• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    N4O2?Donor Macrocyclic Schiff Base Ni(Ⅱ) Complex:Synthesis,Crystal Structure,DFT Study and Urease Inhibition Study

    2022-04-18 01:50:52WANGHuLOUQingLiHAOChunZhiZHUWenXiangYANGYanZHANGWeiMOUDanZHANGXiaYINChaoChuang
    無機化學(xué)學(xué)報 2022年4期

    WANG HuLOU Qing?LiHAO Chun?ZhiZHU Wen?Xiang YANG YanZHANG WeiMOU DanZHANG XiaYIN Chao?Chuang

    (1School of Chemistry and Materials Engineering,Liupanshui Normal University,Liupanshui,Guizhou 553004,China)

    (2Key Laboratory of Marine Chemistry Theory and Technology,Ministry of Education,College of Chemistry and Chemical Engineering,Ocean University of China,Qingdao,Shandong 266000,China)

    Abstract:A Ni(Ⅱ) complex,[Ni(C40H44N4O8)]Cl2·4CH3OH,with a 28?membered macrocyclic Schiff base ligand of an N4O2donor set has been prepared by the[2+2]reaction of 1,2?bis(2?methoxy?6?formylphenoxy)ethane with ethylene?diamine in a 1∶1 stoichiometric ratio in the presence of Ni(Ⅱ) ion employing the template strategy.The complex was characterized by elemental analysis,infrared spectroscopy,powder X?ray diffraction,single?crystal X?ray diffrac?tion,and density functional theory quantification calculations.The structural analysis demonstrates that Ni(Ⅱ)ion is six?coordinate by four N atoms from C=N groups,two O atoms from ether groups,forming a distorted octahedral geometry.Urease inhibitory activity and molecular docking simulation studies show that the Ni(Ⅱ)complex proved to be a good candidate for the inhibition of jack bean urease.CCDC:1052326.

    Keywords:N4O2?donor macrocycle;Ni(Ⅱ) complex;crystal structure;DFT calculation study;urease inhibitor

    0 Introduction

    In the 1960s,synthetic methods for the prepara?tion of a range of polyaza,polythia,and polyazathia macrocycles were developed largely employing tem?plate strategies that lead to a burgeoning of interest in the field resulting in Schiff bases becoming one of the cornerstones of the field of macrocyclic chemistry[1?3].Over the years,NxOymacrocycles especially incorporat?ing pyridyl fragments have lent themselves to a range of biological applications which include host?guest compounds[4],biomimetics[5],antibiotics[6],as well as metal chelation and extraction[7].In addition to these more commonly reviewed properties,they have also been extensively studied for their magnetic properties to develop new families of probes for medical diagnos?tics and potential information storage applications in the form of spin?crossover compounds,single?molecule magnets(SMMs),and single?chain magnets(SCMs)[8?10].Thus,considerable attention is given to the preparation and characterization of functionalized NxOymacrocy?clic Schiff base complexes[11?13].A large number of mac?rocyclic multidentate ligand complexes have been investigated extensively,to understand their synthetic,thermodynamic,and structural properties[14?19].

    So far,most of NxOymacrocyclic Schiff base com?plexes mainly refer to the compounds synthesized by reacting 2,6 ?diacetylpyridine with a variety ofα,ω?diamines in the presence of transition metals or lantha?nide ions employing a metaltemplate strategy(Fig.1)[20?21].To the best of our knowledge,there is no report on the investigation on the synthesis of 28?membered N4O2?donor type macrocyclic Schiff base Ni(Ⅱ)complex,its crystal structure analysis,and urease inhibition study using the complex.Given these obser?vations,in this work,a new Ni(Ⅱ)complex with a novel N4O2?donor macrocyclic Schiff base ligand,namely,[Ni(C40H44N4O8)]Cl2·4CH3OH,has been synthesized,characterized,and evaluated in the urease inhibitory activity.Additionally,based on the crystal data,densi?ty functional theory(DFT)study of the complex was performed using the Gaussian 09 program suite.The NBO atomic charges distribution,molecular total ener?gy,frontier molecular orbital energies,and molecular electrostatic potential of[Ni(C40H44N4O8)]2+were dis?cussed.Moreover,due to the interest in understanding its role in urease inhibition,docking simulation was carried out using the AutoDock Vina program to posi?tion the complex into the active site of urease to deter?mine the probable binding mode.The docking result showed a good correlation with experimental data.

    Fig.1 Metal templated synthesis of[1+1]and[2+2]Schiff base macrocyclic complexes

    1 Experimental

    1.1 Materials and methods

    1,2?Bis(2?methoxy?6?formylphenoxy)ethane was prepared according to the method given by Tuncer[22].All other chemical reagents used in this work were of analytical grade and were used without further purifica?tion.Ethylenediamine was purchased from Aladdin.Urease(from jack beans,typeⅢ,activity:31660 units per mg of solid),N?(2?hydroxyethyl)piperazine?N′?(2?ethanesulfonic acid)(HEPES)buffer,and urea(molecu?lar biology reagent)were purchased from Sigma?Aldrich Co.(St.Louis,MO,USA).The infrared spectrum was recorded as KBr pellets on a Nicolet 170SX spectro?photometer in the 4 000 ?400 cm?1region.Elemental analysis(C,H,and N)was performed in a model 2400 PerkinElmer analyzer.Powder X?ray diffraction(PXRD)patterns were obtained on a Shimadzu XRD?6000 X?ray diffractometer with CuKα(λ=0.154 18 nm)radiation at room temperature.The working volt?age was 40 kV,the working current was 40 mA,and the scanning range was 5°?40°.Enzyme inhibitory activity was measured with a BioTek Synergy HT microplate reader.

    1.2 Synthesis of the Ni(Ⅱ)complex

    The general synthetic route of the complex is shown in Scheme 1.

    Scheme 1 General synthetic route of the Ni(Ⅱ)complex

    1,2?Bis(2?methoxy?6?formylphenoxy)ethane(0.330 g,1 mmol)was dissolved in 20 mL of methanol with magnetic stirring and then NiCl2·6H2O(0.119 g,0.5 mmol)was added to the solution.After that,20 mL of methanol solution of ethylenediamine(0.060 g,1 mmol)was dropwise added to the above solution.Then the mixture was stirred and refluxed at 65℃for 4 h.The resulting solution was cooled at room temperature and then filtered.Red columnar?shaped crystals were formed after about three days by slow diffusion of ether into a concentrated methanol solution of the complex at room temperature.Yield:63% based on 1,2?bis(2?methoxy?6?formylphenoxy)ethane.Elemental Anal.Calcd.for[Ni(C40H44N4O8)]Cl2·4CH3OH(%):C 54.68;H 6.26;N 5.80;Found(%):C 54.71;H 6.23:N 5.82%.IR(KBr,cm?1):1 665s,1 256m,483m,426m.

    1.3 Crystallographic data collection and structure determination

    For the complex,the single crystal with dimension of 0.48 mm×0.45 mm×0.44 mm was mounted on an Enraf?Nonius CAD?4 X?ray single?crystal diffractome?ter.All data were collected at 293(2)K with graphite monochromated MoKαradiation(λ=0.071 073 nm)inω?2θscan mode.The structure was solved by direct methods using SHELXS?97.Non?hydrogen atoms were defined by the Fourier synthesis method.Positional and thermal parameters were refined by full?matrix least?squares(onF2)to convergence.

    CCDC:1052326.

    1.4 Computational procedure

    Becke′s three ?parameter hybrid(B3LYP)level was selected for DFT calculations by the basis set of 6?311G**for the C,H,N,and O atoms,while valence double?ξLANL2DZ basis set was used for Ni atom.Atom coordinates used in the calculations were from crystallographic data,and a molecule in the unit cells was selected as the initial model.All calculations were conducted using Gaussian 09 program.

    1.5 Measurement of jack bean urease inhibitory activity

    The measurement of urease activity was carried out according to the method reported by Tanaka[23].Generally,the assay mixture,containing 25 μL of jack bean urease(4×104U·L?1)(dissolved in distilled water)and 25 μL of the tested complexes dissolved in DMSO/H2O(1∶1,V/V)with different concentrations,was prein?cubated for 1 h at 37 ℃ in a 96?well assay plate.After preincubation,200 μL of 100 mmol HEPES buffer(pH=6.8)containing 500 mmol urea and 0.002% phenol red were added and incubated at 37℃[24].The reaction was measured by a microplate reader(570 nm),which was required to produce enough ammonium carbonate to raise the pH of a HEPES buffer from 6.8 to 7.7,the endpoint being determined by the color of the phenol red indicator[25].

    1.6 Docking simulation

    Molecular docking of the inhibitor with the 3D structure of jack bean urease was carried out using the Auto Dock Vina program[26].The ligand structure in docking protocol was used as a crystal structure.The crystal structure of jack bean urease was obtained from Protein Data Bank(http://www.pdb.org/pdb/home/home.do)with the PDB ID of 3LA4S at a resolution of 0.290 nm.The graphical user interface Auto Dock Tools(ADT 1.5.4)was performed to set up every inhibitor enzyme interaction where all hydrogen atoms were added,Gasteiger charges were calculated and nonpolar hydrogen atoms were merged to carbon atoms.A grid box with a size of 6 nm was centered on the active site of the protein.The exhaustiveness parameter was set to 10(default 8).The flexible ligand mode was used for docking.The docking procedure of the Ni(Ⅱ)complex with the active site of jack bean urease was performed as described.

    2 Results and discussion

    2.1 Structural description of[Ni(C40H44N4O8)]Cl2·4CH3OH

    The crystallographic structural analysis reveals that the Ni(Ⅱ)complex crystallizes in the monoclinic crystal system,space groupC2/c(Table 1).Each metal ion is coordinated with six atoms of the macrocyclic Schiff?base ligand,namely,four N atoms from C=N groups,two O atoms from ether groups,forming a type of N4O2?donor 28?membered macrocyclic Schiff base Ni(Ⅱ)complex.

    Table 1 Crystallographic data and X?ray experiment details for the Ni(Ⅱ)complex

    The crystal structure of the Ni(Ⅱ)complex and the coordination geometry of the Ni(Ⅱ)ion of the complex are shown in Fig.2.The selected bond lengths and angles are listed in Table 2.The bond angles of N2#1—Ni1—N2(92.0(2)°)and O1#1—Ni1—O1(78.66°)are both less than 180°,and the bond angles of N1—Ni1—O1(85.56°),N1—Ni1—O1#1(90.98°),N1—Ni1—N2(82.82°),and N1—Ni1—N2#1(100.33°)indicate that Ni(Ⅱ)ion adopts a distorted octahedral geometry(Fig.2,Table 2).Atoms O1,O1#1,N2,and N2#1 occupy each vertex of the basal site,while N1 and N1#1 locate in the apical positions of the octahedral structure.The bond lengths of C1—N1,C1#1—N1#1,C9—N2,and C9#1—N2#1 are 0.126 3(6),0.126 3(6),0.126 4(6),and 0.126 4(6)nm,respectively,which are close to the usual length of C=N[27?28],obviously indicating that there are four C=N bonds in the complex:one isbetween C1 and N1,one is between C1#1 and N1#1,one is between C9 and N2,the last one is between C9#1 and N2#1.Furthermore,each ligand serves as a bridging ligand to connect two Ni(Ⅱ) centers into supra?molecular structure and the 2D supramolecular layer structure of the complex is constructed by C—O…Cl interactions and C—O…O interactions(Fig.3).

    Fig.2 (a)Crystal structure of[Ni(C40H44N4O8)]Cl2·4CH3OH;(b)Coordination geometry of the Ni(Ⅱ)ion of the complex

    Table 2 Selected bond lengths(nm)and angles(°)for the Ni(Ⅱ)complex

    Fig.3 2D layer structure of the Ni(Ⅱ)complex constructed by C—H…Cl interactions(green)and C—H…O interactions(yellow)

    2.2 PXRD analysis

    The comparison of measured values with the simu?lated PXRD patterns is shown in Fig.4.It can be observed that the main characteristic peaks in the two diffraction patterns are identical,which indicates the good phase purity of the complex.The different intensi?ty may be derived from the variation in the preferred orientation of the powder samples during the collection of data[29].

    Fig.4 PXRD patterns of the Ni(Ⅱ)complex

    2.3 NBO atomic charges and electron configuration

    The selected NBO atomic charges and electron configuration for[Ni(C40H44N4O8)]2+are shown in Table 3.It is indicated that the electronic configuration of Ni(Ⅱ)ion,N,and O atoms are 4s0.253d8.64,2s1.34?1.392p4.11?4.12,and 2s1.60?1.622p4.95?4.98, respectively.Based on the above results,one can conclude that the Ni(Ⅱ) ion coordina?tion with N and O atoms is mainly on 3dand 4sorbit?als.Four N atoms form coordination bonds with Ni(Ⅱ)ion using 2sand 2porbitals.Two O atoms supply elec?trons of 2sand 2pto Ni(Ⅱ) ion and form the coordina?tion bonds.From NBO atomic charges data,we can know that the charge of Ni decreases from 2 to 1.085,which indicates that part of the electrons have trans?ferred from the coordinated O atoms and N atoms to the metal ion,and the stable coordination bonds have formed.The negative charges mostly concentrate onthe coordinated O atoms and N atoms,so they are prone to coordinate with Ni(Ⅱ) cation.The results indi?cate that the calculation is in accordance with the de?termination.

    Table 3 Selected NBO atomic charges and electron configuration for[Ni(C40H44N4O8)]2+

    Table 4 Inhibition of jack bean urease by the Ni(Ⅱ)complex

    2.4 Frontier molecular orbital(FMO)

    FMO and its properties such as energy are useful for predicting the most reactive position inπ?electron and conjugated systems[30].The energies of HOMO and LUMO and their energy gap reflect the biological activ?ity of a molecule[31?32].

    For the title compound,the energies of HOMO and LUMO are ?10.226 and ?7.512 eV,respectively.The energies of HOMO and LUMO are negative,which indicates that the studied compound is stable[33].The global chemical descriptors associated with a molecule are:ionization potentialI=?EHOMO=10.226 eV;electron affinityA=?ELUMO=7.512 eV;electronegativityχ=(I+A)/2=8.869 eV;global hardnessη=(I?A)/2=1.357 eV;chemical potentialμ=?(I+A)/2=?8.869 eV;electrophi?licity indexω=μ2/(2η)=28.983 eV[34].The HOMO ?LUMO plots are given in Fig.5 and from this plot,it is clear that HOMO is mainly localized over the phenyl rings away from the coordination center while the LUMO is mainly localized over the NiN4O2coordina?tion unit.This shows that there may be a charge trans?fer process in the molecular system[35].

    Fig.5 HOMO?LUMO plots of[Ni(C40H44N4O8)]2+

    2.5 Molecular electrostatic potential(MEP)

    MEP is related to electronic density and is a very useful descriptor in understanding sites for electrophil?ic attack and nucleophilic reactions.The electrostatic potentialV(r)is also well suited for analyzing processes based on the“recognition”of one molecule by another,as in drug?receptor,and enzyme?substrate interac?tions[36].To predict reactive sites for the electrophilic and nucleophilic process for the studied molecule,the MEP surface was obtained based on the optimized geometry.The negative regions(red)of MEP are relat?ed to electrophilic reactivity and the positive(blue)ones to nucleophilic reactivity.

    In our present study,the MEP of[Ni(C40H44N4O8)]2+is depicted in Fig.6.The figure shows that there are large positive regions on the whole molecule(blue locality in Fig.6),indicating that there are possible sites for nucleophilic attack.

    Fig.6 Molecular electrostatic potential map of[Ni(C40H44N4O8)]2+

    2.6 Inhibitory activity against jack bean urease

    The 1,2?bis(2?methoxy?6?formylphenoxy)ethane and the corresponding Ni(Ⅱ)complex were screened for inhibitory activity against jack bean urease.We found that 1,2?bis(2?methoxy?6?formylphenoxy)ethane exhib?ited no inhibitory ability again the jack bean urease(IC50>100 μmol·L?1).Compared with the standard inhibitor acetohydroxamic acid(AHA,IC50=(26.99±1.43)μmol·L?1),the free Ni(Ⅱ) ion showed a good ure?ase inhibitory activity with the IC50value of(20.47±1.58) μmol·L?1.The corresponding IC50value of theNi(Ⅱ)complex as the potential urease inhibitor was(15.36±2.26) μmol·L?1,which was lower than that of the free Ni(Ⅱ) ion.The result indicates that the Ni(Ⅱ)ion coordinated to the Schiff base ligand plays an important role in physiological activity[37?38].

    2.7 Molecular docking study

    The binding model of Ni(Ⅱ)complex with jack bean urease(3LA4)was simulated using the AutoDock Vina program to validate the structure?activity relation?ship.The result revealed that the target molecule fitted in the active pocket of jack bean urease and gave a binding affinity(ΔG)value of ?38 kJ·mol?1(Table 5).The binding model of the title complex with urease(3LA4)is shown in Fig.7a,with all the amino acid resi?dues that interact with urease indicated.In the binding model,LYS716 amino acid formed two kinds of cation?πinteraction with phenyl rings,with the distances of the interactions being 0.356 4,0.623 2 nm respectively.LYS745 amino acid forms one kind of cation?πinterac?tion with phenyl ring,with the distance of the interac?tion being 0.681 9 nm.

    Fig.7 (a)Modeled structure of the urease?inhibitor complex,where cation?π interactions are presented as yellow lines;(b)Binding mode of the Ni(Ⅱ)complex with jack bean urease where the enzyme is shown as the surface and the complex is shown as sticks

    Table 5 Binding affinity values of different poses of the Ni(Ⅱ)complex predicted by AutodockVina

    In general,in the inhibitor?urease complex confor?mation,the Ni(Ⅱ)complex shows a stabilized structure through three types of cation?πinteraction between phenyl rings in the complex and the amino acid resi?dues.Interestingly,the results of the calculation of the FMO,especially the distribution of HOMO,strongly verify the reasonableness of molecular docking results.This result will intensify our interest in supporting the docking results using the quantum chemistry calcula?tion method.

    3 Conclusions

    In summary,a new Ni(Ⅱ) complex with a 28?mem?bered N4O2donor macrocyclic Schiff base ligand was synthesized and characterized.Moreover,the inhibitory activity of the Ni(Ⅱ)complex has been testedinvitroagainst jack bean urease and the complex possessed good inhibitory activity.The docking simulation shows that there are three types of cation?πstacking interac?tions between the complex and the amino acid resi?dues.Interestingly,the reasonableness of the docking result was verified by the theoretical study using the DFT method employing a 6?311G**basis set.Detailed investigations are continuing to study the mechanism of urease inhibitory activity reported here.

    Conflicts of interest:The authors declare no competing financial interest.

    Acknowledgments:This work was supported by the Natu?ral Science Foundation of Guizhou Province(Grant No.Qiankehe Foundation?ZK[2021]General 063),the Youth Talent Growth Project of Educational Department of Guizhou Province(Grants Qianjiaohe KY[2022]No.043,Qianjiaohe KY[2022]No.044),the Scientific and Technological Innovation Platform of Liupans?hui(Grant No.52020?2021?GK?04),the Fund of Liupanshui Nor?mal University (Grants No.LPSSYKYJJ202002,LPSSYKYJJ202102),and the College Student Innovation Train?ing Program(Grant No.202110977033).

    首页视频小说图片口味搜索| 制服人妻中文乱码| 免费日韩欧美在线观看| 99久久人妻综合| 亚洲男人天堂网一区| 99在线人妻在线中文字幕| 夜夜爽天天搞| 国产高清videossex| 亚洲欧美日韩高清在线视频| 欧美成人午夜精品| 日本欧美视频一区| 精品久久久久久久毛片微露脸| 青草久久国产| 欧美中文综合在线视频| 又黄又粗又硬又大视频| 久久久久久人人人人人| 国产av一区二区精品久久| 国产精品自产拍在线观看55亚洲| 久久久精品国产亚洲av高清涩受| 淫妇啪啪啪对白视频| 女性被躁到高潮视频| 国产精品综合久久久久久久免费 | 久久久久久免费高清国产稀缺| 亚洲自拍偷在线| 在线天堂中文资源库| 人成视频在线观看免费观看| 亚洲欧美精品综合久久99| 在线av久久热| 国产成人欧美在线观看| 熟女少妇亚洲综合色aaa.| 精品无人区乱码1区二区| 无人区码免费观看不卡| 久久草成人影院| 国产区一区二久久| √禁漫天堂资源中文www| 高清av免费在线| 成人国语在线视频| 亚洲国产中文字幕在线视频| 免费久久久久久久精品成人欧美视频| 国产激情久久老熟女| 成年人黄色毛片网站| 久久香蕉国产精品| 色播在线永久视频| 色婷婷久久久亚洲欧美| 窝窝影院91人妻| 国产高清videossex| 中文欧美无线码| 亚洲av日韩精品久久久久久密| 午夜视频精品福利| 一级a爱视频在线免费观看| 亚洲精品成人av观看孕妇| 999久久久精品免费观看国产| 777久久人妻少妇嫩草av网站| 国产成人精品久久二区二区免费| 高潮久久久久久久久久久不卡| 国产精品久久电影中文字幕| 国产1区2区3区精品| 欧美乱码精品一区二区三区| 国产熟女xx| av有码第一页| 久久精品影院6| 91av网站免费观看| 在线观看免费日韩欧美大片| 国产精品 国内视频| 欧美精品一区二区免费开放| 国产成人av教育| a级片在线免费高清观看视频| 啦啦啦 在线观看视频| 亚洲狠狠婷婷综合久久图片| 国产精品久久视频播放| 69av精品久久久久久| 麻豆av在线久日| cao死你这个sao货| 国产精品九九99| 亚洲精品美女久久av网站| 日韩欧美一区二区三区在线观看| 亚洲视频免费观看视频| 一区福利在线观看| 日韩成人在线观看一区二区三区| 欧美av亚洲av综合av国产av| 日本五十路高清| 午夜免费成人在线视频| 嫩草影视91久久| 女同久久另类99精品国产91| 久久婷婷成人综合色麻豆| 午夜精品国产一区二区电影| 99国产极品粉嫩在线观看| 国产真人三级小视频在线观看| 日本五十路高清| 一a级毛片在线观看| 19禁男女啪啪无遮挡网站| 69av精品久久久久久| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品野战在线观看 | 天天添夜夜摸| 亚洲色图 男人天堂 中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 老熟妇乱子伦视频在线观看| 精品一区二区三卡| 人成视频在线观看免费观看| 欧美另类亚洲清纯唯美| 欧美日韩av久久| 一区二区日韩欧美中文字幕| 国产伦人伦偷精品视频| 黄色视频不卡| 一区在线观看完整版| 久久午夜综合久久蜜桃| 国产精品国产高清国产av| 午夜福利欧美成人| 免费女性裸体啪啪无遮挡网站| 三级毛片av免费| 人人妻人人添人人爽欧美一区卜| 黄网站色视频无遮挡免费观看| 久久久久国产精品人妻aⅴ院| 新久久久久国产一级毛片| 国产亚洲欧美在线一区二区| 免费在线观看亚洲国产| 91精品国产国语对白视频| 精品国产亚洲在线| 久久久精品欧美日韩精品| 麻豆国产av国片精品| 无人区码免费观看不卡| 美国免费a级毛片| 国产99白浆流出| 女人高潮潮喷娇喘18禁视频| 色综合站精品国产| 97超级碰碰碰精品色视频在线观看| 搡老熟女国产l中国老女人| 少妇粗大呻吟视频| 99在线人妻在线中文字幕| 后天国语完整版免费观看| 国产亚洲欧美精品永久| 热99国产精品久久久久久7| 久久狼人影院| 香蕉国产在线看| 国产日韩一区二区三区精品不卡| 热re99久久精品国产66热6| 91成人精品电影| 亚洲国产精品一区二区三区在线| 免费久久久久久久精品成人欧美视频| 国产亚洲av高清不卡| 免费少妇av软件| 一个人免费在线观看的高清视频| 欧洲精品卡2卡3卡4卡5卡区| 日本黄色视频三级网站网址| 国产成年人精品一区二区 | 不卡一级毛片| av在线天堂中文字幕 | 91九色精品人成在线观看| 老汉色∧v一级毛片| 另类亚洲欧美激情| 久久精品国产亚洲av高清一级| 欧美av亚洲av综合av国产av| 女性生殖器流出的白浆| 欧美中文日本在线观看视频| 中文字幕高清在线视频| 国产男靠女视频免费网站| 激情视频va一区二区三区| 久久久国产欧美日韩av| 叶爱在线成人免费视频播放| 国产熟女午夜一区二区三区| 搡老乐熟女国产| 少妇 在线观看| 天堂俺去俺来也www色官网| 黄片播放在线免费| 精品福利永久在线观看| 亚洲一区二区三区色噜噜 | 国产99白浆流出| 老司机深夜福利视频在线观看| 可以在线观看毛片的网站| 久久国产精品人妻蜜桃| 自拍欧美九色日韩亚洲蝌蚪91| 久久这里只有精品19| 欧美成人性av电影在线观看| 午夜亚洲福利在线播放| 极品教师在线免费播放| 露出奶头的视频| 在线免费观看的www视频| 亚洲成人国产一区在线观看| 国产精品久久久人人做人人爽| 亚洲 国产 在线| 国产激情欧美一区二区| 国产亚洲欧美98| 精品一区二区三卡| 欧美激情久久久久久爽电影 | 亚洲精品在线观看二区| 精品卡一卡二卡四卡免费| x7x7x7水蜜桃| 久久天躁狠狠躁夜夜2o2o| 啦啦啦 在线观看视频| 亚洲精品中文字幕在线视频| 一级黄色大片毛片| 久热这里只有精品99| 满18在线观看网站| 级片在线观看| 三上悠亚av全集在线观看| 亚洲,欧美精品.| 久久久久九九精品影院| 99精品在免费线老司机午夜| 欧美日本亚洲视频在线播放| 一个人观看的视频www高清免费观看 | 丝袜美足系列| 亚洲欧美日韩无卡精品| 中亚洲国语对白在线视频| √禁漫天堂资源中文www| 天堂俺去俺来也www色官网| 黄片小视频在线播放| a级毛片在线看网站| 午夜免费鲁丝| 国产亚洲精品第一综合不卡| 亚洲av日韩精品久久久久久密| 老司机午夜福利在线观看视频| 免费在线观看视频国产中文字幕亚洲| 男女下面进入的视频免费午夜 | 男人舔女人的私密视频| 女生性感内裤真人,穿戴方法视频| 日韩一卡2卡3卡4卡2021年| 亚洲精品久久午夜乱码| 91成人精品电影| 亚洲一区二区三区欧美精品| 黄色丝袜av网址大全| 亚洲 欧美 日韩 在线 免费| 国产一区二区激情短视频| 国产成人欧美在线观看| 99久久久亚洲精品蜜臀av| 国产亚洲精品久久久久5区| 欧美另类亚洲清纯唯美| 国产99白浆流出| 亚洲精品粉嫩美女一区| 国产精品永久免费网站| 麻豆久久精品国产亚洲av | 91九色精品人成在线观看| 美女午夜性视频免费| 国产有黄有色有爽视频| 精品久久久久久成人av| av免费在线观看网站| 美女高潮喷水抽搐中文字幕| 亚洲人成伊人成综合网2020| 精品一区二区三区视频在线观看免费 | 免费高清视频大片| 国产成人av教育| 老司机深夜福利视频在线观看| 久久狼人影院| 中文字幕人妻熟女乱码| 欧美乱码精品一区二区三区| 欧美在线黄色| 人成视频在线观看免费观看| 中文字幕高清在线视频| 天天影视国产精品| 一级作爱视频免费观看| 欧美 亚洲 国产 日韩一| 巨乳人妻的诱惑在线观看| 亚洲国产欧美一区二区综合| 欧美大码av| 黑人巨大精品欧美一区二区mp4| 亚洲熟妇熟女久久| 成人亚洲精品av一区二区 | 一区二区三区精品91| 欧美最黄视频在线播放免费 | 久久精品成人免费网站| 亚洲情色 制服丝袜| 纯流量卡能插随身wifi吗| 香蕉丝袜av| 9191精品国产免费久久| 亚洲片人在线观看| 很黄的视频免费| 精品国产国语对白av| avwww免费| 免费人成视频x8x8入口观看| 亚洲色图综合在线观看| 男人舔女人的私密视频| 天堂中文最新版在线下载| 亚洲欧美日韩高清在线视频| 亚洲国产毛片av蜜桃av| 国产精华一区二区三区| 超碰成人久久| 亚洲第一青青草原| 狂野欧美激情性xxxx| 亚洲av五月六月丁香网| 色综合站精品国产| 久久热在线av| 亚洲 国产 在线| 久久99一区二区三区| 9色porny在线观看| 丁香欧美五月| 99久久国产精品久久久| 国产视频一区二区在线看| 国产成年人精品一区二区 | 久久欧美精品欧美久久欧美| 高清毛片免费观看视频网站 | 成人国产一区最新在线观看| 免费看十八禁软件| 看免费av毛片| 天天躁狠狠躁夜夜躁狠狠躁| 精品欧美一区二区三区在线| 精品少妇一区二区三区视频日本电影| 精品久久久久久久毛片微露脸| 亚洲在线自拍视频| 日韩欧美国产一区二区入口| 在线观看日韩欧美| 久久婷婷成人综合色麻豆| 18美女黄网站色大片免费观看| 国产精品电影一区二区三区| 天堂√8在线中文| 伦理电影免费视频| 日韩成人在线观看一区二区三区| 日本一区二区免费在线视频| 动漫黄色视频在线观看| 亚洲av熟女| 精品久久久精品久久久| 深夜精品福利| 成人18禁在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 最近最新免费中文字幕在线| 激情在线观看视频在线高清| 亚洲狠狠婷婷综合久久图片| 窝窝影院91人妻| 国产高清激情床上av| 色婷婷av一区二区三区视频| 不卡一级毛片| av网站免费在线观看视频| 好看av亚洲va欧美ⅴa在| 日韩精品免费视频一区二区三区| 很黄的视频免费| 欧美成人午夜精品| 欧美激情极品国产一区二区三区| 婷婷丁香在线五月| 亚洲 欧美 日韩 在线 免费| 欧美在线一区亚洲| 亚洲情色 制服丝袜| 另类亚洲欧美激情| 99久久综合精品五月天人人| 色在线成人网| 中文字幕人妻熟女乱码| 久久精品91蜜桃| 天堂中文最新版在线下载| www.熟女人妻精品国产| 亚洲熟女毛片儿| 国产精品九九99| 亚洲一区高清亚洲精品| 日本免费一区二区三区高清不卡 | 国产精品久久久久久人妻精品电影| 亚洲国产欧美网| 午夜免费成人在线视频| 久久久久国内视频| 超碰成人久久| 美女高潮到喷水免费观看| 最新在线观看一区二区三区| 一区二区三区激情视频| 露出奶头的视频| 最近最新中文字幕大全电影3 | 桃色一区二区三区在线观看| 婷婷精品国产亚洲av在线| 国产成人影院久久av| 又黄又粗又硬又大视频| 亚洲成av片中文字幕在线观看| 青草久久国产| 看黄色毛片网站| 国产精品久久久久成人av| 国产精品美女特级片免费视频播放器 | 亚洲成人久久性| 亚洲七黄色美女视频| 欧美色视频一区免费| 丁香六月欧美| 嫩草影视91久久| 日本a在线网址| 久久伊人香网站| 欧美一区二区精品小视频在线| 国产精品免费一区二区三区在线| 久久久国产成人免费| 91精品国产国语对白视频| 欧美黑人精品巨大| 欧美日韩乱码在线| 国产精品 欧美亚洲| 在线观看免费视频日本深夜| 国产蜜桃级精品一区二区三区| 嫁个100分男人电影在线观看| 国产aⅴ精品一区二区三区波| 久久精品91蜜桃| 日本黄色日本黄色录像| 黄片大片在线免费观看| 亚洲情色 制服丝袜| 亚洲成人免费av在线播放| 日韩欧美免费精品| 人人澡人人妻人| 欧美日本亚洲视频在线播放| 这个男人来自地球电影免费观看| 精品久久蜜臀av无| 免费在线观看视频国产中文字幕亚洲| 欧美在线黄色| 国产三级黄色录像| 女人被狂操c到高潮| 亚洲国产精品合色在线| avwww免费| 久久亚洲真实| 丁香六月欧美| 999久久久精品免费观看国产| 久久久久久久午夜电影 | 在线十欧美十亚洲十日本专区| 男女做爰动态图高潮gif福利片 | 午夜福利免费观看在线| 午夜免费激情av| 精品国产乱子伦一区二区三区| 国产99白浆流出| 叶爱在线成人免费视频播放| 亚洲成a人片在线一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜老司机福利片| 看片在线看免费视频| 国产成人系列免费观看| 丝袜人妻中文字幕| 高清在线国产一区| 纯流量卡能插随身wifi吗| 中文字幕另类日韩欧美亚洲嫩草| 婷婷丁香在线五月| 老司机亚洲免费影院| 两个人免费观看高清视频| 国产av又大| 一级黄色大片毛片| 一进一出好大好爽视频| 后天国语完整版免费观看| 成人18禁高潮啪啪吃奶动态图| 一级黄色大片毛片| 免费高清在线观看日韩| 成熟少妇高潮喷水视频| 丰满饥渴人妻一区二区三| 国产精品二区激情视频| 首页视频小说图片口味搜索| 欧美精品亚洲一区二区| 国产91精品成人一区二区三区| 久久精品亚洲精品国产色婷小说| av欧美777| 中国美女看黄片| 丰满迷人的少妇在线观看| 村上凉子中文字幕在线| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久久久中文| 亚洲国产毛片av蜜桃av| 又大又爽又粗| 精品国内亚洲2022精品成人| 窝窝影院91人妻| 三上悠亚av全集在线观看| 性色av乱码一区二区三区2| 大型av网站在线播放| 亚洲国产中文字幕在线视频| 侵犯人妻中文字幕一二三四区| 一夜夜www| 日日爽夜夜爽网站| 精品一区二区三区av网在线观看| 日韩免费高清中文字幕av| 亚洲自拍偷在线| 欧美久久黑人一区二区| 99riav亚洲国产免费| 日韩免费高清中文字幕av| 99国产精品免费福利视频| 十分钟在线观看高清视频www| 亚洲午夜精品一区,二区,三区| 亚洲av成人av| 少妇的丰满在线观看| 桃色一区二区三区在线观看| 国产精品一区二区免费欧美| 丝袜在线中文字幕| 免费观看人在逋| 国产熟女午夜一区二区三区| 男男h啪啪无遮挡| 久久久国产欧美日韩av| 成人永久免费在线观看视频| 99re在线观看精品视频| 嫁个100分男人电影在线观看| 窝窝影院91人妻| 18禁观看日本| 欧美精品一区二区免费开放| 欧美乱码精品一区二区三区| 乱人伦中国视频| 久久99一区二区三区| 亚洲在线自拍视频| 国产免费av片在线观看野外av| 日韩有码中文字幕| 亚洲一区中文字幕在线| 久久国产乱子伦精品免费另类| 69av精品久久久久久| 99精品在免费线老司机午夜| 国产又色又爽无遮挡免费看| 午夜精品在线福利| 亚洲国产精品合色在线| 日本免费a在线| 久久人妻av系列| 午夜影院日韩av| av福利片在线| 国产精品98久久久久久宅男小说| 亚洲久久久国产精品| www国产在线视频色| 纯流量卡能插随身wifi吗| 69av精品久久久久久| 91精品国产国语对白视频| 日本 av在线| 成人三级做爰电影| 亚洲熟女毛片儿| 淫秽高清视频在线观看| 国产蜜桃级精品一区二区三区| 久久亚洲真实| 亚洲av片天天在线观看| 亚洲成人精品中文字幕电影 | 国产成人影院久久av| 看黄色毛片网站| 搡老岳熟女国产| 嫁个100分男人电影在线观看| 好看av亚洲va欧美ⅴa在| 天堂动漫精品| 在线播放国产精品三级| 国产成人系列免费观看| a在线观看视频网站| 国产成+人综合+亚洲专区| 欧美日韩中文字幕国产精品一区二区三区 | 免费看a级黄色片| 性少妇av在线| 免费少妇av软件| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品久久成人aⅴ小说| 国产日韩一区二区三区精品不卡| 亚洲av美国av| 久久久久久久久中文| 99精国产麻豆久久婷婷| 久久国产精品影院| 日韩人妻精品一区2区三区| 色老头精品视频在线观看| 男人的好看免费观看在线视频 | 欧美成人性av电影在线观看| 在线十欧美十亚洲十日本专区| 大型av网站在线播放| 黑人巨大精品欧美一区二区mp4| 成人手机av| 精品国产亚洲在线| 性欧美人与动物交配| 亚洲国产毛片av蜜桃av| 淫妇啪啪啪对白视频| 日韩三级视频一区二区三区| 免费日韩欧美在线观看| 亚洲国产欧美一区二区综合| 999精品在线视频| 精品国产一区二区久久| 丰满的人妻完整版| 脱女人内裤的视频| 91av网站免费观看| 国产精品一区二区精品视频观看| 一区在线观看完整版| 成人国产一区最新在线观看| √禁漫天堂资源中文www| 99热只有精品国产| 中文字幕精品免费在线观看视频| 亚洲精品中文字幕一二三四区| 国产亚洲精品综合一区在线观看 | 香蕉国产在线看| 欧美激情久久久久久爽电影 | 熟女少妇亚洲综合色aaa.| 免费少妇av软件| 午夜免费鲁丝| 宅男免费午夜| 男女高潮啪啪啪动态图| 在线天堂中文资源库| 亚洲国产欧美网| 香蕉丝袜av| 麻豆一二三区av精品| 最近最新免费中文字幕在线| 久久婷婷成人综合色麻豆| 成人三级做爰电影| 精品人妻在线不人妻| 一级毛片高清免费大全| 日日干狠狠操夜夜爽| 国产精品一区二区在线不卡| 美女福利国产在线| 精品乱码久久久久久99久播| 国产成人av激情在线播放| 少妇粗大呻吟视频| 国产有黄有色有爽视频| 水蜜桃什么品种好| 超色免费av| 精品久久久久久,| 久久伊人香网站| 日韩视频一区二区在线观看| 久久久久国产精品人妻aⅴ院| 99热国产这里只有精品6| 国产三级在线视频| 黄色怎么调成土黄色| 国产一区二区在线av高清观看| 国产精品久久久久成人av| 国产精品久久视频播放| 国产亚洲精品第一综合不卡| 成年女人毛片免费观看观看9| 日韩三级视频一区二区三区| 高清欧美精品videossex| 亚洲一卡2卡3卡4卡5卡精品中文| 在线观看www视频免费| 老司机福利观看| 岛国视频午夜一区免费看| 欧美日韩瑟瑟在线播放| 国产精品成人在线| 一a级毛片在线观看| 亚洲欧美日韩高清在线视频| av网站免费在线观看视频| 不卡一级毛片| 午夜成年电影在线免费观看| 人人妻人人爽人人添夜夜欢视频| a级毛片黄视频| 久久性视频一级片| 无遮挡黄片免费观看| 人妻久久中文字幕网| 欧美日韩中文字幕国产精品一区二区三区 | 99精品欧美一区二区三区四区| 女性被躁到高潮视频| 久久性视频一级片| 久久国产乱子伦精品免费另类| 久久久久精品国产欧美久久久| 免费女性裸体啪啪无遮挡网站| 欧美人与性动交α欧美软件|