT

    Keywords: blaNDM-5; Enterobacteriaceae;Plasmid; Fish; Carbapenemase

    INTRODUCTION

    Carbapenemase-producingEnterobacteriaceae(CPE),especially New Delhi metal-β-lactamase (NDM) producers,have been increasingly reported worldwide and pose a significant challenge to public health (Wu et al., 2019).Since the discovery of NDM-1 in 2008 (Yong et al., 2009), NDM-producingEnterobacteriaceaehave spread globally.To date,41 NDM enzyme variants (NDM-1–NDM-41) (https://www.ncbi.nlm.nih.gov/pathogens/refgene/#NDM) have been identified, with theblaNDM-1andblaNDM-5genes being the most prevalent (Wu et al., 2019).

    In 2011,blaNDM-5was first reported in anE.colistrain isolated from a patient in the UK (Hornsey et al., 2011).Since then,blaNDM-5has been detected in more than 40 countries(https://www.ncbi.nlm.nih.gov/pathogens/microbigge/#blaNDM-5).NDM-5 is the most common NDM variant inE.coli,especially in China and Southeast Asia.AlthoughblaNDM-5is widespread due to diverse self-transferable plasmids such as IncX3 and IncF (FII, FIA, and FIB) (Wu et al., 2019), it is rarely reported in the IncHI2 plasmid, except in swine- and duckoriginE.colifrom Guangdong Province, China (Ma et al.,2021; Zhao et al., 2021b).

    In China, NDM-5-producingEnterobacteriaceaehave been widely detected in humans (Tian et al., 2020), farm animals(Ma et al., 2021), companion animals (Wang et al., 2021a),wild animals (Wang et al., 2017), retail meats (Zhang et al.,2019), and the environment (Zhao et al., 2021a), but rarely in aquatic products.Aquatic products are also considered important reservoirs and transmission vectors of resistant bacteria (Xu et al., 2020).Of note, the integrated duck-fish freshwater aquaculture system is very common in Guangdong, and antimicrobial resistant bacteria can be transmitted between ducks and fish (Shen et al., 2020).Grass carp (Ctenopharyngodon idella) is the most popular freshwater fish in aquaculture and is cultivated in 32 provinces in China.According to the China Fishery Statistical Yearbook 2020(https://data.cnki.net/trade/Yearbook/Single/N2021020168?z=Z009), the production of grass carp reached 5.5 million tons in 2019, accounting for 21.7% of the maximum annual production in freshwater fish.However, the occurrence of clinically important resistant bacteria, such as CPE, in grass carp has rarely been studied.Hence, we investigated the prevalence of CPE in intestinal samples of grass carp from wet markets in Guangzhou and characterizedblaNDM-positive isolates and plasmids to understand the transmission mechanism ofblaNDM5in aquatic products.

    MATERIALS AND METHODS

    Sample collection, bacterial isolation, and detection of blaNDM

    In January 2019, a total of 196 intestinal samples from grass carp were randomly collected from 24 wet markets located in seven districts of Guangzhou, China.We collected fish samples from different stalls, with three intestinal samples randomly collected from each sampling booth.Each sample was placed in a separate sterile sample bag and transported to the laboratory in a freezer box for processing within 12 h.The fish intestines were dissected with sterile surgical scissors, and 1 g of intestinal content was enriched in 2 mL of Luria-Bertani (LB) broth at 37 °C overnight with shaking.The overnight cultures were streaked onto MacConkey agar plates supplemented with 1 mg/L meropenem and incubated at 37 °C for 18–24 h.Enterobacteriaceaecolonies with different morphologies were selected from the plates to screen forblaNDM-,blaKPC-, andblaOXA-48-positive isolates using polymerase chain reaction (PCR) with specific primers as described previously (Poirel et al., 2011).

    Antimicrobial susceptibility testing

    According to the recommendations of the Clinical and Laboratory Standards Institute (2017), the minimal inhibitory concentrations (MICs) of 18 antimicrobials against NDM-positiveEnterobacteriaceaeisolates were determined using the agar dilution or broth microdilution (colistin and tigecycline)methods.Escherichia coliATCC 25 922 was used as the control.The MICs were interpreted according to the criteria of CLSI (M100-S30) and EUCAST (http://www.eucast.org).

    Conjugation experiments

    In this study, streptomycin-resistantE.coliC600 was used as the recipient, and eachblaNDM-positive isolate was used as the donor for conjugation by broth mating at 37 ℃ for 16–20 h.Transconjugants were selected on MacConkey agar plates supplemented with 3 000 mg/L streptomycin and 1 mg/L meropenem.Conjugation frequency was calculated following previously reported methods (Chen et al., 2007).

    Whole-genome sequencing and bioinformatics analysis

    Whole-genomic DNA of NDM-positive isolates was sequenced using the Illumina Hiseq X Ten and Oxford Nanopore MinIon platforms, and complete genomes were obtained by hybrid assembly using Unicycler v0.4.7 (Wick et al., 2017).MLST v2.19 (https://github.com/tseemann/mlst) was used to identify the sequence type (ST) of theblaNDM-positive strains.Plasmid replicons, antimicrobial resistance genes, and heavy metal resistance genes were analyzed using ABRicate v1.0(https://github.com/tseemann/abricate) with the PlasmidFinder(Carattoli et al., 2014), ResFinder (Zankari et al., 2012), and AMRFinderPlus databases (https://github.com/ncbi/amr),respectively.Plasmid double-locus sequence typing (pDLST)for IncHI2 plasmids was identified using pMLST v2.0(https://cge.cbs.dtu.dk/services/pMLST/).Insertion sequence(IS) elements were identified using ISfinder (https://isfinder.biotoul.fr/).Single nucleotide polymorphism (SNP)calling was performed using Snippy (https://github.com/tseemann/snippy).TheblaNDM-carrying plasmids were further compared and analyzed using the BLAST ring image generator (Alikhan et al., 2011).The genetic context ofblaNDMwas analyzed by GalileoTMAMR (http://galileoamr.arcbio.com/mara/), Gene Construction Kit v4.5 software (Textco BioSoftware, USA), and Easyfig v2.2.5 (http://mjsull.github.io/Easyfig/files.html).

    Nucleotide sequence accession numbers

    The complete genome sequences of sevenblaNDM-5-positiveEnterobacteriaceaewere deposited in GenBank under BioProject No.PRJNA636005.

    RESULTS

    Characterization of blaNDM-5-carrying isolates

    A total of seven (3.57%) unduplicated carbapenem-resistant isolates, including sixE.coliand oneC.freundii, were obtained from the seven intestinal samples of grass carp(Table 1).All seven isolates were identified asblaNDM-5-positive by PCR and sequencing, whileblaKPCandblaOXA-48were not detected.

    The sevenblaNDM-5-carrying isolates showed multidrugresistant phenotypes and harbored multiple resistance genes(Tables 1, 2).Molecular typing results showed that theC.freundiistrain belonged to ST557.Six of the NDM-5-positiveE.colistrains belonged to five different STs, namely ST48,ST57, ST101, ST155, and ST9124.The two ST48E.coliisolates (PY9F04M and PY9F07M) were recovered from the same market but from different sample booths (Table 1) and were related as they showed only 10 core-genome SNP(cgSNP) differences from each other (Schürch et al., 2018),although the resistance genes they carried were not the same(Table 1).

    Characterization of blaNDM-5-bearing plasmids

    The conjugation experiments indicated that the sevenblaNDM-5-carrying plasmids could be successfully transferred to the recipientE.coliC600 strain, and replicon typing results revealed that theblaNDM-5genes were located on IncX3 (n=5),IncHI2 (n=1), and IncHI2-IncF (n=1).The conjugation frequencies of the IncX3-type plasmids varied from ~10-4to 10-5cells/donor, while the conjugation frequencies of the IncHI2-type and IncHI2-IncF-type plasmids were ~10-6and~10-5cells/donor, respectively (Table 1).

    Table 1 Characterization of blaNDM-5-carrying Escherichia coli and Citrobacter freundii isolates

    Table 2 Antibiotic susceptibility of blaNDM-5-carrying isolates and their transconjugants

    The complete sequences of all sevenblaNDM-5-bearing plasmids were obtained using Illumina and Nanopore sequencing.The sequences of five IncX3 plasmids were similar to previously reportedblaNDM-5-bearing IncX3 plasmids,including plasmids pGDQ8D112M-NDM (GenBank Accession No.MK628734, duck, China), pNDM5_IncX3 (KU761328.1,Homo sapiens, China), pHNYX638-1 (MK033577, pork,China), and pHN7DH6 (MN276080, dog, China) (Figure 1A).

    Plasmid pHNBYF33-1, which belonged to IncHI2-ST3, was 238 926 bp in length with a GC content of 46.30% and carried 12 resistance genes.The BLASTn results indicated that plasmid pHNBYF33-1 exhibited high similarity (≥99.9%identity and ≥93.4% coverage) to fourblaNDM-5-carrying IncHI2 plasmids deposited in GenBank, i.e., pNDM33-1 (MN915011)(Zhao et al., 2021b), GFQ9D68 Contig5 (JAGFYC0100 00005), GDQ8D151 plasmid1 (JAGFYD010000002), and GDQ20D15 plasmid1 (JAGFYB010000003) (Figure 1B).Interestingly, all four plasmids were carried byE.colistrains recovered from ducks in Guangdong, China.

    Plasmid pHNTH9F11-1 (IncHI2-IncF) was 407 456 bp in size and had an average GC content of 48.03%.pHNTH9F11-1 harbored three different replicons, including IncHI2, IncFII,and IncFIB.BLASTn analysis showed that pHNTH9F11-1 was a cointegrate plasmid comprised of sequences of IncHI2(designated as pHNTH9F11-1_IncHI2), harboringblaNDM-5,and IncF24:A-:B1 (designated as pHNTH9F11-1_IncF)(Figure 1C).In addition, the hybrid plasmid pHNTH9F11-1 had 87% nucleotide sequence coverage of the IncHI2-IncFII plasmid pP2-3T (MG014722, swine, China).The sequence of plasmid pHNTH9F11-1_IncHI2 harboringblaNDM-5was similar(≥99.99% identity and 100% coverage) to that of theblaNDM-5-carrying plasmid pHNGD64-NDM (MW296099) from a swineE.colistrain (Ma et al., 2021).Plasmid pHNTH9F11-1_IncF exhibited similarity (≥99.99% identity and ≥90% coverage) to IncF24:A-:B- plasmid pPK8568-156kb (CP080127, chicken,Pakistan), carrying multiple heavy metal resistance genes(arsABCDandsitABCD) and a phage resistance system(BREX, bacteriophage exclusion system) (Goldfarb et al.,2015).Further analysis revealed that pHNTH9F11-1_IncF and pHNTH9F11-1_IncHI2 were bound by two identical ΔTn1721transposons (hp-tetR-tet(A)-eamA) with a length of 5 492 bp,suggesting that the cointegrate plasmid pHNTH9F11-1 was formed by homologous recombination of these two plasmids through ΔTn1721(Figure 1C).

    Genetic contexts of blaNDM-5 genes in IncX3 and IncHI2

    All fiveblaNDM-5-carrying IncX3 plasmids showed identical genetic contexts (i.e., IS3000-ΔISAba125-IS5-ΔISAba125-blaNDM-5-bleMBL-trpF-tat-IS26-ΔumuD-ISKox3) (Figure 2),similar to that of the classical IncX3 plasmid pHNYX658-1(Zhang et al., 2019).The genetic contexts ofblaNDM-5in pHNTH9F11-1_IncHI2 and pHNBYF33-1 (IncHI2) were similar to otherblaNDM-5-carrying IncHI2 plasmids in GenBank,including pNDM33-1, GDQ8D151 plasmid1, GFQ9D68 Contig5, and GDQ20D15 plasmid1 (Figure 2).In these four IncHI2-type plasmids, theblaNDM-5gene was identically embedded in a novel composite transposon (IS3000-ΔISAba125-IS5-ΔISAba125-blaNDM-5-bleMBL-trpF-tat-Δdct-IS26-ΔumuD-ΔISKox3-IS3000) inserted between IS1and IS10Rof the multidrug resistance region of the IncHI2 plasmid with 5 bp target site duplications (TSDs) (ACTTT).Previous research has found that excision of this transposon from the plasmid pNDM33-1 forms a circular intermediate (Zhao et al.,2021b).Here, we renamed this novel 13 918 bp longtransposon as Tn7051(https://transposon.lstmed.ac.uk/).Comparative analysis demonstrated that Tn7051shared 99.98% nucleotide sequence similarity (two SNP differences)with the genetic context ofblaNDM-5in the IncX3 plasmid pHNYX638-1 (MK033577, pork, China), except that ISKox3in Tn7051was truncated by a copy of IS3000, creating only 545 bp remains (ΔISKox3) (Figure 2).Interestingly, when comparing the Tn7051sequence, we found a Tn7051-like structure (14 482 bp) in three hybrid plasmids obtained from swineE.coliisolates in China (Yao et al., 2020), namely p4M9F (IncFIA-IncHI1A-IncHI1B, MN256759), p4M8F (IncHI1-IncY-IncFIA-IncFIB, MN256758), and p4M18F (IncHI1-IncYIncFIA-IncFIB, MN256757).In the Tn7051-like structure,ISKox3had more residues (1 108 bp) than that in Tn7051.Furthermore, the Tn7051-like structure exhibited 99.97%–100.00% nucleotide sequence identity (0–3 SNP differences) to the genetic context ofblaNDM-5in the IncX3 plasmid pHNYX638-1.Given that Tn7051and Tn7051-like transposons were similar to the genetic context ofblaNDM-5in the IncX3 plasmid pHNYX638-1, we speculated that both Tn7051and Tn7051-like transposons were likely derived from the IncX3 plasmid.

    Figure 1 Comparison of blaNDM-5-carrying plasmids

    Although the IncHI2 plasmids pHNBYF33-1 and pNDM33-1 shared the same Tn7051insertion site (Figure 2), compared with pNDM33-1, the plasmid pHNBYF33-1 lacked the ΔIS3000-ΔIS10-IS26-lnu(F)-aadA2-hp-IS26segment, which could be readily explained by a deletion event mediated by two copies of IS26located in the same orientation (Harmer & Hall, 2016).The genetic context ofblaNDM-5in the hybrid plasmid pHNTH9F11-1 was the same as that in plasmid pHNGD64-NDM, and was very similar to pNDM33-1, except for the lack of the IS26-ΔumuD-ΔISKox3-IS3000-ΔIS10-IS26-lnu(F)-aadA2-hp-IS26-hp-IS26-blaTEM-IS1Xunit (Figure 2).This may be due to the deletion of genes mediated by homologous recombination between two copies of IS26in the same direction (i.e., IS26in Tn7051and IS26upstream of ΔTnEc1),as IS26located upstream of ΔTnEc1had only an 8 bp TSD(CTTCTGGT) on one side (Figure 2).

    Proposed formation model of genetic contexts of blaNDM-5 in IncHI2 plasmids

    Based on detailed sequence analysis, the co-integration mechanism of IS26(Harmer & Hall, 2016), and the copy-outpaste-in mechanism of composite transposons (Piégu et al.,2015), we proposed a genetic environment formation model ofblaNDM-5in plasmids pHNBYF33-1 and pHNTH9F11-1, as shown in Figure 3.The assumed plasmid evolution process was as follows: IS3000was inserted into ISKox3of the IncX3 plasmid (Figure 3A), thus forming the IS3000-ΔISAba125-IS5-ΔISAba125-blaNDM-5-blaMBL-trpF-tat-Δdct-IS26-ΔumuDΔISkox3-IS3000-ΔISkox3unit (Figure 3B), hypothesized due to the absence of this unit in GenBank.The two sameorientated copies of IS3000, surroundingblaNDM-5, generated the circular intermediate Tn7051(Figure 3C), which was further inserted into the region between IS1and IS10of the IncHI2 plasmid (Figure 3D) with 5 bp TSDs (ACTTT), resulting in the formation of theblaNDM-5-carrying IncHI2 plasmids (i.e.,pNDM33-1, MN915011; GFQ9D68 Contig5, JAGFYC 010000005; GDQ8D151 plasmid1, JAGFYD010000002; and GDQ20D15 plasmid1, JAGFYB010000003) (Figure 3E).IS3000,located downstream of ISKox3, was truncated by IS26and,consequently, the IncHI2 plasmids evolved into the structure shown in Figure 3F (hypothesized due to the absence of a similar structure in GenBank).The IS26that previously truncated IS3000was recombined with the IS26adjacent toblaTEM-1(purple frame in Figure 3F), leading to the deletion of the ΔIS3000-ΔIS10-IS26-lnu(F)-aadA2-hp-IS26segment.As a result, the structure of the hypothetical plasmids (Figure 3F)entered theblaNDM-5-carrying plasmid pHNBYF33-1 (Figure 3G).Additionally, the two IS26elements in Figure 3F and Figure 3G (light green frame) integrated, resulting in the formation of theblaNDM-5-carrying plasmid pHNTH9F11-1(Figure 3H).Therefore, in summary, we speculated that Tn7051may contribute to the transfer ofblaNDM-5from the IncX3 plasmids to the IncHI2 plasmids, and the genetic contexts ofblaNDM-5on the IncHI2 plasmids in fish were likely derived from plasmids carried by ducks in Guangdong, China.

    Figure 3 Proposed formation mechanism of genetic environment of blaNDM-5 in plasmids pHNBYF33-1 and pHNTH9F11-1

    DISCUSSION

    As the most common CPE,blaNDM-positiveEnterobacteriaceaehave been isolated from seafood and aquatic environments in several countries (Das et al., 2019;K?ck et al., 2018).Moreover,blaNDM-positiveEnterobacteriaceaehave been detected in freshwater fish in Vietnam (Nakayama et al., 2022) and farmed fish in Egypt(Hamza et al., 2020).To the best of our knowledge, however,this is the first report ofblaNDMin freshwater fish from China.Of concern, as fish intestines are consumed in Guangdong,NDM-5-positiveEnterobacteriaceaein the intestines of retail fish products could spread to humans via the food chain.

    In China, IncX3 plasmids are the most common type of plasmid carryingblaNDM-5(Ma et al., 2020).NDM-5-producing IncX3 plasmids are widespread in environmental, animal, and clinical isolates (Ma et al., 2020), but are rarely reported inEnterobacteriaceaeof freshwater fish origin.The similar IncX3 plasmids found in this study further highlight the importance of the epidemic IncX3 plasmid in the spread of theblaNDM-5gene within the entire ecosystem.IncHI2/ST3 plasmids have been reported to mediate the transfer of various antibiotic resistance genes (ARGs), such asfosA3(Wang et al., 2020),floR(Cao et al., 2020),blaCTX-M(Lü et al., 2020), andmcr(Long et al.,2019; Zhi et al., 2016), as well as various NDM-type carbapenemase genes, such asblaNDM-1,blaNDM-9, andblaNDM-4(Liu et al., 2017; Oueslati et al., 2021).However,there are very few reports ofblaNDM-5-carrying IncHI2 (Ma et al., 2021; Zhao et al., 2021b).Consequently, we downloaded all available complete genomes (n=5 974; as of 1 September 2021) ofEnterobacteriaceaesubmitted to the NCBI assembly database (https://www.ncbi.nlm.nih.gov/assembly/) and found only fiveblaNDM-5-carrying IncHI2 plasmids (four from ducks and one from swine), all of which were from Guangdong,China.Although we could not trace the location of the grass carp farms and investigate the contamination source of theblaNDM-5-positiveEnterobacteriaceae, it is worth noting that the detection rate of theblaNDMgene in duck samples from Guangdong is high (>30%) (Wang et al., 2021b) and integrated duck-fish farming is very common in Guangdong(Shen et al., 2020).In the duck-fish farm model, duck feces are discharged without treatment, and a large number of ARGs or residual agents can directly contaminate the fish ponds, promoting the transmission of ARGs between ducks and fish.Thus, considering the high similarity of theblaNDM-5-bearing IncHI2 plasmids in the fish and ducks, and that theblaNDM-5-bearing IncHI2 plasmid is currently only found in Guangdong, we speculate that theblaNDM-5-bearing IncHI2 plasmids found inEnterobacteriaceaefrom retail fish may have been derived from duck feces-contaminated fish ponds in Guangdong.As such, greater attention should be paid to the transfer risk of antimicrobial resistant bacteria in integrated duck-fish farming.

    Here, pHNTH9F11-1 (IncHI2-IncF) was identified as a hybrid plasmid, formed by homologous recombination through ΔTn1721.In gram-negative bacteria, the fusion of plasmids mediated by insertion sequences, such as IS26, is rather universal, leading to a plasmid that can encode multiple resistance and hypervirulence genes, thereby posing a considerable threat to human health; for example, the cointegration event mediated by IS26between theblaNDM-5-bearing IncX3 plasmid andblaCMY-2-bearing IncA/C plasmid (Li et al., 2020).Moreover, the fusion of plasmids can expand the number of replicons and host range of plasmids, accelerating the dissemination of ARGs among various bacterial species(Dolejska et al., 2014; Wong et al., 2017).Of note, this fusion can also enable a non-conjugative plasmid to acquire conjugation ability, thereby facilitating the transmission of resistance genes, e.g., the recombination of non-conjugativemcr-1-carrying P7 phage-like plasmid pD72-mcr1 and conjugative F33:A-:B- plasmid pD72-F33 mediated by IS26,forming cointegrate plasmid pD72C with a conjugation frequency of 8×10-3cells/donor (He et al., 2019).Hence, the cointegrate plasmid pHNTH9F11-1 with multidrug resistance,heavy metal resistance, and phage resistance system (ability to resist invasion of bacteriophages) may provide an advantage for the host to survive in the environment.

    Composite transposons can mediate the jump of ARGs between different DNA molecules.The novel Tn7051and Tn7051-like transposons can both be moved by a copy-out-paste-in mechanism utilizing a double-stranded circular DNA intermediate (Yao et al., 2020; Zhao et al., 2021b), thereby contributing to the transfer of theblaNDM-5gene and expanding its transmission vectors.It has been widely reported thatblaNDM-5genes are mainly located on narrow-host-range plasmids (e.g., IncX3, IncF, and IncB/O) (Wu et al., 2019).However, the transfer ofblaNDM-5to the IncHI2 plasmid mediated by Tn7051and to the IncHI1-IncY-IncFIA-IncFIB plasmid mediated by Tn7051-like suggested that these transposons may further accelerate the horizontal spread of theblaNDM-5gene to various strains and plasmids, like Tn3000and Tn125, which mediate the between-plasmid jumps ofblaNDM-1and accelerate the transfer ofblaNDM-1in different strains (Acman et al., 2021).

    CONCLUSIONS

    This study revealed the emergence ofblaNDM-5inEnterobacteriaceaeof fish origin in China.To the best of our knowledge, this is the first report of theblaNDM-5gene, as well asblaNDM-5-bearing plasmids, in isolates from fish products in China.Our findings indicated thatblaNDM-5in the IncHI2 plasmids may originate from the IncX3 plasmid, transferred by the novel composite transposon Tn7051.Furthermore, theblaNDM-5-bearing IncHI2 plasmid may be transmitted from ducks, considering the common duck-fish freshwater aquaculture system in Guangdong.Based on the concept of“One health”, the surveillance of antibiotic resistance in aquatic products should be strengthened, and more measures should be taken to reduce the transfer of clinically important resistant bacteria, such as CPE, between food-producing animals and animal products.

    DATA AVAILABILITY

    The datasets in this study can be found in NCBI under BioProjectID PRJNA636005.The raw sequence data reported in this paper have been deposited in the Genome Sequence Archive (Genomics, Proteomics & Bioinformatics 2021) in the National Genomics Data Center (Nucleic Acids Res 2021),China National Center for Bioinformation/Beijing Institute of Genomics, Chinese Academy of Sciences (GSA:CRA005844), publicly accessible at https://ngdc.cncb.ac.cn/gsa.

    COMPETING INTERESTS

    The authors declare that they have no competing interests.

    AUTHORS’ CONTRIBUTIONS

    J.H.L.and L.C.L.conceived the research.X.G., Y.Y.L.,M.Y.G., K.B.M., W.Y.H., and L.C.L.collected the data.L.C.L.,J.H.L., Y.Y.L., X.G., and W.Y.H.analyzed and interpreted the data.Y.Y.L.and L.C.L.drafted the manuscript, J.H.L., W.Y.H.,and X.G.revised the report.All authors read and approved the final version of the manuscript.

    在线免费观看不下载黄p国产| 国产高潮美女av| 欧美xxxx黑人xx丫x性爽| 少妇的逼好多水| 精品人妻视频免费看| 国产av在哪里看| 夫妻性生交免费视频一级片| 久久久久久久久久成人| 国产精品永久免费网站| 欧美成人免费av一区二区三区| a级毛色黄片| 禁无遮挡网站| 2021少妇久久久久久久久久久| 午夜精品在线福利| 久久99热这里只频精品6学生 | av在线观看视频网站免费| 国产精品一区二区性色av| 欧美区成人在线视频| 美女脱内裤让男人舔精品视频| 夫妻性生交免费视频一级片| 免费黄网站久久成人精品| 日韩av在线大香蕉| 卡戴珊不雅视频在线播放| 视频中文字幕在线观看| 日韩成人av中文字幕在线观看| 国产一区二区亚洲精品在线观看| av又黄又爽大尺度在线免费看 | 超碰av人人做人人爽久久| a级毛片免费高清观看在线播放| 国产国拍精品亚洲av在线观看| 亚洲av男天堂| 免费电影在线观看免费观看| 国产不卡一卡二| 日本午夜av视频| 亚洲怡红院男人天堂| 久久婷婷人人爽人人干人人爱| 深夜a级毛片| 少妇被粗大猛烈的视频| 久久99蜜桃精品久久| 亚洲激情五月婷婷啪啪| 自拍偷自拍亚洲精品老妇| 国产三级在线视频| 2022亚洲国产成人精品| 麻豆成人av视频| 亚洲人成网站在线观看播放| 亚洲av中文字字幕乱码综合| 成人欧美大片| 大又大粗又爽又黄少妇毛片口| 日韩视频在线欧美| 国产色爽女视频免费观看| 精品人妻一区二区三区麻豆| 欧美成人午夜免费资源| 久久久a久久爽久久v久久| 天堂影院成人在线观看| 欧美潮喷喷水| 免费av观看视频| 国产伦理片在线播放av一区| 国产精品不卡视频一区二区| 欧美潮喷喷水| 欧美高清成人免费视频www| 亚洲成av人片在线播放无| av专区在线播放| 国产午夜精品一二区理论片| 联通29元200g的流量卡| 成人一区二区视频在线观看| 亚洲在线自拍视频| 国产精品野战在线观看| 赤兔流量卡办理| 日韩一区二区视频免费看| 久久久久久久久中文| 波多野结衣巨乳人妻| 波多野结衣巨乳人妻| 亚洲性久久影院| 色综合色国产| 欧美激情国产日韩精品一区| 大香蕉久久网| 色网站视频免费| 在线天堂最新版资源| 亚洲成人av在线免费| 亚洲成人av在线免费| 亚洲av日韩在线播放| 纵有疾风起免费观看全集完整版 | 18禁动态无遮挡网站| 亚洲国产成人一精品久久久| 亚洲国产精品久久男人天堂| 99久久人妻综合| 亚洲美女搞黄在线观看| 国产精品麻豆人妻色哟哟久久 | 最近最新中文字幕大全电影3| 又爽又黄a免费视频| 观看免费一级毛片| 国产欧美日韩精品一区二区| 国产又色又爽无遮挡免| 久久亚洲国产成人精品v| 久久久欧美国产精品| 麻豆成人av视频| 三级经典国产精品| 九九在线视频观看精品| 亚洲中文字幕一区二区三区有码在线看| av天堂中文字幕网| 永久网站在线| 我要看日韩黄色一级片| 亚洲精品久久久久久婷婷小说 | a级毛片免费高清观看在线播放| 久久久久久大精品| 国产午夜福利久久久久久| 精品国产一区二区三区久久久樱花 | 汤姆久久久久久久影院中文字幕 | 少妇熟女aⅴ在线视频| 亚洲中文字幕日韩| 亚洲精品亚洲一区二区| 97在线视频观看| 久久久精品94久久精品| 日本一二三区视频观看| 床上黄色一级片| 亚洲精品日韩av片在线观看| 亚洲国产精品专区欧美| 爱豆传媒免费全集在线观看| 成年女人永久免费观看视频| 舔av片在线| 午夜亚洲福利在线播放| 日日摸夜夜添夜夜爱| 亚洲精品影视一区二区三区av| 国产精品熟女久久久久浪| 51国产日韩欧美| 建设人人有责人人尽责人人享有的 | 中文欧美无线码| av免费观看日本| 99热网站在线观看| 五月玫瑰六月丁香| 男女国产视频网站| 久久99热这里只频精品6学生 | 亚洲av不卡在线观看| 亚洲国产精品国产精品| 男女那种视频在线观看| 99久久精品一区二区三区| 国产伦在线观看视频一区| 看十八女毛片水多多多| 边亲边吃奶的免费视频| 日日啪夜夜撸| 少妇丰满av| 亚洲精品乱久久久久久| 天堂√8在线中文| 久久久精品94久久精品| 最近中文字幕高清免费大全6| 欧美成人a在线观看| 国产精品嫩草影院av在线观看| 日韩 亚洲 欧美在线| 亚洲精品456在线播放app| 久久久久久久久久久丰满| 国产成人精品一,二区| 可以在线观看毛片的网站| 亚洲性久久影院| 国产白丝娇喘喷水9色精品| 亚洲精品aⅴ在线观看| 大话2 男鬼变身卡| 国产三级在线视频| 男人舔女人下体高潮全视频| 国产精品一区二区三区四区久久| 男女国产视频网站| 久久精品久久精品一区二区三区| 国产成人a∨麻豆精品| 免费在线观看成人毛片| 欧美成人免费av一区二区三区| 真实男女啪啪啪动态图| 中文资源天堂在线| www.av在线官网国产| 永久免费av网站大全| 国产真实伦视频高清在线观看| 七月丁香在线播放| 日韩强制内射视频| 99久久无色码亚洲精品果冻| 亚洲欧美一区二区三区国产| 亚洲av不卡在线观看| 亚洲在线自拍视频| 久久久久久久久久成人| 欧美区成人在线视频| 婷婷色麻豆天堂久久 | 国产单亲对白刺激| 亚洲在线观看片| 国产精品乱码一区二三区的特点| 国产熟女欧美一区二区| 欧美又色又爽又黄视频| 国产私拍福利视频在线观看| 青春草亚洲视频在线观看| 能在线免费看毛片的网站| 中文字幕精品亚洲无线码一区| 免费黄网站久久成人精品| 欧美变态另类bdsm刘玥| 熟女电影av网| 少妇人妻一区二区三区视频| 免费电影在线观看免费观看| 99在线视频只有这里精品首页| 男女边吃奶边做爰视频| 男女视频在线观看网站免费| 精品无人区乱码1区二区| 又黄又爽又刺激的免费视频.| 在线播放无遮挡| 色网站视频免费| 亚洲激情五月婷婷啪啪| 久久婷婷人人爽人人干人人爱| or卡值多少钱| av国产久精品久网站免费入址| 久久久久性生活片| 欧美日韩一区二区视频在线观看视频在线 | 免费无遮挡裸体视频| ponron亚洲| 亚洲精品乱久久久久久| 亚洲国产精品成人综合色| 99热6这里只有精品| 国产又黄又爽又无遮挡在线| 91狼人影院| 三级国产精品欧美在线观看| 久久久久久久久大av| 少妇裸体淫交视频免费看高清| 午夜精品在线福利| 老司机福利观看| 小蜜桃在线观看免费完整版高清| 夫妻性生交免费视频一级片| 亚洲精品,欧美精品| 国产高清视频在线观看网站| 日本爱情动作片www.在线观看| 禁无遮挡网站| 免费黄网站久久成人精品| 国产成人一区二区在线| 日韩人妻高清精品专区| 高清日韩中文字幕在线| 国产精品精品国产色婷婷| 成人av在线播放网站| 别揉我奶头 嗯啊视频| 免费看光身美女| 日本免费一区二区三区高清不卡| 少妇丰满av| 男女国产视频网站| 搡老妇女老女人老熟妇| 嫩草影院入口| a级毛色黄片| 免费一级毛片在线播放高清视频| 色网站视频免费| 色噜噜av男人的天堂激情| 丰满乱子伦码专区| 一本一本综合久久| 午夜久久久久精精品| 日本熟妇午夜| 汤姆久久久久久久影院中文字幕 | 精品熟女少妇av免费看| 欧美日本亚洲视频在线播放| 国产一区二区亚洲精品在线观看| 国产在视频线精品| 精品99又大又爽又粗少妇毛片| 久久久欧美国产精品| 91久久精品电影网| 亚洲一级一片aⅴ在线观看| av在线播放精品| 国产视频内射| 美女被艹到高潮喷水动态| 我的老师免费观看完整版| 美女黄网站色视频| 丰满少妇做爰视频| 亚洲美女搞黄在线观看| 岛国毛片在线播放| 精品久久久久久久久亚洲| 舔av片在线| 韩国高清视频一区二区三区| av在线亚洲专区| 国产精品福利在线免费观看| 国产高清国产精品国产三级 | 亚洲国产成人一精品久久久| 日韩,欧美,国产一区二区三区 | 成人av在线播放网站| 成人美女网站在线观看视频| 人体艺术视频欧美日本| 国产精品国产三级国产av玫瑰| 最后的刺客免费高清国语| 精品久久久久久久久久久久久| 欧美区成人在线视频| 亚洲精品乱久久久久久| 国产精华一区二区三区| 一级爰片在线观看| 国产一级毛片七仙女欲春2| 免费电影在线观看免费观看| 亚洲精品影视一区二区三区av| 欧美极品一区二区三区四区| 国内精品一区二区在线观看| 日本午夜av视频| 校园人妻丝袜中文字幕| 亚洲国产精品成人久久小说| 又黄又爽又刺激的免费视频.| 国产老妇女一区| 亚洲av成人精品一二三区| 欧美色视频一区免费| 日韩在线高清观看一区二区三区| 少妇人妻一区二区三区视频| 国产黄片视频在线免费观看| 蜜桃久久精品国产亚洲av| 一个人看的www免费观看视频| 久久久久久久久大av| 99久久精品国产国产毛片| 国产成人精品一,二区| 男的添女的下面高潮视频| 麻豆国产97在线/欧美| 秋霞在线观看毛片| 日韩成人伦理影院| 自拍偷自拍亚洲精品老妇| av在线天堂中文字幕| 精品无人区乱码1区二区| 久久亚洲国产成人精品v| 少妇人妻一区二区三区视频| 国产黄片视频在线免费观看| 国产v大片淫在线免费观看| 黄色配什么色好看| 日本wwww免费看| 欧美成人一区二区免费高清观看| 欧美高清性xxxxhd video| h日本视频在线播放| 日本wwww免费看| 能在线免费看毛片的网站| 天堂影院成人在线观看| 夜夜看夜夜爽夜夜摸| 亚洲av福利一区| 国产黄色视频一区二区在线观看 | 日韩欧美三级三区| 久久国内精品自在自线图片| 乱码一卡2卡4卡精品| av.在线天堂| 亚洲乱码一区二区免费版| 一级二级三级毛片免费看| 色视频www国产| 国产精品不卡视频一区二区| av播播在线观看一区| 精品免费久久久久久久清纯| 18禁动态无遮挡网站| 一个人看的www免费观看视频| 久久久久久久久大av| 亚洲av免费高清在线观看| 国产在线男女| 国产午夜精品久久久久久一区二区三区| 久久精品久久精品一区二区三区| 免费黄网站久久成人精品| 插逼视频在线观看| 美女黄网站色视频| 亚洲av免费高清在线观看| 亚洲人成网站高清观看| 亚洲av日韩在线播放| 亚洲最大成人av| 国产精品久久久久久久久免| h日本视频在线播放| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 如何舔出高潮| 亚洲中文字幕日韩| 国产一区二区在线av高清观看| 韩国高清视频一区二区三区| 成人高潮视频无遮挡免费网站| 国产成人91sexporn| 国产淫片久久久久久久久| 亚洲精华国产精华液的使用体验| 久久久久精品久久久久真实原创| 在线免费十八禁| 国产毛片a区久久久久| 九色成人免费人妻av| 欧美另类亚洲清纯唯美| 一级黄色大片毛片| 亚洲18禁久久av| 非洲黑人性xxxx精品又粗又长| 国产精品99久久久久久久久| 男人舔女人下体高潮全视频| 亚洲欧美清纯卡通| 亚洲av中文字字幕乱码综合| 欧美日韩在线观看h| 69av精品久久久久久| 尤物成人国产欧美一区二区三区| 两个人的视频大全免费| av在线天堂中文字幕| 别揉我奶头 嗯啊视频| 91久久精品电影网| 久久精品久久精品一区二区三区| 国产大屁股一区二区在线视频| 久久久久久九九精品二区国产| 天美传媒精品一区二区| 国产色爽女视频免费观看| 日本与韩国留学比较| 国产精品久久视频播放| 亚洲三级黄色毛片| 国产三级在线视频| 99久久无色码亚洲精品果冻| 99热精品在线国产| 精品久久久久久久久亚洲| 毛片女人毛片| 色5月婷婷丁香| 久久婷婷人人爽人人干人人爱| 毛片女人毛片| 中国美白少妇内射xxxbb| 男人舔女人下体高潮全视频| 男人的好看免费观看在线视频| 亚洲三级黄色毛片| 欧美日本亚洲视频在线播放| 亚洲精品影视一区二区三区av| 午夜精品一区二区三区免费看| 2021天堂中文幕一二区在线观| 亚洲国产最新在线播放| 少妇的逼水好多| 午夜a级毛片| 人妻少妇偷人精品九色| 久久精品国产亚洲av涩爱| 亚洲欧洲日产国产| 别揉我奶头 嗯啊视频| 欧美一区二区精品小视频在线| 日日干狠狠操夜夜爽| 男女那种视频在线观看| 亚洲真实伦在线观看| 国产在视频线精品| 亚洲成av人片在线播放无| 最新中文字幕久久久久| 日本欧美国产在线视频| 欧美日本视频| 久久精品久久久久久噜噜老黄 | 国产av码专区亚洲av| 我要看日韩黄色一级片| av黄色大香蕉| 日产精品乱码卡一卡2卡三| 欧美xxxx黑人xx丫x性爽| 精品久久久久久久人妻蜜臀av| av国产免费在线观看| 免费观看的影片在线观看| 大香蕉久久网| 亚洲国产欧美人成| 亚洲国产成人一精品久久久| 三级国产精品欧美在线观看| 日韩成人av中文字幕在线观看| 国产色爽女视频免费观看| 亚洲真实伦在线观看| 国产亚洲av嫩草精品影院| 中文资源天堂在线| 亚洲av.av天堂| 女人被狂操c到高潮| 久久精品91蜜桃| 日韩强制内射视频| 又黄又爽又刺激的免费视频.| av国产免费在线观看| 欧美色视频一区免费| 大香蕉久久网| 床上黄色一级片| 成人亚洲精品av一区二区| 欧美一区二区精品小视频在线| 一个人观看的视频www高清免费观看| 久久久久久久亚洲中文字幕| 久久亚洲精品不卡| 久久久久久久午夜电影| 国产精品永久免费网站| 日产精品乱码卡一卡2卡三| 日本欧美国产在线视频| 人妻制服诱惑在线中文字幕| 色吧在线观看| 亚洲国产精品合色在线| 亚洲国产欧美在线一区| 欧美成人精品欧美一级黄| 午夜福利高清视频| 插阴视频在线观看视频| 亚洲国产日韩欧美精品在线观看| av免费在线看不卡| 麻豆乱淫一区二区| 身体一侧抽搐| 欧美成人一区二区免费高清观看| 亚洲无线观看免费| 久久人人爽人人爽人人片va| 精品久久久久久成人av| 亚洲乱码一区二区免费版| 99在线视频只有这里精品首页| 国产毛片a区久久久久| 一级毛片电影观看 | 伦精品一区二区三区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产毛片a区久久久久| 亚洲最大成人av| 亚洲av成人精品一区久久| 国产不卡一卡二| 人妻系列 视频| 日韩av不卡免费在线播放| 日本一二三区视频观看| 看免费成人av毛片| 亚洲av电影在线观看一区二区三区 | 日本-黄色视频高清免费观看| 丝袜美腿在线中文| 波多野结衣巨乳人妻| 黑人高潮一二区| 亚洲人成网站在线播| 亚洲精品,欧美精品| 成人性生交大片免费视频hd| 人体艺术视频欧美日本| 99国产精品一区二区蜜桃av| 亚洲无线观看免费| 变态另类丝袜制服| 久久人妻av系列| 国产 一区精品| 麻豆av噜噜一区二区三区| 麻豆久久精品国产亚洲av| 长腿黑丝高跟| 麻豆精品久久久久久蜜桃| 国产女主播在线喷水免费视频网站 | 日本免费在线观看一区| 久久久久久久午夜电影| 亚洲在线观看片| 日韩精品青青久久久久久| 国产黄色小视频在线观看| 午夜免费男女啪啪视频观看| 国产男人的电影天堂91| 蜜桃久久精品国产亚洲av| 97人妻精品一区二区三区麻豆| 久久精品夜色国产| 寂寞人妻少妇视频99o| 能在线免费看毛片的网站| 一个人看的www免费观看视频| 一级毛片久久久久久久久女| 人人妻人人看人人澡| 少妇的逼好多水| 久久久久久久亚洲中文字幕| www.色视频.com| 超碰97精品在线观看| 亚洲精品乱码久久久久久按摩| 一本一本综合久久| 欧美日韩综合久久久久久| 91精品伊人久久大香线蕉| 久久久久国产网址| 校园人妻丝袜中文字幕| 看黄色毛片网站| 一级毛片电影观看 | 国产免费一级a男人的天堂| 午夜福利视频1000在线观看| 成人亚洲欧美一区二区av| 国产成人a∨麻豆精品| 日本熟妇午夜| 日本爱情动作片www.在线观看| 中国美白少妇内射xxxbb| 久久久久久大精品| 国产精品电影一区二区三区| 中文精品一卡2卡3卡4更新| 国产成人精品一,二区| 我的女老师完整版在线观看| 欧美极品一区二区三区四区| 少妇人妻一区二区三区视频| 成人鲁丝片一二三区免费| 亚洲精品久久久久久婷婷小说 | 国产色婷婷99| 日韩三级伦理在线观看| 亚洲天堂国产精品一区在线| 国产成人91sexporn| 99久久人妻综合| 亚洲av成人精品一二三区| 成人亚洲精品av一区二区| 3wmmmm亚洲av在线观看| 久久精品国产99精品国产亚洲性色| 久久欧美精品欧美久久欧美| 狂野欧美白嫩少妇大欣赏| ponron亚洲| 在线免费十八禁| ponron亚洲| 乱系列少妇在线播放| 永久免费av网站大全| 好男人在线观看高清免费视频| 国产精品一区二区性色av| 中文乱码字字幕精品一区二区三区 | 国产在线一区二区三区精 | 国产免费视频播放在线视频 | 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av电影在线观看一区二区三区 | 午夜日本视频在线| 亚洲国产精品成人久久小说| 国产爱豆传媒在线观看| 欧美xxxx性猛交bbbb| 国产爱豆传媒在线观看| 亚洲国产色片| 中文天堂在线官网| 久久精品夜色国产| 欧美又色又爽又黄视频| 午夜激情福利司机影院| 午夜福利在线在线| 国产精品一二三区在线看| 久久国产乱子免费精品| 亚洲av电影不卡..在线观看| 亚洲av成人精品一二三区| 别揉我奶头 嗯啊视频| 亚洲国产精品专区欧美| 国产 一区 欧美 日韩| 精品午夜福利在线看| 精品国内亚洲2022精品成人| 精品久久国产蜜桃| 国产精品人妻久久久久久| 国产精品精品国产色婷婷| 欧美人与善性xxx| 欧美激情在线99| 久久久久久久久久久免费av| 久久午夜福利片| 亚洲电影在线观看av| 国内精品宾馆在线| 午夜福利高清视频| a级毛色黄片| 亚洲国产精品sss在线观看| 18禁动态无遮挡网站| 婷婷六月久久综合丁香| 日本一本二区三区精品| 久久人人爽人人爽人人片va| 亚洲av中文字字幕乱码综合| 免费大片18禁| 免费看光身美女| 好男人视频免费观看在线| 在线天堂最新版资源| 久久久久网色| 亚洲精品乱码久久久久久按摩| 日本黄色片子视频| 日本色播在线视频| 亚洲久久久久久中文字幕| 美女黄网站色视频| 国产精品电影一区二区三区| 国产精品精品国产色婷婷| 国产毛片a区久久久久|