• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      基于反步法的不確定分?jǐn)?shù)階Shimizu-Morioka混沌系統(tǒng)的自適應(yīng)無源同步

      2022-04-20 11:45:58周衛(wèi)光鄭永愛
      關(guān)鍵詞:適應(yīng)控制無源向量

      趙 飛, 周衛(wèi)光, 鄭永愛

      (揚(yáng)州大學(xué)信息工程學(xué)院, 江蘇 揚(yáng)州 225127)

      混沌是復(fù)雜非線性動(dòng)力系統(tǒng)的一種不規(guī)則或不確定現(xiàn)象, Shimizu-Morioka系統(tǒng)因包含了混沌動(dòng)力學(xué)的許多特征而成為混沌領(lǐng)域研究的典型范例之一[1-2].近年來, Shimizu-Morioka系統(tǒng)的控制和同步實(shí)現(xiàn)方法主要有延遲反饋控制[3]、滑??刂芠4]、主動(dòng)控制[5]及自適應(yīng)控制[6]等.但這些方法設(shè)計(jì)的控制器或過于復(fù)雜,或只適用于具有參數(shù)嚴(yán)格反饋形式的一類混沌系統(tǒng), 在實(shí)際應(yīng)用中備受限制.反步控制[7]作為自適應(yīng)理論的重要分支之一, 其基本原理是將Lyapunov函數(shù)的選取與反饋控制器的設(shè)計(jì)相結(jié)合.該方法是為每個(gè)子系統(tǒng)構(gòu)造Lyapunov函數(shù)并設(shè)計(jì)相應(yīng)的虛擬控制律, 最終設(shè)計(jì)出系統(tǒng)的實(shí)際控制律, 從而保證整個(gè)閉環(huán)系統(tǒng)的穩(wěn)定性.Ha等[8]提出一種自適應(yīng)反步模糊控制方法,實(shí)現(xiàn)了輸入飽和與外界干擾下的分?jǐn)?shù)階混沌系統(tǒng)的同步; Shukla等[9]基于自適應(yīng)反步法實(shí)現(xiàn)了一類不確定分?jǐn)?shù)階混沌系統(tǒng)的控制與同步.無源控制[10]則利用無源理論對(duì)同步誤差系統(tǒng)設(shè)計(jì)漸近穩(wěn)定控制器,從而實(shí)現(xiàn)混沌系統(tǒng)的同步.無源控制具有明確的物理意義, 其控制結(jié)構(gòu)簡單且易于實(shí)現(xiàn).Kuntanapreeda[11]、Sangpet[12]等提出一種具有時(shí)變?cè)鲆娴臒o源反饋控制方案,將同步誤差動(dòng)態(tài)轉(zhuǎn)化為等效的無源系統(tǒng), 實(shí)現(xiàn)了具有未知參數(shù)的混沌系統(tǒng)的自適應(yīng)無源同步.本文擬結(jié)合反步控制、自適應(yīng)控制和無源控制技術(shù),針對(duì)參數(shù)不確定性的兩分?jǐn)?shù)階Shimizu-Morioka混沌系統(tǒng),提出一種自適應(yīng)無源反步控制方法.

      1 預(yù)備知識(shí)

      定義Caputo分?jǐn)?shù)階微分

      (1)

      考慮分?jǐn)?shù)階系統(tǒng)

      (2)

      其中0<α<1,x∈Rn為狀態(tài)變量,u∈Rm為輸入向量,y∈Rm為輸出向量,f(x)和g(x)為光滑向量場,h(x)為光滑映射, 且f(0)=h(0)=0.

      假設(shè)系統(tǒng)(2)表示為如下形式:

      (3)

      其中(zT,yT)T∈Rn為系統(tǒng)的新坐標(biāo),z∈Rn-m;f(z)∈Rn-m;p(z,y)∈R(n-m)×m;b(z,y)∈Rm.對(duì)任意(z,y),a(z,y)是非奇異的.

      定義1[13]如果存在一個(gè)正定Lyapunov函數(shù)V(z,y), 稱之為存儲(chǔ)函數(shù)或能量函數(shù),滿足對(duì)任意的t≥0且0<α<1有

      (4)

      則系統(tǒng)(3)是無源的.

      定義2[13]如果存在一個(gè)正定Lyapunov函數(shù)V(z,y)和一個(gè)K類函數(shù)γ, 滿足對(duì)任意的t≥0且0<α<1有

      (5)

      則系統(tǒng)(3)是嚴(yán)格無源的.

      引理1[14]設(shè)

      (6)

      其中y1(t)∈Rn和y2(t)∈Rn具有連續(xù)的一階導(dǎo)數(shù),Q1∈Rn×n和Q2∈Rn×n為2個(gè)正定矩陣.若存在正定矩陣Q3∈Rn×n和常數(shù)h0>0, 使得對(duì)任意的0<α<1有

      (7)

      則‖y1(t)‖和‖y2(t)‖有界且y1(t)漸近趨于0, 即limt→+∞‖y1(t)‖=0.

      引理2[15]設(shè)x(t)∈Rn是一個(gè)可微函數(shù)向量, 那么對(duì)于任意t≥0且0<α<1, 不等式

      (8)

      恒成立, 其中P∈Rn×n為一個(gè)n×n維常值正定矩陣.

      2 主要結(jié)果

      考慮如下不確定分?jǐn)?shù)階Shimizu-Morioka混沌系統(tǒng):

      (9)

      其中x,y,z為狀態(tài)變量, 分?jǐn)?shù)階0<α<1,a,b為不確定參數(shù)且a∈R,b∈R+.設(shè)z1=z,x1=x,x2=y, 則系統(tǒng)(9)可表示為

      (10)

      假設(shè)系統(tǒng)(10)為驅(qū)動(dòng)系統(tǒng), 則可控響應(yīng)系統(tǒng)為

      (11)

      其中u∈R為控制輸入.

      定義3設(shè)X=(z1,x1,x2)T∈R3,Y=(z2,y1,y2)T∈R3分別是驅(qū)動(dòng)系統(tǒng)(10)和響應(yīng)系統(tǒng)(11)的狀態(tài)向量, 若limt→+∞‖X(t)-Y(t)‖=0, 則稱系統(tǒng)(10)與系統(tǒng)(11)漸近同步.

      定義同步誤差z0=z2-z1,e1=y1-x1,e2=y2-x2, 系統(tǒng)(10)(11)的同步誤差系統(tǒng)為

      (12)

      顯然,系統(tǒng)(10)與系統(tǒng)(11)的同步問題即轉(zhuǎn)化為當(dāng)t→+∞時(shí)同步誤差系統(tǒng)(12)的零解穩(wěn)定性問題.

      定理1若設(shè)計(jì)虛擬控制律:

      α1=-2x1z0-z0w1-w1,

      (13)

      以及自適應(yīng)控制律:

      (14)

      (15)

      證明 1)設(shè)e2為實(shí)際控制器,α1為虛擬控制器, 則子系統(tǒng)

      (16)

      2)系統(tǒng)(12)可轉(zhuǎn)化為

      (17)

      3 數(shù)值模擬

      當(dāng)α=0.98,a=0.75,b=0.45,初始條件z1(0)=0,x1(0)=0.25,x2(0)=1時(shí), 分?jǐn)?shù)階Shimizu-Morioka系統(tǒng)(10)呈現(xiàn)混沌現(xiàn)象.該系統(tǒng)的混沌吸引子如圖1所示.

      圖1 分?jǐn)?shù)階Shimizu-Morioka混沌系統(tǒng)的吸引子

      圖2 系統(tǒng)同步誤差曲線

      圖3 系統(tǒng)參數(shù)a和b的估計(jì)曲線

      4 結(jié)論

      本文基于反步控制理論提出了一種不確定分?jǐn)?shù)階Shimizu-Morioka混沌系統(tǒng)的自適應(yīng)無源同步控制方法.利用反步控制的遞推過程, 獨(dú)立設(shè)計(jì)了子系統(tǒng)的能量函數(shù)和自適應(yīng)虛擬控制律, 然后設(shè)計(jì)出整個(gè)系統(tǒng)實(shí)際的自適應(yīng)控制律, 有效實(shí)現(xiàn)了對(duì)分?jǐn)?shù)階Shimizu-Morioka混沌系統(tǒng)同步的自適應(yīng)無源反步控制.

      猜你喜歡
      適應(yīng)控制無源向量
      向量的分解
      聚焦“向量與三角”創(chuàng)新題
      一種三相無源逆變電源供電方案設(shè)計(jì)
      電子制作(2019年12期)2019-07-16 08:45:14
      采用自適應(yīng)控制的STATCOM-SEIG系統(tǒng)Matlab仿真
      基于PCH模型的航天器姿態(tài)無源控制
      向量垂直在解析幾何中的應(yīng)用
      無源互調(diào)干擾對(duì)TD-LTE系統(tǒng)的影響研究
      考慮執(zhí)行器飽和的改進(jìn)無模型自適應(yīng)控制
      基于 L1自適應(yīng)控制的無人機(jī)橫側(cè)向控制
      向量五種“變身” 玩轉(zhuǎn)圓錐曲線
      海丰县| 江都市| 德江县| 启东市| 扶绥县| 万载县| 龙海市| 星子县| 改则县| 南岸区| 衡阳县| 遂平县| 汉寿县| 襄垣县| 临汾市| 大渡口区| 邵阳县| 建宁县| 彭州市| 大足县| 布拖县| 安新县| 宣汉县| 永年县| 措美县| 涞源县| 澳门| 岳阳市| 获嘉县| 崇信县| 葫芦岛市| 阿城市| 楚雄市| 高邑县| 刚察县| 玛曲县| 江安县| 怀集县| 三都| 武鸣县| 高雄市|