• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two 3D Microporous Zn?MOF for Fluorescence Sensing of Fe3+,Cr2O7 2-,and Acetone in Aqueous Solution

    2022-04-18 01:50:46GAOLouJunMIJingCHAIHongMeiRENYiXiaSUNXueHuaZHANGGangQiangZHANGYan
    無機化學學報 2022年4期

    GAO Lou?JunMI Jing CHAI Hong?Mei*,REN Yi?Xia*, SUN Xue?HuaZHANG Gang?QiangZHANG Yan

    (1Shaanxi Key Laboratory of Chemical Reaction Engineering,College of Chemistry and Chemical Engineering,Yan′an University,Yan′an,Shaanxi 716000,China)

    (2Xinjiang Xuanli Environmental Protection Energy Co.,Ltd.,Hami,Xinjiang 839000,China)

    Abstract:Two 3D microporous zinc metal?organic frameworks,formulated as[Zn3(DBA)(OH)(1,10?phen)2]n(1)and{[Zn2(HDBA)(4,4′?bipy)1.5]·H2O}n(2)(H5DBA=(3,5?di(2′,4′?dicarboxylphenyl)benzoic acid;1,10?phen=1,10?phenan?throline;4,4′?bipy=4,4′?bipyridine),were synthesized under solvothermal conditions.Structural analysis shows that 1 could be described as a 3D microporous framework based on the trinuclear metal units,while 2 exhibits the micro?porous structure from the binuclear zinc groups.Compared with 2,1 demonstrated a strong luminescence in the water,so it could be used as luminescent sensors for detection of Fe3+,Cr2O72?,and acetone molecules with high selectivity and sensitivity.CCDC:2076066,1;2076067,2.

    Keywords:Zn?MOFs;Fe3+;Cr2O72?;acetone;fluorescence sensing

    With the rapid development of industry,more and more pollutants are released into the environment,such as toxic metal ions,organic small molecules,and nitro?aromatic compounds(NACs),which lead to many adverse effects on human health and life[1?3].According to previous works of literature,traditional measuring approaches,such as mass spectrum,atomic emission spectroscopy,and gas spectrometer,require sophisti?cated instruments and proficient skill,and it is time?consuming,complex pretreatment[4].Compared with the above instrumental methods,the luminescent sensor was considered a promising material because of the advantages of easy operation,fast speed response,low detection,etc[5].Acetone is a poisonous substance,so the high concentrated acetone in the environment can cause some symptoms,such as headache,dizziness,and nausea.To human health,it is very important to exploit a fast?response acetone sensor to monitor its concentration[6?7].Fe3+is an essential trace element in the human body.However,excessive or insufficient Fe3+will cause a variety of diseases[8?10].Furthermore,the detection of Fe3+ion is key to early diagnosis of these diseases and as well as assessment of important indicators of human health.Cr2O72?is a potent carcino?genic substance that will affect people′s health even at a low concentration.It has been classified as a serious pollutant by the United States Environmental Protec?tion Agency(USEPA)[11?13].It is vitally important to detect the Cr2O72?in aqueous media.Therefore,it is imperative to establish a superior sensitivity and high selectivity chemical sensing method to monitor heavy metal ions,organic small molecules,explosive aromat?ic substances in the environment of medicine,industry,and so on[14?15].

    Metal?organic frameworks(MOFs),as one of the most promising candidates of porous material,have been constructed from metal ions/clusters and organic ligands[16].Their excellent properties such as high porosity,large surface areas,adjustable channel as well as rich structural network,lead to their wide?spread application in drug diversity[17?18],gas separation/storage[19?20],chemical sensing[21],catalysis[22?23],electro?chemistry sensing[24?25],and so on.Luminescence MOF has gained great progress in synthesis,design,and sensing application and has attracted the attention of many researchers as a desirable sensing material[26?28].The mechanism of MOFs luminescence involves elec?tron transfer and energy transfer processes,such as metal?to?ligand charge transfer(MLCT),ligand?to?metal charge transfer(LMCT),ligand?to?ligand charge transfer (LLCT), metal?to?metal charge transfer(MMCT)[29].Meanwhile,it refers to the introduction of guest molecules,including guest sensitization and guest?centered emission.MOFshave been constructed through topology design,pore functionalization,and so on,so an increasing number of MOFs have been con?structed as fluorescent sensing materials and lumines?cent chemical sensors[30?31].

    In this work,two 3D microporous Zn?MOFs have been constructed based on 3,5?di(2′,4′?dicarboxylphe?nyl)benzoicacid(H5DBA),namely[Zn3(DBA)(OH)(1,10?phen)2]n(1)and{[Zn2(HDBA)(4,4′?bipy)1.5]·H2O}n(2)(1,10?phen=1,10?phenanthroline;4,4′?bipy=4,4′?bipyri?dine),under the solvothermal condition.The lumines?cence properties of 1 and the crystal structures of 1 and 2 have been studied.It was concluded that 1 has fluorescence sensing properties for Fe3+,Cr2O72?,and acetone.

    1 Experimental

    1.1 Materials and methods

    All of the reagents were commercially available and used directly in the experiment without any purifi?cation.Powder X?ray diffraction(PXRD)patterns were collected on a PANalytical X′Pert PRO instrument with CuKαradiation(λ=0.154 06 nm,U=45 kV,I=40 mA,2θ=5°?50°).TGA curves were recorded by Netzsch TG209.Fluorescence spectra were performed by the Hitachi F?7000 fluorescence spectrophotometer.FT?IR(KBr pellet)spectra were recorded on a Shimadzu IRAFFINITY?1S spectrometer in a range of 4 000?500 cm?1.Elemental analyses(C,H,N)were performed using a Vario EL elemental analyzer.

    1.2 Synthesis of[Zn3(DBA)(OH)(1,10?phen)2]n(1)

    A mixture of Zn(NO3)2·6H2O(0.1 mmol),H5DBA(0.1 mmol),1,10?phenanthroline monohydrate(0.1 mmol),DMF(1 mL),H2O(8 mL),and NaOH(1 mL)were sealed in 25 mL Teflon?lined stainless autoclave.Then the autoclave was heated to 160℃for 72 h and was cooled to 30 ℃ at a descending rate of 4 ℃·h?1.Some orange crystals were obtained and washed with water,then dried in air(86% based on Zn).Anal.Calcd.for C47H26N4O11Zn3(%):C,55.35;H,2.55;N,5.49.Found(%):C,55.37;H,2.66;N,5.50.FT?IR(KBr pellets,cm?1):3 056(w),2 342(w),1 626(s),1 556(s),1 505(w),1 418(m),1 364(m),1 100(w),929(w),845(s),785(s),721(s),691(m),638(w),554(w)(Fig.S1,Supporting information).

    1.3 Synthesis of{[Zn2(HDBA)(4,4′?bipy)1.5]·H2O}n (2)

    A mixture of Zn(NO3)2·6H2O(0.1 mmol),H5DBA(0.1 mmol),4,4′?bipyridine(0.1 mmol),H2O(9 mL),HAc?NaAc solution(pH=6,1 mL)were sealed in 25 mL Teflon ?lined stainless autoclave.Then the auto?clave was heated to 160℃for 72 h and was cooled to 30 ℃ at a descending rate of 4 ℃·h?1.Some colorless crystals were obtained and washed with water,then dried in air(62% based on Zn).Anal.Calcd.for C38H22N3O10Zn2·H2O(%):C,55.02;H,2.89;N,5.07.Found(%):C,55.26;H,2.68;N,5.09.FT?IR(KBr pel?lets,cm?1):3 056(w),2 343(w),1 617(s),1 559(s),1 405(s),1 372(s),1 296(w),1 215(w),1 060(w),806(m),765(m),726(w),686(w),628(m),592(w)(Fig.S1).

    1.4 Structure determination

    The data for 1 and 2 were collected from a single crystal at 296.15 K on a Bruker APEX2 QUAZAR single?crystal diffractometer with a microfocus sealed X?ray tube using mirror optics as monochromator and a Bruker APEXⅡdetector.The diffractometer was equipped with an Oxford Cryostream 800 low?tempera?ture device and used MoKαradiation(λ=0.071 073 nm).All data were integrated with SAINT and a multi?scan absorption correction using SADABS was applied.The structures were solved by partial structure expan?sion using SHELXS and refined by full?matrix least?squares methods againstF2by SHELXL.All non?hydrogen atoms were refined with anisotropic displace?ment parameters.The hydrogen atoms were refined isotropically on calculated positions using a riding model with their Uiso values constrained to 1.2 times theUeqof their parent atoms.PLATON/SQUEEZE program was used to remove the disordered solvent molecules in the structure.Crystallographic data and structure refinement for 1 and 2 are displayed in Table 1.Selected bond lengths and bond angles for 1 and 2 are summarized in Table S1(1)and S2(2).

    Table 1 Crystallographic data and structure refinement for 1 and 2

    CCDC:2076066,1;2076067,2.

    Continued Table 1

    1.5 Luminescence sensing experiments

    The powder of complex 1(3 mg)was dispersed in 3 mL different solutions or different solvents to form a suspension,then it was sonicated for 30 min and kept at room temperature for 3 d before fluorescence mea?surement.Those different solutions(0.01 mol·L?1)included M(NO3)x(Mx+=Pb2+,Ni2+,Cd2+,Bi3+,Hg2+,Na+,Co2+,Ag+,K+,Mg2+,Fe2+,Al3+,Fe3+,Cu2+)or KyX(Xy?=Cr2O72?,I?,Ac?,Br?,SO42?,SCN?,Cl?,CO32?,H2PO4?,PO43?,ClO4?,IO?,S2?,SO2?33),and those different sol?vents includedN,N?dimethylformamide(DMF),water(H2O),isopropanol(IPA),acetone(CP),n?propanol(NPA),dimethylsulfoxide(DMSO),ethanol(EA),acetic acid(HAc),trichloromethane(CHCl3),methanol(MT),cyclohexane(CYH),ethyl acetate(EAc).

    2 Results and discussion

    2.1 Crystal structure

    2.1.1 Crystal structure of complex 1

    Single?crystal X?ray analysis shows that 1 crystal?lizes in the monoclinic system withP21/nspace group(Table 1).The asymmetric unit of 1 consists of three independent Zn2+ions,one DBA5?ligand,one coordi?nated hydroxyl group,and two 1,10?phen molecules(Fig.1a).Zn1 is centered in a six?coordinate octahedron geometry with three carboxyl oxygen atoms(O1,O11,and O6#1)of two DBA5?ligands,two nitrogen atoms(N1 and N2)from one 1,10?phen molecule,and one hydroxyl oxygen atom(O9)(Fig.S2a).Zn2 forms a five?coordinate environment coordinated with two carboxyl oxygen atoms(O2 and O10)from the monodentate bridged carboxyl of one DBA5?,two nitrogen atoms(N3 and N4)of a 1,10?phen molecule,and one hydroxyl oxygen atom(O9)(Fig.S2b).Zn3 lies in a six?coordinate geometry including one hydroxyl oxygen atom(O9#4)and four carboxylate oxygen atoms(O3,O4,O5#3,and O6#3)coming from two DBA5?ligands,respectively,and one carboxyl oxygen(O8#2)from the other ligand in a monodentate bridging?coupled coordination mode(Fig.S2c).The bond length scope of Zn—O/N is 0.194 7(2)?0.218 97(19)nm and the range of O—Zn—O bond angle is 85.72(7)°?176.80(8)°(Table S1).

    Fig.1 (a)Coordination environment of metal ions and DBA5?ligand in 1 with 30% thermal ellipsoids;(b)1D chains based on adjacent Zn1,Zn2,Zn3 trinuclear units;(c)2D network;(d)3D microporous framework

    Zn1,Zn2,and Zn3 are connected through one hydroxyl oxygen atom(O9)forming a trinuclear metal cluster(Fig.S2d).The coordination mode of the full deprotonation DBA5?ligand in 1 isκ1κ2?κ1κ0?κ1κ1?κ1κ1?κ1κ1?μ6to link six metal ions(Fig.S2e).Adjacent trinu?clear metal clusters are alternately connected into a 1D chain by chelating and bridging carboxyl groups of DBA5?ligands(Fig.1b).1D chains are bridged with the carboxylates of DBA5?ligands to form a 2D network in thebcplane(Fig.1c).Then the 2D network is extended into a 3D microporous framework through the multi?dentate DBA5?ligand(Fig.1d).

    2.1.2 Crystal structure of complex 2

    Single?crystal X?ray analysis reveals that 2 crys?tallizes in the triclinic system with theP1 space group(Table 1).The asymmetric unit of 2 consists of two independent Zn2+ions,one HDBA4?ligand,one and a half of 4,4′?bipy molecules(Fig.2a).Zn1 is in a five?coordinate environment with four carboxyl oxygen atoms(O1#1,O2,O9,and O10)from three HDBA4?ligands,one nitrogen atom(N1)of one 4,4′?bipy mole?cule.Two oxygen atoms(O9 and O10)are from one chelated carboxylate of one HDBA4?ligand,and two oxygen atoms(O1#1 and O2)from the other two HDBA4?ligands in monodentate bridged coordination mode,respectively(Fig.2a).Zn2 ion also lies in a five?coordinate environment with four carboxyl oxygen atoms(O3,O8,O4#2,and O7#2)of two ligands,one nitrogen atom(N2)of 4,4′?bipy(Fig.2a).The bond length scope of Zn—O/N is 0.196 34(15)?0.301 55(6)nm,and the range of O—Zn—O bond angle is 59.37(7)°?157.99(7)°.

    Fig.2 (a)Coordination environment of metal ions and ligands in 2 with 30% thermal ellipsoids;(b)2D network;(c)3D microporous framework

    Two adjacent atoms are bridged by one carboxyl?ate of HDBA4?ligand forming a binuclear cluster(Zn1…Zn1),which is connected by the HDBA4?ligand into 1D chain A(Fig.2b).Two adjacent Zn2 ions are connected by one HDBA4?ligand forming a similar binuclear cluster(Zn2…Zn2 cluster,Fig.S3a)and 1D chain B(Fig.2b).Each HDBA4?ligand adopts the coor?dination mode ofκ1κ1?κ1κ1?κ1κ1?κ1κ1?κ0κ0?μ5(Fig.S3b).Two 1D chains A and B are crossing to form a 2D net?work bridged by HDBA4?ligands(Fig.2b).The 2D net?works are connected by the pillared 4,4′?bipy ligands forming a 3D microporous structure(Fig.2c).

    2.2 General characterization of 1 and 2

    The phase purity of complexes 1 and 2 has been confirmed by PXRD(Fig.S4a and S4b).The peaks in the PXRD patterns of as?synthesized complexes were coincident with the simulated patterns,proving their high purities.TGA curves(Fig.S4c)exhibited high thermal stability up to 450℃for 1,and the skeleton gradually collapsed between 450 and 700℃mainly caused by the decomposition of 1,10?phenanthroline,with a weight loss of 35.5%(Calcd.35.3%),and then it probably continued to collapse with further increasing temperature.While 2 had a slight weight loss(2.0%)before 70℃,which may be the loss of solvent H2O molecules(Calcd.2.1%,indicating that an asymmetric unit contains one water molecule).It had high thermal stability between 70 and 320℃,and then its skeleton gradually collapsed between 320 and 700℃,mainly due to the decomposition of ligand(HDBA4?),with a weight loss of 55.4%(Calcd.55.0%),and then it continued to decompose with further increasing temper?ature.

    2.3 Luminescent properties

    2.3.1 Fluorescence properties of solids

    The solid?state fluorescence spectra of 1,2,and the ligands at room temperature are shown in Fig.3.It shows that 1 had the stronger emission peak at 368 nm,while 2 didn′t show any luminescence,because the N?donor molecules of the two complexes are different.Hence,it can be concluded that the presence of an aux?iliary ligand may affect LLCT[32?34].Internal emission of two complexes may be attributed to theπ*→πorπ*→ntransition,which leads to enhanced and quenching of fluorescence[34?35].So 1 can be potentially used as a luminescent material.

    Fig.3 Solid?state fluorescence spectra of 1,2,and the ligands

    2.3.2 Sensing for small solvent molecules

    The results of the solvent molecule sensing experi?ment of 1 are shown in Fig.4a.It is found that the sol?vent can influence the intensity of emission peak,and especially,the acetone caused the fluorescence quenching of 1.Therefore,1 can act as a highly selec?tive and sensitive sensor to detect acetone.The lumi?nescence titration spectra of 1 for acetone are shown in Fig.4b.It was found that there was a good linear rela?tionship between the concentration of acetone(cCP)in a range of 0?1.535 mmol·L?1andI0/I?1.The linear equa?tion wasy=22.677 5x?1.618 01(Fig.4b,Inset).The detection limit was 7.26 mmol·L?1(at 3σ/klevel,whereσis the standard deviation,kis the slope).The results indicate that 1 is a sensitive fluorescent sensing material for acetone quantitative analysis.Usually,the fluorescence quenching may be caused by the structur?al collapse of fluorescent materials.Compared with the simulated pattern,the PXRD pattern of 1 was unaffect?ed(Fig.S4a).Hence,the quenching mechanism is attributed to the competitive absorption of energy between 1 and acetone[36?37].

    Fig.4 (a)Relative fluorescence intensity of 1 introduced into various pure organic solvents;(b)Luminescence spectrum titration of 1 for sensing acetone

    2.3.3 Sensing for metal ions

    As shown in Fig.5a,1 showed different lumines?cence intensities in different metal ions solutions.Especially, the luminescence was significantly quenched when the suspension of 1 was mixed with Fe3+solution.Further study found that the lumines?cence intensity of 1 gradually decreased with the increase of Fe3+concentration(0?180 μmol·L?1,Fig.5b).The quenching efficiency of 1 can be quantitatively described with the Stern?Volmer equation:whereI0andIare luminescence intensities of 1 before and after adding Fe3+,respectively;cFe3+is the concentration of Fe3+;Ksvis the quenching effect coeffi?cient of the Fe3+.There was a good linear relationship between the concentration of Fe3+andI0/I?1:y=0.304 12x?0.162 9(Fig.5b,Inset),and theKsvwas 3.0×105L·mol?1.The detection limit for Fe3+was caculated to be 0.54 μmol·L?1(at 3σ/klevels).Compared with the detection limit of Fe3+previously reported[38],1 can be used as a highly selective and sensitive fluorescent sensor.

    Fig.5 (a)Normalized intensity of 1 in different metal ions solutions;(b)Luminescence spectrum titration of 1 for sensing Fe3+

    To discuss the luminescence quenching mecha?nism of Fe3+toward 1,UV?Vis spectra of 1 in different metal ions solutions were determined(Fig.S5),and it was found that only Fe3+had a particularly strong absorption in a range of 290?380 nm.Therefore,the flu?orescence quenching mechanism might be attributed to the competitive absorption of Fe3+and 1[39].

    To further explore the potential applications of such a sensitive MOF sensor in the biological system,we performed sensing experiments of 1 under the simu?lated physiological condition(20 mmol·L?1HEPES buf?fer solution,pH=7)with different Fe3+concentra?tions[40].With increasing Fe3+concentration in the HEPES buffer solution,the luminescence intensity of 1 decreased dramatically(Fig.6).The sensing behaviors of 1 under biological conditions were similar to those observed in an aqueous solution,but theKsvvalue was slightly lower(Ksv=1.19×104L·mol?1)(Fig.6,Inset).The result indicates that 1 could be considered as a flu?orescent probe for sensing Fe3+in a biological system.

    Fig.6 Luminescence spectrum titration of 1 for sensing Fe3+in HEPES aqueous solution

    2.3.4 Sensing for inorganic anions

    The fluorescence intensity of 1 is closely related to the coexistence of inorganic anions,and especially,the quenching effect of Cr2O72?to 1 was very obvious(Fig.7a).The luminescence intensity of 1 gradually decreased with increasing concentration of Cr2O72?(Fig.7b).It can be concluded in Inset of Fig.7b that there was a good linear relationship betweenI0/I?1 and the concentration of Cr2O72?in a range of 0?80 μmol·L?1,which linear equation wasy=0.240 23x?0.062 1.The detection limit was 0.69 μmol·L?1(at 3σ/klevels).To further study the luminescencequenching mecha?nism of Cr2O72?toward 1,the UV?Vis absorption spec?troscopy was studied(Fig.S6).It can be found that only CrO2?27had a strong absorption band in a range of 300?400 nm,so the possible fluorescence quenching mecha?nism is attributed to the competitive absorption of CrO2?27ions and 1[41?42].

    Fig.7 (a)Relative fluorescence intensity of complex 1 in different anionic solutions;(b)Luminescence spectrum titration of 1 for sensing CrO2?27

    2.3.5 Recyclability after sensing experiment

    To further evaluate the re?utilization of 1 for Fe3+,Cr2O72?,and acetone sensing detection,1 was washed with water and ethanol and dried after sensing.Then the recovered samples of 1 were immersed again in the aqueous solution(0.01 mol·L?1)of Fe3+,Cr2O72?,and acetone to detect the fluorescence intensities,respec?tively.After five cycles of quenching and recovery of fluorescence intensity,the fluorescence intensity of 1was unchanged(Fig.S7).The PXRD patterns showed that the structure remains integrated after quenching and recovery(Fig.S4a).It follows that 1 can be used as a stable and recyclable chemical sensing for detecting Fe3+,Cr2O72?,and acetone.

    3 Conclusions

    In summary,two 3D microporous Zn?MOFs,1 and 2,based on H5DBA were successfully constructed.1 shows a stable microporous structure featuring the trinuclear inorganic building unit,while 2 exhibits a 3D framework based on the binuclear unit.Different N?donor ligands result in different luminescence proper?ties.1 possessed strong luminescence with superior selectivity and sensitivity induced in aqueous medium Fe3+(0.54 μmol·L?1),Cr2O72?(0.69 μmol·L?1),and acetone(7.26 mmol·L?1).However,2 has poor lumines?cence.The structure of 1 remains intact after multiple cycles of sensing,indicating it is an efficient and recy?clable sensing material.

    Conflicts of interest:The authors declare no competing financial interest.

    Supporting information is available at http://www.wjhxxb.cn

    另类精品久久| 亚洲av福利一区| 1024视频免费在线观看| 黄频高清免费视频| 日韩成人av中文字幕在线观看| 亚洲综合色网址| 日韩av免费高清视频| 国产片内射在线| 精品午夜福利在线看| 亚洲国产中文字幕在线视频| 男女高潮啪啪啪动态图| 观看av在线不卡| 日韩人妻精品一区2区三区| 亚洲av国产av综合av卡| 亚洲国产欧美一区二区综合| 大话2 男鬼变身卡| 青草久久国产| 狂野欧美激情性xxxx| 国产视频首页在线观看| 两个人看的免费小视频| 亚洲精品乱久久久久久| 国产熟女午夜一区二区三区| 成人国产麻豆网| 国产精品人妻久久久影院| 亚洲国产av影院在线观看| 十八禁人妻一区二区| 永久免费av网站大全| 人体艺术视频欧美日本| 狠狠婷婷综合久久久久久88av| 亚洲欧美一区二区三区黑人| 亚洲精品,欧美精品| 久久精品久久久久久噜噜老黄| 爱豆传媒免费全集在线观看| 日韩不卡一区二区三区视频在线| 亚洲精品乱久久久久久| 一级片'在线观看视频| 国产片内射在线| 黑人猛操日本美女一级片| 亚洲国产中文字幕在线视频| 精品久久蜜臀av无| av片东京热男人的天堂| 国产精品欧美亚洲77777| 丰满乱子伦码专区| 日本av手机在线免费观看| 日韩欧美精品免费久久| 九色亚洲精品在线播放| 欧美精品亚洲一区二区| 国产精品久久久久久精品古装| 欧美精品亚洲一区二区| 中文字幕高清在线视频| 久久青草综合色| 国产精品免费大片| 91老司机精品| 黄色毛片三级朝国网站| 亚洲四区av| 天堂俺去俺来也www色官网| 亚洲国产精品国产精品| 国产亚洲av高清不卡| 嫩草影视91久久| 韩国精品一区二区三区| 午夜免费观看性视频| 亚洲精品美女久久av网站| 久久精品国产亚洲av高清一级| 亚洲av日韩精品久久久久久密 | 国产精品女同一区二区软件| 精品少妇内射三级| 久久国产亚洲av麻豆专区| a级毛片黄视频| 天天躁夜夜躁狠狠躁躁| avwww免费| 一个人免费看片子| 一本一本久久a久久精品综合妖精| 国产又爽黄色视频| 青春草视频在线免费观看| 国产毛片在线视频| 午夜福利免费观看在线| 母亲3免费完整高清在线观看| 欧美日韩一级在线毛片| 操出白浆在线播放| 波多野结衣一区麻豆| 日本av免费视频播放| 成人国产麻豆网| 亚洲精品自拍成人| 亚洲美女视频黄频| 777米奇影视久久| 亚洲精品久久午夜乱码| 女性被躁到高潮视频| 精品国产超薄肉色丝袜足j| 国产精品麻豆人妻色哟哟久久| 亚洲国产精品999| 美女脱内裤让男人舔精品视频| 波野结衣二区三区在线| 欧美精品人与动牲交sv欧美| bbb黄色大片| 免费久久久久久久精品成人欧美视频| 色视频在线一区二区三区| 黄色毛片三级朝国网站| 一二三四在线观看免费中文在| 韩国精品一区二区三区| 久久毛片免费看一区二区三区| 搡老岳熟女国产| 精品视频人人做人人爽| 99re6热这里在线精品视频| 最近中文字幕2019免费版| 一级,二级,三级黄色视频| 日本vs欧美在线观看视频| 日韩av免费高清视频| 精品国产乱码久久久久久小说| av免费观看日本| 色综合欧美亚洲国产小说| 日本爱情动作片www.在线观看| 久久青草综合色| 热99国产精品久久久久久7| 亚洲精品中文字幕在线视频| 高清在线视频一区二区三区| 深夜精品福利| 在线天堂中文资源库| 51午夜福利影视在线观看| 1024视频免费在线观看| 国产一区二区在线观看av| 人人妻人人添人人爽欧美一区卜| 欧美乱码精品一区二区三区| 国产 精品1| 999精品在线视频| av视频免费观看在线观看| 赤兔流量卡办理| 成人亚洲精品一区在线观看| 1024视频免费在线观看| 少妇人妻 视频| 久久午夜综合久久蜜桃| 久久综合国产亚洲精品| 久久精品亚洲熟妇少妇任你| 亚洲成人一二三区av| 久久久久久人人人人人| 欧美激情 高清一区二区三区| 日本黄色日本黄色录像| 伊人亚洲综合成人网| 国产麻豆69| 国产男女内射视频| 久久韩国三级中文字幕| 妹子高潮喷水视频| 青春草视频在线免费观看| 日韩熟女老妇一区二区性免费视频| 天天添夜夜摸| 国产 一区精品| √禁漫天堂资源中文www| 无限看片的www在线观看| 欧美成人精品欧美一级黄| 999久久久国产精品视频| 欧美激情 高清一区二区三区| 纵有疾风起免费观看全集完整版| 少妇人妻久久综合中文| 久久精品久久精品一区二区三区| 观看美女的网站| 少妇 在线观看| 国产成人系列免费观看| 午夜福利在线免费观看网站| 久久精品亚洲av国产电影网| 中国三级夫妇交换| 久久综合国产亚洲精品| 99久久99久久久精品蜜桃| 亚洲成人一二三区av| 亚洲少妇的诱惑av| 天天躁狠狠躁夜夜躁狠狠躁| 国产淫语在线视频| 肉色欧美久久久久久久蜜桃| 亚洲欧洲国产日韩| 人人妻人人添人人爽欧美一区卜| 少妇猛男粗大的猛烈进出视频| 国产精品嫩草影院av在线观看| 婷婷成人精品国产| 狠狠精品人妻久久久久久综合| 久久亚洲国产成人精品v| 亚洲国产日韩一区二区| 大香蕉久久成人网| 欧美日韩亚洲国产一区二区在线观看 | 国产av国产精品国产| 一级a爱视频在线免费观看| 日本欧美视频一区| 两个人免费观看高清视频| 国产精品二区激情视频| 日韩av在线免费看完整版不卡| 国产一区亚洲一区在线观看| 91精品伊人久久大香线蕉| 悠悠久久av| 在线观看一区二区三区激情| 亚洲av电影在线进入| 男人操女人黄网站| 久久久久久久久免费视频了| netflix在线观看网站| 亚洲精品在线美女| 1024香蕉在线观看| 午夜日本视频在线| 国产片内射在线| 精品国产国语对白av| 亚洲图色成人| 国产免费现黄频在线看| 美女主播在线视频| 综合色丁香网| 亚洲精品在线美女| 日日啪夜夜爽| 国产精品二区激情视频| 汤姆久久久久久久影院中文字幕| 亚洲国产中文字幕在线视频| a级毛片黄视频| 在线观看免费视频网站a站| 精品少妇黑人巨大在线播放| 欧美日韩成人在线一区二区| 久久热在线av| 久久人人爽人人片av| 考比视频在线观看| 欧美最新免费一区二区三区| 亚洲国产av新网站| 啦啦啦视频在线资源免费观看| 9热在线视频观看99| 亚洲成人免费av在线播放| 亚洲成人av在线免费| 国产麻豆69| 一本大道久久a久久精品| 国产老妇伦熟女老妇高清| 天天躁夜夜躁狠狠躁躁| 一本色道久久久久久精品综合| svipshipincom国产片| 欧美日韩av久久| 两个人免费观看高清视频| 18在线观看网站| 成年女人毛片免费观看观看9 | 久久99精品国语久久久| 多毛熟女@视频| 亚洲精品第二区| 精品亚洲成国产av| 女人久久www免费人成看片| 日韩不卡一区二区三区视频在线| 热re99久久国产66热| 自线自在国产av| 国产免费现黄频在线看| 色婷婷av一区二区三区视频| svipshipincom国产片| 9热在线视频观看99| 青春草视频在线免费观看| 国产女主播在线喷水免费视频网站| 一级毛片 在线播放| 超碰成人久久| 免费少妇av软件| 永久免费av网站大全| 国产片内射在线| 免费黄色在线免费观看| 午夜福利,免费看| 亚洲精品日韩在线中文字幕| 久久热在线av| 老司机亚洲免费影院| 一区福利在线观看| 母亲3免费完整高清在线观看| svipshipincom国产片| 天堂俺去俺来也www色官网| 精品视频人人做人人爽| 久久久久久久久久久久大奶| 丰满乱子伦码专区| 久久精品久久久久久久性| 深夜精品福利| 国产成人精品在线电影| 日本vs欧美在线观看视频| 免费在线观看视频国产中文字幕亚洲 | kizo精华| 欧美人与性动交α欧美精品济南到| 黄色毛片三级朝国网站| 黑人巨大精品欧美一区二区蜜桃| 90打野战视频偷拍视频| 777米奇影视久久| 在现免费观看毛片| 天天躁狠狠躁夜夜躁狠狠躁| 最近最新中文字幕大全免费视频 | 观看美女的网站| 午夜激情av网站| 欧美黄色片欧美黄色片| av网站免费在线观看视频| 久久ye,这里只有精品| www日本在线高清视频| 人人妻,人人澡人人爽秒播 | 精品亚洲成a人片在线观看| 交换朋友夫妻互换小说| 又大又黄又爽视频免费| 99九九在线精品视频| 在线观看一区二区三区激情| 久久天躁狠狠躁夜夜2o2o | 男男h啪啪无遮挡| 一边摸一边做爽爽视频免费| 国产在线视频一区二区| bbb黄色大片| 最近中文字幕高清免费大全6| av线在线观看网站| 免费观看av网站的网址| 久久影院123| 国产欧美日韩一区二区三区在线| 免费看不卡的av| 美女主播在线视频| 亚洲欧美清纯卡通| 成年动漫av网址| 日韩av不卡免费在线播放| 天美传媒精品一区二区| 少妇 在线观看| 国产一区二区激情短视频 | 啦啦啦 在线观看视频| 国产精品国产三级专区第一集| 我的亚洲天堂| 新久久久久国产一级毛片| 欧美精品一区二区大全| 青青草视频在线视频观看| 少妇人妻精品综合一区二区| 中文字幕人妻丝袜一区二区 | 嫩草影视91久久| 成人毛片60女人毛片免费| 久久久国产一区二区| 精品国产国语对白av| 免费少妇av软件| 久久99精品国语久久久| 亚洲欧美一区二区三区久久| 精品国产一区二区三区四区第35| 又大又爽又粗| 精品卡一卡二卡四卡免费| 天天影视国产精品| 男女边摸边吃奶| 一二三四中文在线观看免费高清| 欧美成人精品欧美一级黄| 亚洲在久久综合| 操美女的视频在线观看| 亚洲欧美精品综合一区二区三区| 国产精品香港三级国产av潘金莲 | 精品国产乱码久久久久久小说| 热99国产精品久久久久久7| 亚洲人成网站在线观看播放| 国产精品无大码| 夜夜骑夜夜射夜夜干| 国产av一区二区精品久久| 国产 一区精品| 老司机深夜福利视频在线观看 | www.精华液| 纯流量卡能插随身wifi吗| 满18在线观看网站| 一边亲一边摸免费视频| 亚洲精品中文字幕在线视频| 中文字幕人妻丝袜制服| 多毛熟女@视频| 日日啪夜夜爽| 最近中文字幕2019免费版| 多毛熟女@视频| 国产欧美日韩一区二区三区在线| 精品免费久久久久久久清纯 | 日韩人妻精品一区2区三区| 美女扒开内裤让男人捅视频| 如何舔出高潮| 另类亚洲欧美激情| 午夜老司机福利片| av女优亚洲男人天堂| 欧美人与善性xxx| 在线观看免费午夜福利视频| 一二三四中文在线观看免费高清| 涩涩av久久男人的天堂| 人人妻人人澡人人爽人人夜夜| 午夜av观看不卡| 王馨瑶露胸无遮挡在线观看| 精品一区二区三卡| 91国产中文字幕| 人人妻人人添人人爽欧美一区卜| 波多野结衣av一区二区av| 91国产中文字幕| av不卡在线播放| 亚洲,欧美,日韩| 精品午夜福利在线看| 亚洲精品国产av蜜桃| 天堂中文最新版在线下载| 久久精品久久精品一区二区三区| 国产深夜福利视频在线观看| 欧美日韩成人在线一区二区| 黄色毛片三级朝国网站| 国产欧美日韩一区二区三区在线| 美女大奶头黄色视频| 国产一区二区 视频在线| 伊人久久大香线蕉亚洲五| 久久精品国产亚洲av高清一级| 在线观看免费午夜福利视频| 夜夜骑夜夜射夜夜干| 91精品三级在线观看| 亚洲熟女精品中文字幕| 男男h啪啪无遮挡| 精品一区二区三卡| 国产精品秋霞免费鲁丝片| 日本欧美国产在线视频| 啦啦啦 在线观看视频| 菩萨蛮人人尽说江南好唐韦庄| 一区二区三区乱码不卡18| 国产又色又爽无遮挡免| 国产精品偷伦视频观看了| 亚洲国产精品成人久久小说| 捣出白浆h1v1| 激情五月婷婷亚洲| 成年av动漫网址| 只有这里有精品99| 亚洲综合精品二区| 亚洲成av片中文字幕在线观看| 国产精品亚洲av一区麻豆 | 人成视频在线观看免费观看| 91精品国产国语对白视频| 女人高潮潮喷娇喘18禁视频| 国产黄频视频在线观看| 制服人妻中文乱码| 国产亚洲精品第一综合不卡| 欧美人与性动交α欧美精品济南到| 一本大道久久a久久精品| 啦啦啦 在线观看视频| 国产精品一区二区在线不卡| 久久久精品区二区三区| 亚洲av日韩在线播放| 欧美国产精品一级二级三级| 久久久久久人人人人人| 亚洲av中文av极速乱| 最近手机中文字幕大全| 国产伦理片在线播放av一区| 国产精品免费大片| 一区二区三区激情视频| 亚洲av欧美aⅴ国产| 久久久精品94久久精品| 亚洲国产欧美日韩在线播放| 一级片免费观看大全| 一区二区三区四区激情视频| 亚洲精品国产av蜜桃| 亚洲欧美一区二区三区黑人| 亚洲成人手机| 精品人妻熟女毛片av久久网站| 久久ye,这里只有精品| 日韩精品免费视频一区二区三区| 国产97色在线日韩免费| 三上悠亚av全集在线观看| 国产黄频视频在线观看| 一二三四在线观看免费中文在| 亚洲国产精品一区二区三区在线| netflix在线观看网站| 美女高潮到喷水免费观看| 91老司机精品| 80岁老熟妇乱子伦牲交| 国产精品人妻久久久影院| 高清在线视频一区二区三区| 99热国产这里只有精品6| 亚洲精品国产区一区二| 最新的欧美精品一区二区| 亚洲国产精品成人久久小说| 你懂的网址亚洲精品在线观看| 色播在线永久视频| 大香蕉久久网| 日韩成人av中文字幕在线观看| 成人漫画全彩无遮挡| 校园人妻丝袜中文字幕| 国产精品国产av在线观看| av网站在线播放免费| 精品人妻一区二区三区麻豆| bbb黄色大片| 亚洲精品中文字幕在线视频| 亚洲精品,欧美精品| 99热全是精品| 亚洲欧美精品自产自拍| 亚洲国产最新在线播放| 精品酒店卫生间| 精品少妇久久久久久888优播| 宅男免费午夜| 多毛熟女@视频| 亚洲精品久久成人aⅴ小说| 一级片'在线观看视频| 亚洲国产毛片av蜜桃av| 操美女的视频在线观看| 国产在线一区二区三区精| 精品一区二区三区四区五区乱码 | 秋霞在线观看毛片| 亚洲av中文av极速乱| 在线免费观看不下载黄p国产| 国产精品 国内视频| 久久久久精品性色| 久久精品国产亚洲av高清一级| 高清欧美精品videossex| 精品一区二区三区av网在线观看 | 伦理电影大哥的女人| 一二三四中文在线观看免费高清| 欧美日本中文国产一区发布| 久久久久久久精品精品| 99re6热这里在线精品视频| 黄色怎么调成土黄色| 亚洲久久久国产精品| 观看美女的网站| 99re6热这里在线精品视频| 久久综合国产亚洲精品| 人妻一区二区av| 久久人人爽av亚洲精品天堂| 午夜免费男女啪啪视频观看| √禁漫天堂资源中文www| 亚洲人成网站在线观看播放| 男女国产视频网站| 精品人妻在线不人妻| 欧美中文综合在线视频| 80岁老熟妇乱子伦牲交| 欧美少妇被猛烈插入视频| 欧美变态另类bdsm刘玥| 亚洲欧洲精品一区二区精品久久久 | 赤兔流量卡办理| 久久久久精品国产欧美久久久 | 成人影院久久| 亚洲人成网站在线观看播放| 亚洲欧洲精品一区二区精品久久久 | 岛国毛片在线播放| 中文字幕高清在线视频| 黑丝袜美女国产一区| av国产久精品久网站免费入址| videosex国产| 毛片一级片免费看久久久久| 老司机影院毛片| 国产免费视频播放在线视频| 久久精品人人爽人人爽视色| 国产免费一区二区三区四区乱码| 国产高清不卡午夜福利| 咕卡用的链子| 狠狠婷婷综合久久久久久88av| 日本欧美国产在线视频| 国产成人精品久久久久久| 成年人午夜在线观看视频| a级毛片在线看网站| 97精品久久久久久久久久精品| 亚洲激情五月婷婷啪啪| 亚洲精品成人av观看孕妇| av在线观看视频网站免费| 天堂俺去俺来也www色官网| 欧美亚洲 丝袜 人妻 在线| 97精品久久久久久久久久精品| 大香蕉久久成人网| 蜜桃国产av成人99| bbb黄色大片| 精品亚洲成a人片在线观看| 国产精品人妻久久久影院| 男人添女人高潮全过程视频| 一级片'在线观看视频| 日韩欧美一区视频在线观看| 国产精品 欧美亚洲| 免费看不卡的av| 少妇人妻久久综合中文| 国产在线一区二区三区精| 久久久久视频综合| 久久精品熟女亚洲av麻豆精品| 伦理电影免费视频| 男女床上黄色一级片免费看| 91精品国产国语对白视频| 叶爱在线成人免费视频播放| 在现免费观看毛片| 男女边摸边吃奶| 亚洲av综合色区一区| 精品国产乱码久久久久久小说| 亚洲少妇的诱惑av| 日韩中文字幕视频在线看片| 午夜福利乱码中文字幕| 久久午夜综合久久蜜桃| www.av在线官网国产| 精品久久久精品久久久| 国产成人精品久久二区二区91 | 欧美黄色片欧美黄色片| 免费观看性生交大片5| 免费高清在线观看日韩| 欧美人与性动交α欧美软件| a级毛片在线看网站| 性色av一级| 99热国产这里只有精品6| 天天躁狠狠躁夜夜躁狠狠躁| 欧美国产精品一级二级三级| 中文字幕人妻丝袜一区二区 | 中文字幕另类日韩欧美亚洲嫩草| 国产精品久久久久久精品电影小说| 最新的欧美精品一区二区| 国产欧美日韩一区二区三区在线| 亚洲免费av在线视频| 男人添女人高潮全过程视频| 国产日韩一区二区三区精品不卡| 啦啦啦 在线观看视频| 一本大道久久a久久精品| 亚洲av国产av综合av卡| 狠狠精品人妻久久久久久综合| 亚洲精品乱久久久久久| 热99久久久久精品小说推荐| 啦啦啦在线免费观看视频4| av.在线天堂| 欧美成人午夜精品| 日本wwww免费看| avwww免费| 久久99热这里只频精品6学生| 99国产综合亚洲精品| a级毛片黄视频| 波多野结衣一区麻豆| 乱人伦中国视频| 成年女人毛片免费观看观看9 | 亚洲三区欧美一区| bbb黄色大片| 亚洲国产看品久久| 9色porny在线观看| 老司机影院毛片| 少妇 在线观看| 午夜老司机福利片| 亚洲精品久久成人aⅴ小说| 亚洲 欧美一区二区三区| 国产伦人伦偷精品视频| 亚洲欧美激情在线| 久久久精品国产亚洲av高清涩受| 国产淫语在线视频| av在线播放精品| 亚洲国产精品一区二区三区在线| 久久精品久久久久久久性| bbb黄色大片| 99久久人妻综合| 菩萨蛮人人尽说江南好唐韦庄| 国产精品香港三级国产av潘金莲 | √禁漫天堂资源中文www| 精品少妇黑人巨大在线播放|