• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structures,Photoluminescent and Magnetic Properties of Three 2D Lanthanide Complexes

    2022-04-18 01:50:46LIUShuangHUMingFeiLILeiLeiWANGWenZhen
    無機化學(xué)學(xué)報 2022年4期

    LIU Shuang HU Ming?Fei LI Lei?Lei WANG Wen?Zhen

    (1School of Chemistry and Chemical Engineering,Xi′an Shiyou University,Xi′an 710065,China)

    (2Key Laboratory of Advanced Energy Materials Chemistry(Ministry of Education),Nankai University,Tianjin 300071,China)

    Abstract:Three new 2D lanthanide complexes with the formula[Ln2(dmpa)4]Cl2,where Ln=Eu(1),Tb(2),Dy(3),have been prepared based on the ligand 2,2?bis(hydroxymethyl)propionic acid(Hdmpa)under solvothermal condi?tions and characterized by IR spectrum,elemental analysis,powder X?ray diffraction,thermogravimetric analysis,and single?crystal X?ray diffraction.These complexes are isostructural in which individual Ln(Ⅲ) ions are linked by carboxyl groups into 2D layers which are further assembled into 3D supramolecular structures by intermolecular interactions.Magnetic investigations on Dy complex indicate the presence of weak ferromagnetic interactions trans?mitted by carboxyl groups.And photoluminescence studies reveal that the Eu(Ⅲ) and Tb(Ⅲ) complexes exhibit charac?teristic red?light and green?light emissions,respectively.CCDC:1940310,1;1940311,2;1940312,3.

    Keywords:lanthanide complex;crystal structure;magnetic property;photoluminescent property

    0 Introduction

    The study of trivalent lanthanide(Ln3+)complexes has attracted great attention owing to their potential applications in many fields,especially for photolumi?nescence[1?7]and molecular magnets[8?13].Different from transition metal ions,4felectrons in Ln(Ⅲ)ions are greatly shielded by the outer 5sand 5pelectrons mak?ing that the electronic structures of Ln(Ⅲ) ions are main?ly decided by the inherent 4felectron interactions and spin?orbit couplings than the ligand fields(LFs).Based on such fact,the luminescence of Ln(Ⅲ)ions,originat?ing fromf?ftransition,has the advantages of narrow line?like emissions,long lifetimes,and high quantum yields,which make them good candidates in building luminescent systems toward applications in molecule and ion recognition[1],display materials[14],fluorescence labeling[15?16],etc.While in the field of molecular mag?nets,the large shielding effects on 4felectrons lead to large unquenched orbital moments and strong spin?orbit couplings which means strong magnetic anisotro?py for most lanthanide ions[17?19].This makes Ln(Ⅲ) com?plexes also outstanding systems for building functional magnetic materials,especially for single?molecule mag?nets[8?13].In addition,lanthanide complexes as bifunc?tional materials with both single?molecule magnet prop?erty and luminescent property are now attracting more and more attention[20?22].

    The key to building functional Ln(Ⅲ)?based coordi?nation systems is the design and choosing of organic ligands for they decide the crystal structures of the systems including the coordination environments of individual Ln(Ⅲ)ions and the linking modes among them.As Ln(Ⅲ)ions are more inclined to bond with O?containing ligands than N?containing ligands,carboxylate?based and hydroxyl?based ligands are wildly employed resulting in lots of Ln(Ⅲ)?complexes with fascinating structures and properties.Carboxyl?ates have rich coordination modes as bridging ligands and can therefore lead to various structures by modulat?ing the synthesis conditions.Compared with carboxyl?ates,hydroxyl?based ligands as single?atom bridging ligands can transmit more effective exchange couplings and lead to systems with interesting magnetic proper?ties,including magnetic ordering and/or slow relax?ation of magnetization(SRM)behaviors[23?24].Driven by such facts,2,2?bis(hydroxymethyl)propionic(Hdmpa)containing two hydroxyl groups and one carboxyl group was chosen as the ligand in our research to acquire new complexes with interesting structures and lumines?cent/magnetic properties.The rich coordination modes and effectiveness in transmitting exchange couplings of Hdmpa leading to fascinating cluster?based magnetic materials have been demonstrated in several reports[24?26].And there was also one report claiming the Hdmap ligand could well sensitize lanthanide ions to give strong luminescence[27],making it more attractive in functional coordination chemistry.However,to the best of our knowledge,almost all reported lanthanide com?plexes based on Hdmpa ligand were limited to zero?dimension structure,i.e.,mononuclear or polynuclear clusters.Therefore,the present work aims to investi?gate the potential of Hdmpa in constructing non?zero dimensional lanthanide complexes to expand the coor?dination chemistry based on Hdmpa ligand beyond the state of the art.And three novel Ln(Ⅲ)complexes[Ln2(dmpa)4]Cl2,where Ln=Eu(1),Tb(2),and Dy(3),were obtained by the solvothermal procedure.Single crystal X?ray tests show that all three complexes are isostructural with a 2D layer structure.Luminescent spectra of 1 and 2 exhibited characteristic red?light and green?light emissions,respectively.And magnetic measurements on 3 show the presence of weak ferro?magneticinteractionstransmittedbycarboxylatebridges.

    1 Experimental

    1.1 Materials and methods

    All chemicals and solvents used are of analytical grade and were used as received without further treat?ment.Infrared spectra on powdered samples were recorded with a Bruker Tensor 27 Spectrometer with samples as KBr disks in the 4 000 ?400 cm?1region.Elemental analyses(C,H,and N)were carried out by using a Perkin?Elmer analyzer.Powder X?ray diffrac?tion(PXRD)data were collected on a Bruker D8 advance diffractometer with CuKαradiation(λ=0.154 18 nm)in a range of 3°≤2θ≤50°,operated under a voltage of 40 kV and a current of 30 mA.Simulation of PXRD pattern was derived from the Mercury program avail?able free of charge via the Internet at http://www.iucr.org.Thermogravimetric(TG)analyses were conducted on a Labsys NETZSCH TG 209 Setaram apparatus with a heating rate of 10 ℃·min?1from room temperature to 800 ℃.Direct?current(dc)magnetic susceptibility data from 300 to 2 K was obtained using crushed crystals of the sample on a Quantum Design MPMS XL?7 magne?tometer.The data was corrected using Pascal′s con?stants to calculate the diamagnetic susceptibility and an experimental correction for the sample holder was applied.Alternating?current(ac)magnetic susceptibili?ty data was collected on the same instrument employ?ing a 5.0 Oe oscillating field.Photoluminescence emis?sion spectra tests were carried out on powdered sam?ples in a Thermo FL spectrometer.

    1.2 Synthesis of[Ln2(dmpa)4]Cl2

    A mixture of Hdmpa(0.080 4 g,0.6 mmol),LnCl3·6H2O(Ln=Eu(1),0.2 mmol,0.073 3 g;Tb(2),0.2 mmol,0.074 7 g;Dy(3),0.2 mmol,0.075 4 g),and 6 mL CH3CN in the present of one drop(about 0.05 mL)trimethylamine(TEA)were sealed in a 25 mL Teflon?lined stainless steel container and heated at 120℃for 3 d under autogenous pressure.Then the container was slowly cooled to room temperature at 2 ℃·h?1.Color?less rod?like crystals were obtained by filtration and washed with CH3CN three times.The yields(based on Ln)were 22%,35%,and 54% for 1,2,and 3,respec?tively.Elemental Anal.Calcd.(%)for C20H36Cl2Eu2O16(1):C,26.47;H,4.00.Found(%):C,26.36;H,3.95.Elemental Anal.Calcd.(%)for C20H36Cl2Tb2O16(2):C,26.07;H,3.94.Found(%):C,25.98;H,3.85.Elemen?tal Anal.Calcd.(%)for C20H36Cl2Dy2O16(3):C,25.87;H,3.91.Found(%):C,25.75;H,3.85.FT?IR(KBr pellet,cm?1):3 443(br),1 601(vs),1 357(w),1 069(w),1 000(w),857(w),773(w),623(m)for 1;3 443(br),1 600(vs),1 385(w),1 356(m),1 138(m),1 068(w),1 000(w),859(w),772(w),619(m)for 2;3 446(br),1 606(vs),1 385(w),1 350(m),1 134(m),1 074(w),995(w),945(w),851(w),770(w),619(m)for 3.

    1.3 Crystal structure determination

    X?ray single?crystal diffraction data for complexes 1?3 were collected using theω?φscan technique on a Bruker Single?Crystal Diffractometer equipped with a graphite?monochromated MoKαradiation source(λ=0.071 073 nm).The structures were solved by direct methods with the SHELXS?2008program of the SHELXTL package and refined by full?matrix least?squares methods onF2with Olex2 program[28?29].All the non?hydrogen atoms were refined with anisotropic ther?mal parameters.The hydrogen atoms of the ligands were located geometrically and refined by using a rid?ing model.The crystallographic data and the selected bond distances and bond angles for complexes 1?3 are listed in Table 1 and Table S1?S3(Supporting informa?tion),respectively.

    Table 1 Crystallographic data and structure refinement for complexes 1?3

    CCDC:1940310,1;1940311,2;1940312,3.

    2 Results and discussion

    2.1 Description of crystal structures for 1?3

    Complexes 1?3 are isostructural and crystallize in the orthorhombic system with the space group ofPcabrevealed by the single?crystal X?ray diffraction analy?ses,and here only 3 is selected as the representation to describe the structure detailedly.The asymmetrical unit of 3 consists of two crystallographic independent Dy(Ⅲ) ions,four dmpa?ligands,and two lattice Cl?ions.As shown in Fig.1a,Dy1 ion is nine coordinate by six O atoms of the carboxylates belonging to four dmpa?ligands and three O atoms of the hydroxyls from two dmpa?ligands,while Dy2 ion is eight coordinate finished by four O atoms of the carboxylates from four dmpa?ligands and four Ohydroxylatoms from three dmpa?ligands.The Dy—O bond lengths are in a range of 0.234 9?0.252 3 nm and 0.228 3?0.247 9 nm for Dy1 and Dy2,respectively.Notably,all hydroxyls serve as monodentate ligands.The continuous shape measure(CshM)method[30?31]realized by the SHAPE program is employed to estimate the coordination geometry sym?metry for Dy1 and Dy2 ions.And the results(Table S4)show the coordination polyhedron of Dy1 is mostly close to a muffin geometry ofCssymmetry with the devi?ation parameterS=1.406,while Dy2 is located in a bi?augmented trigonal prism geometry ofC2vsymmetry withS=3.738.Each Dy1 ion is connected with a near?est Dy2 ion by twoμ2?O atoms from two carboxylates,forming a dinuclear unit[Dy2],in which the distance of Dy1and Dy2 is 0.386 3 nm.Adjacent[Dy2]units are connected by twosyn,syn?μ?η1∶η1?COO?groups into parallelogram?shaped[Dy4]units(Fig.1b).The distance between neighboring[Dy2]units is 0.682 0 nm.Each[Dy4]unit links the other four neighboring[Dy4]units through four singleμ?1,3?carboxylate bridges affording the 2D layer structure of 3(Fig.1c).These 2D layers are further packed by Van Der Waals forces and inter?layer H?bonds between counter?anions Cl?ions and a hydroxyl group from dmpa?ligand to afford the final 3D supramolecular structure(Fig.S2).It is noted that all dmpa?ligands coordinate to two Dy(Ⅲ) ions and exhibit four different coordination modes which are plotted in Fig.2.

    Fig.1 Structures of[Dy2]unit(a),[Dy4]unit(b)and 2D layer(c)in complex 3

    Fig.2 Four different coordination modes of dmpa?ligand in 3

    2.2 PXRD and TG analyses

    The PXRD data of 1?3 were collected at room temperature to confirm the phase purity.As shown in Fig.S3,experimental patterns of 1?3 were all in good agreement with the simulation pattern calculated from crystallographic data of 3,indicating that the bulk materials are all in pure phase.To identify the thermal stability of 1?3,TG analyses for 1?3 were performed with a heating rate of 10 ℃ ·min?1in a temperature range of 25?800 ℃ (Fig.S4).TG analyses indicate that the TG curves of 1?3 had similar trends due to the isostructural nature.Complexes 1?3 were stable up to about 250℃and then showed a dramatic weight loss,corresponding to the decomposition of the organic ligands.

    2.3 Luminescent properties of complexes 1 and 2

    The solid?state luminescent emission spectra of 1 and 2 at room temperature are shown in Fig.3.Upon excited at 309 nm,1 exhibited four characteristic emis?sion bands of Eu3+centered at 592,614,691,and 700 nm,respectively.The first two peaks can be ascribed to5D0→7F1and5D0→7F2transitions,respectively,while the last two peaks are both corresponding to5D0→7F4transition which decomposes into two parts due to the minor differences of the local coordination environments[32].The red color luminescence of 1 is dominated by the emission of5D0→7F2at 614 nm with the highest intensity.When excited at 300 nm,com?plex 2 showed green color luminescence with four main emission bands centered at 489,544,584,and 620 nm which can be assigned to the transitions of5D4→7FJ(J=6,5,4,and 3)of Tb3+ion,respectively[33?35].And the green color is dominated by the emission of5D4→7F5at 544 nm with the highest intensity.As 1 and 2 exhib?it 2D layer structure and most pores are eliminated by the staggered stacking of 2D layers,no tests on mole?cule and ion recognition for them were performed as they can only interact with other ions and molecules on the surfaces.

    Fig.3 Solid?state photoluminescent spectra of complexes 1(a)and 2(b)

    2.4 Magnetic property of complex 3

    SRM behavior is an important research topic in lanthanide complexes for the understanding of the influences of LFs on electronic structures and their promising applications in high?density information stor?age.A double?degenerate ground state is a foundation for lanthanide complexes to show SRM behaviors which are guaranteed by Kramers′theorem for all Kramers ions in the absence of a magnetic field[36].However,for a non?Kramers ion,LF with strictly axial?symmetry geometry is a must for it to have a double?degenerate ground state[17?19].For complexes 2 and 3,as the LFs remarkably deviate from strictly axial symme?try demonstrated by the SHAPE results,only complex 3 based on the Kramers ion Dy(Ⅲ)is expected to show SRM behavior theoretically.And magnetic measure?ments were performed on it.

    Variable?temperature magnetic susceptibility measurement was performed on the powder sample of 3 in a range of 300 to 2 K under 1 000 Oe applied field.As shown in Fig.4,the room temperature value ofχMTwas 27.68 cm3·mol?1·K and was slightly lower than the value of 28.34 cm3·mol?1·K for two free Dy(Ⅲ) ions with6H15/2ground state.Upon cooling,χMTdecreased gradu?ally first,reaching a minimum value of 22.72 cm3·mol?1·K at 6.0 K.And below 6.0 K,χMTincreased sud?denly and reached a value of 25.05 cm3·mol?1·K at 2 K.The plot ofχM?1vsTshowed well linear dependence and Curie?Weiss fitting gave the Curie constant(C)of 27.95 cm3·mol?1·K and a negative value of?2.61 K forθ.The decrease ofχMTabove 6 K and the negative val?ue ofθcan be attributed to the thermal depopulation of the LF split excited sublevels and/or the intralayer anti?ferromagnetic coupling.What is interesting was the observed increase ofχMTbelow 6 K,implying the pres?ence of interlayer ferromagnetic couplings or spin cant?ing behavior[37?38].

    Fig.4 Temperature dependence of dc magnetic susceptibility for 3 under 1 000 Oe field

    The field dependence of magnetization was mea?sured at 2 K up to 70 kOe for 3(Fig.5).The magnetiza?tion of 12.2Nβwas far less than the saturation value of 20Nβfor two free Dy(Ⅲ) ions.As the superexchange coupling among Dy(Ⅲ)ions is usually extremely weak,the large difference between experimental and satura?tion values suggests the presence of large single?ion magnetic anisotropy and/or thermal population on low excited sublevels.The dM/dHplot exhibited a maxi?mum atca.200 Oe.Considering the so small strength of the critical field,we attribute this step to the over?whelming of the antiferromagnetic interlayer interac?tions.As there was no other peak on the dM/dHplot,indicating the absence of a spin?flop transition[37?38],and the magnetization increased rapidly at low fields,we attribute the increase ofχMTbelow 6 K to the presence of weak ferromagnetic couplings rather than the spin canting behavior.And the ferromagnetic couplings are believed to be transmitted by the single?O(carboxylate)bridges within[Dy2]units,for other bridges separate Dy(Ⅲ)ions remarkably farther.

    Fig.5 Field dependence of magnetization for 3 at 2 K

    To study the dynamic magnetic behavior for 3,ac susceptibility was measured between 2 and 16 K with the frequency of 100 and 800 Hz under zero dc field.As shown in Fig.6,the imaginary part of ac data didn′t show any signals over the detected temperature and fre?quency range,suggesting the absence of SRM behav?ior.Considering the Kramers ion nature for Dy(Ⅲ)ion,we attribute the absence of SRM behavior to the presence of a fast relaxation process by quantum tun?neling mechanism which can occur between the double?degenerate ground states without absorbing or emitting a photon.As has been demonstrated,transverse anisot?ropy produced by non?axial LF parameters is the main perturbation factor that mixes the double?degenerate stark sublevels and causes a strong tunneling effect[39?40].To reduce the transverse LF parameters as far as possi?ble for Dy(Ⅲ)?based complexes,the LFs should be axi?al,meaning strong axial LF and weak non?axial LF,with a high symmetry likeD4d,D5h,Cn(n>7),etc[41].Such requirements are not satisfied in 3 according to the facts:(1)both Dy1 and Dy2 are located in LFs with low symmetry ofCsandC2v,respectively;(2)all coordi?nating O atoms are from either the neutral—OH groups or negative—COO?groups and both two kinds of ligands are weak ?field ligands which can′t build axial LFs when considering the high coordination num?bers of 9 and 8 for Dy1 and Dy2,respectively.And the tunneling effect should be strong and prevents the observation of SRM behaviors.As dc magnetic field was often employed to suppress the tunneling effect by introducing Zeeman splitting,we also tested the ac sus?ceptibility of 3 under dc field from 200 to 3 000 Oe(Fig.S5).However,no well?defined peaks inχ″can be observed indicating the external dc field can′t effec?tively suppress the strong tunneling effect alone.

    Fig.6 Temperature dependence of ac magnetic susceptibility for 3 under zero dc field

    To the best of our knowledge,the three isostruc?tural complexes 1?3 are the unique kind of lanthanide complexes showing 2D layer structure based on dmpa?ligand.Usually,dmpa?was introduced to construct cluster complexes with high nuclearity because dmpa?was a significantly small organic molecule but with four O atoms which can serve as coordinating atoms simultaneously.And [Ni64Ln96][24], [Ln60][25], and[Ni36Ln102][26]complexes based on dmpa?have been syn?thesized which showed fascinating structures.To obtain these high?nuclearity structures,a certain kind of base was always introduced for the hydrolysis of lan?thanide ions,while no base was added in our synthesis procedure for 1?3 which may be the key reason that 2D layer structure complexes,not clusters,were obtained here.And our research demonstrates the high potential of Hdmpa ligand for constructing complexes with high dimensional structures beyond the clusters.In addi?tion,in the magnetic study on complex 3,ferromagnet?ic coupling was observed first in lanthanide complexes based on Hdmpa ligand.As high?spin ground state lan?thanide complexes based on ferromagnetic couplings are interesting in the fields of molecule?based magnets,magnetic cooling materials,and so on,our work also demonstrates the high potential of Hdmpa ligand in building such kinds of magnetic materials which will further promote the study on coordination chemistry based on Hdmpa ligand.

    3 Conclusions

    In summary,three new 2D lanthanide complexes 1?3 based on the ligand Hdmpa were prepared by sol?vothermal methods and fully characterized.These com?plexes are isostructural and show 2D layer structure.The studies of luminescent properties for 1 and 2 showed the typical red?light emission of Eu(Ⅲ) ion and green?light emission of Tb(Ⅲ) ion,respectively.Magnet?ic studies on 3 demonstrate the presence of weak ferro?magnetic couplings transmitted by single?O(carboxyl?ate)among the nearest Dy(Ⅲ)ions with a distance of 0.386 3 nm.However,due to the low symmetry of the coordination geometry of Dy(Ⅲ)ions,no slow relaxation of magnetization behavior was observed.

    Acknowledgments:The authors thank the Modern Analy?sis and Testing Center of Xi′an Shiyou University for their support.

    Supporting information is available at http://www.wjhxxb.cn

    日日爽夜夜爽网站| 亚洲视频免费观看视频| 欧美亚洲日本最大视频资源| 一边摸一边做爽爽视频免费| 国产精品女同一区二区软件| 色哟哟·www| 一级毛片电影观看| 国产麻豆69| 五月伊人婷婷丁香| 伊人亚洲综合成人网| 日产精品乱码卡一卡2卡三| 亚洲精品视频女| 波多野结衣一区麻豆| 欧美日韩一级在线毛片| 大话2 男鬼变身卡| 成人免费观看视频高清| 两个人免费观看高清视频| 国产午夜精品一二区理论片| 国产精品香港三级国产av潘金莲 | 只有这里有精品99| 国产极品粉嫩免费观看在线| 免费在线观看黄色视频的| 精品国产一区二区久久| 最黄视频免费看| 成人手机av| 久久免费观看电影| 最新的欧美精品一区二区| 这个男人来自地球电影免费观看 | 最近中文字幕2019免费版| 日韩,欧美,国产一区二区三区| 日韩在线高清观看一区二区三区| 国产不卡av网站在线观看| 考比视频在线观看| 亚洲,欧美,日韩| 人人妻人人爽人人添夜夜欢视频| 国产伦理片在线播放av一区| 在线天堂中文资源库| 丝袜美腿诱惑在线| 永久网站在线| 亚洲精品aⅴ在线观看| 天天操日日干夜夜撸| 亚洲精品日韩在线中文字幕| 久久精品亚洲av国产电影网| 美女主播在线视频| 久久久久久伊人网av| 啦啦啦在线观看免费高清www| 夫妻午夜视频| 男女国产视频网站| av在线播放精品| 中文字幕精品免费在线观看视频| 97人妻天天添夜夜摸| 免费黄色在线免费观看| 97精品久久久久久久久久精品| 建设人人有责人人尽责人人享有的| 999精品在线视频| 亚洲av在线观看美女高潮| 考比视频在线观看| 捣出白浆h1v1| 99国产精品免费福利视频| 国产野战对白在线观看| 亚洲精品一区蜜桃| 飞空精品影院首页| 丝瓜视频免费看黄片| 丁香六月天网| 久久国产精品男人的天堂亚洲| 18禁国产床啪视频网站| 黄色配什么色好看| 中文字幕人妻丝袜制服| 亚洲一区二区三区欧美精品| 精品国产乱码久久久久久小说| 国产一区亚洲一区在线观看| 国产男女内射视频| 国产精品亚洲av一区麻豆 | 亚洲国产欧美在线一区| 精品第一国产精品| 国产成人a∨麻豆精品| 婷婷色综合www| 久久人人爽人人片av| 女人高潮潮喷娇喘18禁视频| 各种免费的搞黄视频| 看非洲黑人一级黄片| 美女国产视频在线观看| 欧美精品国产亚洲| 高清av免费在线| 国产日韩一区二区三区精品不卡| 亚洲成人手机| 国产 精品1| 新久久久久国产一级毛片| 男人添女人高潮全过程视频| 精品少妇黑人巨大在线播放| 国产熟女欧美一区二区| 18在线观看网站| av片东京热男人的天堂| √禁漫天堂资源中文www| 亚洲 欧美一区二区三区| 天天躁日日躁夜夜躁夜夜| 十分钟在线观看高清视频www| 最黄视频免费看| 高清av免费在线| 我的亚洲天堂| 欧美 亚洲 国产 日韩一| 秋霞在线观看毛片| 涩涩av久久男人的天堂| 久久精品熟女亚洲av麻豆精品| 久久久久精品人妻al黑| 夫妻性生交免费视频一级片| 男女啪啪激烈高潮av片| 日韩中字成人| www.熟女人妻精品国产| 男男h啪啪无遮挡| 亚洲精品成人av观看孕妇| 99久久人妻综合| 考比视频在线观看| 午夜福利在线免费观看网站| 视频在线观看一区二区三区| 日韩中字成人| 高清av免费在线| 久久精品久久精品一区二区三区| 一级毛片我不卡| 国产无遮挡羞羞视频在线观看| 久久久a久久爽久久v久久| 亚洲在久久综合| 免费女性裸体啪啪无遮挡网站| 久久99蜜桃精品久久| 中文字幕色久视频| 日本爱情动作片www.在线观看| 亚洲av免费高清在线观看| 婷婷成人精品国产| 欧美老熟妇乱子伦牲交| 国产精品不卡视频一区二区| 国产一区二区激情短视频 | 日韩av在线免费看完整版不卡| 最黄视频免费看| www.熟女人妻精品国产| 国产精品久久久久久av不卡| 国产黄色视频一区二区在线观看| 国产精品久久久久久精品古装| 老女人水多毛片| 黄片小视频在线播放| 男女免费视频国产| 伊人亚洲综合成人网| 91国产中文字幕| 免费久久久久久久精品成人欧美视频| 国产av国产精品国产| 国产黄色视频一区二区在线观看| 香蕉精品网在线| 久久国产精品男人的天堂亚洲| 捣出白浆h1v1| 日韩av不卡免费在线播放| 精品一区二区三区四区五区乱码 | 人妻人人澡人人爽人人| 五月天丁香电影| 伊人久久国产一区二区| 成人午夜精彩视频在线观看| 91精品三级在线观看| 捣出白浆h1v1| 亚洲精品日韩在线中文字幕| 99热网站在线观看| 国产综合精华液| 人妻少妇偷人精品九色| 久久人人97超碰香蕉20202| 人妻 亚洲 视频| 大香蕉久久网| 亚洲精品日韩在线中文字幕| 日韩伦理黄色片| 久久久精品94久久精品| 9191精品国产免费久久| 亚洲精品第二区| 高清在线视频一区二区三区| 日韩在线高清观看一区二区三区| 国产精品av久久久久免费| 久久精品亚洲av国产电影网| 亚洲综合色惰| 日韩成人av中文字幕在线观看| 在线 av 中文字幕| 女的被弄到高潮叫床怎么办| 久热这里只有精品99| 波野结衣二区三区在线| 黄片无遮挡物在线观看| av免费在线看不卡| 啦啦啦在线免费观看视频4| 亚洲五月色婷婷综合| 丝瓜视频免费看黄片| 亚洲欧美成人精品一区二区| 久久精品国产亚洲av高清一级| 欧美亚洲 丝袜 人妻 在线| 成人国产av品久久久| 一级爰片在线观看| 高清视频免费观看一区二区| 免费观看av网站的网址| 久久99蜜桃精品久久| 亚洲国产欧美在线一区| 国产成人免费无遮挡视频| 免费看av在线观看网站| 一区福利在线观看| 欧美日韩一区二区视频在线观看视频在线| av网站免费在线观看视频| 国产精品亚洲av一区麻豆 | 日韩成人av中文字幕在线观看| 国产精品99久久99久久久不卡 | 日韩 亚洲 欧美在线| av线在线观看网站| 寂寞人妻少妇视频99o| 国产精品一国产av| 欧美国产精品一级二级三级| 人妻人人澡人人爽人人| 亚洲精品国产av蜜桃| 久久婷婷青草| 亚洲欧美一区二区三区黑人 | 亚洲欧美一区二区三区国产| 免费少妇av软件| 久久女婷五月综合色啪小说| freevideosex欧美| 国产精品三级大全| 国产精品久久久久成人av| 老熟女久久久| 亚洲中文av在线| 欧美精品一区二区免费开放| www.熟女人妻精品国产| 我要看黄色一级片免费的| 久久久久久人人人人人| 亚洲第一青青草原| 国产av码专区亚洲av| 久久精品久久久久久噜噜老黄| 在线观看国产h片| 春色校园在线视频观看| 久久人人97超碰香蕉20202| 美女高潮到喷水免费观看| 亚洲熟女精品中文字幕| 久久久精品94久久精品| 免费日韩欧美在线观看| 国产亚洲av片在线观看秒播厂| 亚洲精品美女久久av网站| 男的添女的下面高潮视频| 亚洲精品乱久久久久久| 91精品伊人久久大香线蕉| 中文字幕制服av| 亚洲精品美女久久久久99蜜臀 | 国产成人aa在线观看| 亚洲国产精品国产精品| 中文字幕人妻丝袜一区二区 | av.在线天堂| 亚洲综合色惰| 国语对白做爰xxxⅹ性视频网站| 亚洲精品一区蜜桃| 看十八女毛片水多多多| 91国产中文字幕| 国产精品 欧美亚洲| 国产精品免费视频内射| 一区二区日韩欧美中文字幕| 成人亚洲欧美一区二区av| 久久精品亚洲av国产电影网| 久久久久久久精品精品| 水蜜桃什么品种好| 午夜影院在线不卡| 欧美激情高清一区二区三区 | 久久精品国产自在天天线| 青春草亚洲视频在线观看| 999精品在线视频| 精品人妻熟女毛片av久久网站| 久久99精品国语久久久| 国产亚洲最大av| 国产 精品1| 午夜免费观看性视频| 纵有疾风起免费观看全集完整版| 免费不卡的大黄色大毛片视频在线观看| 少妇猛男粗大的猛烈进出视频| 午夜精品国产一区二区电影| 99国产精品免费福利视频| 香蕉国产在线看| 校园人妻丝袜中文字幕| 婷婷成人精品国产| 欧美激情极品国产一区二区三区| 久久99蜜桃精品久久| 成人18禁高潮啪啪吃奶动态图| 黄色视频在线播放观看不卡| 久久狼人影院| 久久久久久久久久久久大奶| 欧美精品av麻豆av| 少妇 在线观看| 亚洲精品一二三| 中文欧美无线码| 满18在线观看网站| 大香蕉久久成人网| 国产视频首页在线观看| 麻豆乱淫一区二区| 高清视频免费观看一区二区| 国产 一区精品| 日本爱情动作片www.在线观看| 久久久久久人人人人人| 亚洲中文av在线| 色婷婷av一区二区三区视频| 午夜老司机福利剧场| 亚洲欧美色中文字幕在线| 老鸭窝网址在线观看| 在线观看国产h片| 国产亚洲一区二区精品| 国产在线视频一区二区| 国产熟女午夜一区二区三区| 亚洲精品国产色婷婷电影| 亚洲精品中文字幕在线视频| 国产在线视频一区二区| 最新中文字幕久久久久| 一本久久精品| 亚洲三级黄色毛片| 亚洲精品自拍成人| 国产成人av激情在线播放| 亚洲精品国产av蜜桃| 精品国产乱码久久久久久男人| av网站在线播放免费| 亚洲精品第二区| 亚洲国产日韩一区二区| 又大又黄又爽视频免费| videossex国产| 一级爰片在线观看| 亚洲一区二区三区欧美精品| 亚洲情色 制服丝袜| 三上悠亚av全集在线观看| 亚洲经典国产精华液单| 最近最新中文字幕免费大全7| 我要看黄色一级片免费的| 男人添女人高潮全过程视频| 日本-黄色视频高清免费观看| 一级毛片 在线播放| a级毛片黄视频| 尾随美女入室| 亚洲美女视频黄频| 99久国产av精品国产电影| 久热这里只有精品99| 日产精品乱码卡一卡2卡三| av国产精品久久久久影院| 九九爱精品视频在线观看| 成人免费观看视频高清| 日韩一卡2卡3卡4卡2021年| 老司机亚洲免费影院| 成人午夜精彩视频在线观看| 欧美日韩成人在线一区二区| 我的亚洲天堂| 国产野战对白在线观看| 久久久久久久久久久久大奶| 久久青草综合色| 欧美成人午夜免费资源| 国产有黄有色有爽视频| 大码成人一级视频| 啦啦啦啦在线视频资源| 午夜福利在线免费观看网站| 国产精品欧美亚洲77777| 老汉色∧v一级毛片| 国产精品av久久久久免费| 精品午夜福利在线看| 青春草国产在线视频| 欧美最新免费一区二区三区| 国产男女内射视频| 蜜桃国产av成人99| 免费女性裸体啪啪无遮挡网站| 一级片'在线观看视频| 成年人午夜在线观看视频| 久久久欧美国产精品| 亚洲欧美成人综合另类久久久| 一本大道久久a久久精品| 亚洲精华国产精华液的使用体验| 国产麻豆69| 少妇人妻精品综合一区二区| 美女高潮到喷水免费观看| 国产精品免费大片| 久久久久久人人人人人| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 可以免费在线观看a视频的电影网站 | 人体艺术视频欧美日本| 在线观看三级黄色| 超碰97精品在线观看| 香蕉丝袜av| 久久热在线av| 欧美精品高潮呻吟av久久| 成人手机av| 免费日韩欧美在线观看| 高清视频免费观看一区二区| 午夜激情久久久久久久| 18禁动态无遮挡网站| 成人毛片a级毛片在线播放| 亚洲精品久久午夜乱码| 久久久a久久爽久久v久久| 久久久亚洲精品成人影院| 免费观看性生交大片5| 一区福利在线观看| 99热国产这里只有精品6| 国产精品久久久久久精品电影小说| 成年人免费黄色播放视频| 啦啦啦在线观看免费高清www| 超碰97精品在线观看| 国产av码专区亚洲av| 国产亚洲午夜精品一区二区久久| 亚洲美女搞黄在线观看| 日韩一本色道免费dvd| 一本久久精品| 国产成人一区二区在线| 各种免费的搞黄视频| 久久久久久免费高清国产稀缺| 伦理电影大哥的女人| www.熟女人妻精品国产| 狠狠精品人妻久久久久久综合| 久久久久久久久久久久大奶| 99久久综合免费| 国产毛片在线视频| 成人国语在线视频| 亚洲精品在线美女| 久久精品国产亚洲av高清一级| 亚洲av电影在线观看一区二区三区| 天天躁夜夜躁狠狠躁躁| 日韩av在线免费看完整版不卡| 午夜日韩欧美国产| 免费看不卡的av| 色婷婷av一区二区三区视频| 黄网站色视频无遮挡免费观看| 在线天堂最新版资源| 国产日韩一区二区三区精品不卡| 韩国精品一区二区三区| 国产精品国产三级专区第一集| 国产在视频线精品| 宅男免费午夜| 777米奇影视久久| 欧美成人精品欧美一级黄| 日韩av在线免费看完整版不卡| 亚洲精品国产av成人精品| 高清视频免费观看一区二区| 日韩中文字幕视频在线看片| 晚上一个人看的免费电影| 欧美精品一区二区大全| 黄色毛片三级朝国网站| 18+在线观看网站| 成人国产av品久久久| 少妇被粗大猛烈的视频| 久久久久国产精品人妻一区二区| 大陆偷拍与自拍| 精品少妇内射三级| 午夜福利,免费看| 可以免费在线观看a视频的电影网站 | 国产亚洲最大av| 新久久久久国产一级毛片| 69精品国产乱码久久久| 最近的中文字幕免费完整| 中文字幕人妻丝袜制服| 国精品久久久久久国模美| 亚洲人成网站在线观看播放| 欧美中文综合在线视频| 波多野结衣av一区二区av| 最新中文字幕久久久久| xxxhd国产人妻xxx| 国产男女超爽视频在线观看| 亚洲精品久久午夜乱码| 久久毛片免费看一区二区三区| xxx大片免费视频| 日日啪夜夜爽| 最黄视频免费看| 亚洲国产欧美日韩在线播放| 成人毛片a级毛片在线播放| 一本久久精品| 久久久国产精品麻豆| 久久综合国产亚洲精品| 秋霞伦理黄片| 亚洲av男天堂| 亚洲国产欧美日韩在线播放| 国产黄色免费在线视频| 女性被躁到高潮视频| 国产精品av久久久久免费| 亚洲精品av麻豆狂野| 国产毛片在线视频| 国产亚洲午夜精品一区二区久久| 女人高潮潮喷娇喘18禁视频| 久久精品国产自在天天线| 国产精品国产三级国产专区5o| 国产成人精品久久二区二区91 | 中文精品一卡2卡3卡4更新| 欧美日韩亚洲高清精品| 这个男人来自地球电影免费观看 | 亚洲精品第二区| 国产免费福利视频在线观看| 国产1区2区3区精品| 深夜精品福利| 久久久久人妻精品一区果冻| 巨乳人妻的诱惑在线观看| 国产成人91sexporn| 久久人人97超碰香蕉20202| 最黄视频免费看| 亚洲国产欧美日韩在线播放| 成人手机av| 欧美成人午夜精品| 美女大奶头黄色视频| 老司机影院成人| 在线天堂中文资源库| 日韩三级伦理在线观看| 不卡av一区二区三区| 自线自在国产av| 亚洲人成77777在线视频| 成人18禁高潮啪啪吃奶动态图| 日本91视频免费播放| 国产福利在线免费观看视频| 色视频在线一区二区三区| 十八禁高潮呻吟视频| 中文字幕人妻丝袜制服| 亚洲av男天堂| 男男h啪啪无遮挡| kizo精华| 亚洲色图 男人天堂 中文字幕| a 毛片基地| 亚洲欧美一区二区三区黑人 | 老司机影院毛片| 99久久综合免费| av有码第一页| 精品少妇内射三级| videosex国产| 亚洲国产最新在线播放| 夫妻性生交免费视频一级片| av卡一久久| 90打野战视频偷拍视频| 久久韩国三级中文字幕| 国产白丝娇喘喷水9色精品| 91在线精品国自产拍蜜月| 久久亚洲国产成人精品v| 国产日韩一区二区三区精品不卡| 久久毛片免费看一区二区三区| 亚洲国产欧美在线一区| 国产免费又黄又爽又色| 日韩中文字幕视频在线看片| videos熟女内射| 99久久中文字幕三级久久日本| 女人高潮潮喷娇喘18禁视频| 亚洲伊人久久精品综合| 国产深夜福利视频在线观看| 久久久精品国产亚洲av高清涩受| 亚洲国产成人一精品久久久| 最新中文字幕久久久久| 成年av动漫网址| 亚洲欧洲国产日韩| 亚洲伊人色综图| 亚洲伊人久久精品综合| 女人高潮潮喷娇喘18禁视频| av免费在线看不卡| 精品亚洲成国产av| 亚洲av男天堂| 日本91视频免费播放| 一本—道久久a久久精品蜜桃钙片| 十八禁高潮呻吟视频| 桃花免费在线播放| 天天影视国产精品| 国产激情久久老熟女| 国产av一区二区精品久久| 一级毛片电影观看| 少妇被粗大的猛进出69影院| 国产亚洲最大av| 国产精品不卡视频一区二区| 国产日韩一区二区三区精品不卡| 亚洲成av片中文字幕在线观看 | 飞空精品影院首页| 精品国产乱码久久久久久小说| www.自偷自拍.com| 日韩大片免费观看网站| 欧美在线黄色| 久久久精品94久久精品| 宅男免费午夜| 色视频在线一区二区三区| 女性生殖器流出的白浆| 久久精品国产综合久久久| 大陆偷拍与自拍| 日本欧美国产在线视频| 男的添女的下面高潮视频| 欧美成人午夜精品| 香蕉国产在线看| 三上悠亚av全集在线观看| 亚洲美女视频黄频| 日本91视频免费播放| 欧美中文综合在线视频| 国产精品不卡视频一区二区| 校园人妻丝袜中文字幕| av有码第一页| 咕卡用的链子| 亚洲av日韩在线播放| 9热在线视频观看99| 18在线观看网站| 蜜桃国产av成人99| 搡女人真爽免费视频火全软件| 精品亚洲成国产av| 欧美精品国产亚洲| 国产又色又爽无遮挡免| 青青草视频在线视频观看| 成年人免费黄色播放视频| 午夜91福利影院| 免费观看av网站的网址| 777久久人妻少妇嫩草av网站| 日韩av不卡免费在线播放| 精品国产超薄肉色丝袜足j| 少妇人妻 视频| 午夜影院在线不卡| 男女边吃奶边做爰视频| 宅男免费午夜| 国产成人免费无遮挡视频| 亚洲成人av在线免费| 老司机影院成人| 日产精品乱码卡一卡2卡三| 18禁动态无遮挡网站| 女人精品久久久久毛片| 一区福利在线观看| 欧美日韩视频高清一区二区三区二| 国产欧美亚洲国产| 亚洲精品国产av成人精品| 一级片免费观看大全| 亚洲精品中文字幕在线视频| 亚洲欧洲国产日韩| 天天影视国产精品| av天堂久久9| 久久久国产精品麻豆| www日本在线高清视频| 汤姆久久久久久久影院中文字幕| 欧美 日韩 精品 国产| 一本色道久久久久久精品综合|