• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis,Characterization and Antimicrobial Screening of Various Ferrocenyl Schiff Bases against Gram?positive and Gram?negative Bacteria

    2022-04-18 01:50:44OladejiOlatundeIkhileMonisolaMamoMessaiNdunguPatrickNdintehDerek
    無機(jī)化學(xué)學(xué)報 2022年4期

    Oladeji S.Olatunde Ikhile I.Monisola Mamo Messai Ndungu G.Patrick Ndinteh T.Derek

    (Department of Chemical Sciences,Faculty of Science,University of Johannesburg,Johannesburg,South Africa)

    Abstract:Ten ferrocenyl Schiff bases 1?10 were synthesized and characterized using UV?Vis spectroscopy,FT?IR,elemental analysis,1H and13C NMR spectroscopy.The synthesized compounds were evaluated against 11 bacteria strains(Bacillus subtilis ATCC19659,Klebsiella aerogenes ATCC13882,Enterococcus faecalis ATCC13047,Myco?bacterium smegmatis MC2155,Staphylococcus epidermidis ATCC14990,Staphylococcus aureus ATCC25923,Esche?richia coli ATCC25922,Enterobacter cloacae ATCC13047,Klebsiella oxytoca ATCC8724,Proteus mirabilis ATCC7002,Proteus vulgaris ATCC6380).The results obtained from antibacterial assay indicated that the synthe?sized Schiff bases 1?10 inhibited potential growth of Klebsiella aerogenes with the minimum inhibitory concentration(MIC)ranging from 15.6 to 31.25 μg·mL?1and Enterococcus faecalis with MIC the range between 31.25 and 125 μg·mL?1in comparison with the standard nalidixic acid and streptomycin sulfate.

    Keywords:antibacterial;Schiff bases;nalidixic;synthesis;inhibition

    0 Introduction

    Cyclopentadienyl iron also known as ferrocene is a very important and precious compound that was discovered through a serendipitous process and its structure was determined over six decades ago[1?5].The discovery and determination of ferrocene structure have been positively influenced the growth of inorganic and bio?organometallic chemistry rapidly[6?7].Therefore,ferrocene?based organometallic compounds have attracted the attention of many researchers,especially in recent times based on their uncountable applica?tions.These numerous applications of ferrocene are attributed to its readily accessible reversible redox cou?ple,the stability of the ferrocene scaffold to air,temper?ature,and moisture[8].Also,the ability to easily func?tionalize the cyclopentadienyl rings in ferrocene skele?ton via electrophilic substitution which had led to the synthesis of monosubstituted,1,1′?disubstituted or 1,2?disubstituted ferrocenyl moieties is an advantage.In addition,its sufficient structural rigidity in a building block that gives an appropriate chiral environment[7,9]has made ferrocene a molecule of choice in organome?tallic synthesis.

    It is important to note that ferrocene exhibited low cytotoxicity in biological systems as a result of its pos?session of aπ?conjugated system which resulted in its ability to transfer electrons easily[10].The cytotoxicity of its metabolites towards tumors[11]and its lipophilicity ability renders ferrocene derivatives to be a good mem?ber for the determination of biological activities[12].Fur?thermore,ferrocenyl compounds containing heteroatom like nitrogen,oxygen,sulfur have received much atten?tion in the last couple of decades as a result of their superior stability to function in various applications such as medicinal application[13?21],material science[22],catalysis[23?25],and electrochemistry[26?27].

    Ferrocenyl Schiff bases containing imine function?al groups have been well studied due to their ability to reversibly bind oxygen[28?29],their redox system[30?31],and oxidative in DNA[32].Also,they were examined to exploit their redox properties in various applica?tions[33?34].Imine Schiff bases have been found to show good biological activities in the treatment of pathogen activities such as tuberculosis[35],antibacterial[36?38],anti?fungal[39],antitumor[40],antiviral[40],and herbicidal due to the presence of azomethine linkage(C=N—)pres?ent in living systems[41].Therefore,the incorporation of the imine functional group into ferrocenyl moieties will enhance their biological activities.

    For this study,various ferrocenyl Schiff bases(1?10)were synthesized via refluxing with different aro?matic aldehydes.The reduction of nitro derivatives was achieved via Sn/HCl[42]and finally,the ferrocenyl Schiff bases were characterized and tested against elev?en strains of bacteria.

    1 Experimental

    1.1 Materials and methods

    All chemicals used for the synthesis of the ferroce?nyl Schiff bases were purchased from Sigma Aldrich and Protea laboratory solutions(Pty)Ltd.,South Africa.Dry ethanol was used under nitrogen conditions.Other chemicals were used without further purification.Bruk?er topspin1H NMR(500 MHz)and13C NMR(125 MHz)were used to elucidate the compounds.FT?IR spectra were recorded on a PerkinElmer(spectrum 100)FT?IR Spectrometer while the UV?Vis spectrome?try analysis was determined using Agilent Technolo?gies Cary 60 UV?Vis.The melting points were carryout using Agilent 100 Melting point.The mass spectrome?try analysis of sample 1?10 was performed on a Bruker Compact Q?TOF high?resolution Compact mass spec?trophotometer.A 10 μL of the sample was injected into the UHPLC and run through a loop at 50% solvent A consisting of 0.1% formic acid in H2O(V/V)and 50% solvent B consisting of 0.1% formic acid in acetonitrile(V/V).The elemental analyses were recorded on 2400 series llCHNS/PerkinElmer analyzer.The antibacterial testing was carried out with 11 bacteria strains which consisted of Gram?positive and gram?negative bacteria(Bacillussubtilis(B.subtilis)ATCC19659,Klebsiella aerogenes(K.anogeneus)ATCC13882,Enterococcus faecalis(E.faecalis)ATCC13047,Mycobacteriumsmeg?matis(M.smegmatis)MC2155,Staphylococcusepider?midis(S.epidermidis)ATCC14990,Staphylococcusau?reus(S.aureus)ATCC25923,Escherichiacoli(E.coli)ATCC25922,Enterobactercloacae(E.cloacae)ATCC13047,Klebsiellaoxytoca(K.oxytoca)ATCC8724,Proteusmirabilis(P.mirabilis)ATCC7002,Proteusvulgaris(P.vulgaris)ATCC6380).They were purchased from the Centre of Excellence in Biomedical TB Research,University of the Witwa?tersrand,and were cultured overnight in Mueller?Hinton broth(Merck Chemicals,SA)at 25℃.The turbidity of the culture solutions was adjusted to match a 0.5 McFarland standard within 15 min before anti?bacterial testing.

    1.2 Preparation of 3?nitrophenyferrocene

    According to the procedure already published by Ikhile et al.[42],3?nitroaniline(13.4 g,96.8 mmol),30 mL of concentrated hydrochloric acid,and 30 mL of water were mixed in a two?necked round bottom flask and cooled to 0?5 ℃.Thereafter,a specific amount of sodium nitrite(9.0 g,130.44 mmol)solution was added dropwise with stirring.The mixture was stirred further for an additional 30 min and kept at a temperature below 5℃throughout this period.The mixed ferrocene(9.0 g,48.37 mmol)and hexadecyltrimethylammonium bromide were added to 100 mL of diethyl ether and cooled to 0?5 ℃.The diazonium salt was added drop?wise and the mixture was stirred for an additional 5?6 h at room temperature.Lastly,the reaction mixture was extracted with dichloromethane and dried with dehy?drated sodium sulfate and the crude extract was evapo?rated using a rotary evaporator.The product was dried in a vacuum,and an orange powder was given(13.2 g,90%).m.p.112.5?112.9 ℃.UV?Vis:λmax=447 nm.FT?IR(KBr,cm?1):3 087,2 937,2 864,1 591,1 519,1 339,1 102,1 001,890,802,741.1H NMR(500 MHz,CDCl3):δ8.23(d,1H,J=7.8 Hz,C6H4),8.01(d,1H,J=7.8Hz,C6H4),7.76(d,1H,J=7.8Hz,C6H4),7.53(t,1H,J=8.1 Hz,C6H4)4.70(s,2H,C5H4),4.39(s,2H,C5H4),4.04(s,5H,C5H5).13C NMR(125 MHz,CDCl3):δ148.57,148.16,142.17,135.36,134.72,131.73,130.44,129.32,123.82,123.06,121.69,120.45,120.30,82.44,69.92,66.82.Anal.Calcd.for C16H13FeNO2(%):H,4.27;C,62.57;N,4.56.Found(%):H,4.25;C,62.59;N,4.60.

    1.3 Preparation of 3?ferrocenylaniline

    3?Nitrophenylferrocene(4.02 g,13.09 mmol)was added to 30 mL of concentrated hydrochloric acid and 40 mL of ethanol containing granulated tin(8.82 g,74.29 mmol)according to the already published meth?od[42].The reaction mixture was heated to reflux at 110℃for 5 h.After cooling the reaction,150 mL of water was added together with NaOH to adjust the pH value to 14 and thereafter the mixture was filtered.The filtrate was extracted with water and dichloromethane(DCM)and the organic layer was dried with(Na2SO4).Rotary evaporation was used to remove the solvent.The concentrated crude was subjected to thin?layer chroma?tography(TLC)using hex/DCM(1∶1,V/V)and finally subjected to column chromatography as the eluent to give a pure compound.The product was dried in a vacuum,and an orange powder was given(2.1 g,91%).m.p.128?128.5 ℃.UV?Vis:λmax=447 nm.FT?IR(KBr,cm?1):3 441,3 357,3 103,2 919,2 720,1 598,1 513,1 465,1 307,1 232,1 169,1 100,999,810.1H NMR(500 MHz,CDCl3):δ7.13(d,1H,J=7.8 Hz,C6H4),6.96(dd,1H,J=5.0 Hz,C6H4),6.84(s,1H,C6H4),6.56(d,1H,J=7.8 Hz,C6H4),4.62(s,2H,C5H4),4.31(s,2H,C5H4),4.08(s,5H,C5H5),3.69(s,2H,NH2).13C NMR(125 MHz,CDCl3):δ146.26,140.29,129.18,117.06,113.06,112.89,85.65,69.57,68.69,66.52.Anal.Calcd.for C16H15FeN(%):H,5.39;C,69.12;N,5.08.Found(%):H,5.46;C,69.34;N,5.05.

    1.4 General procedure for synthesis of ferrocenyl Schiff bases(1?10)

    The synthesis of nitrophenylferrocene was carried out via arylation of ferrocene by diazonium salt under phase?transfer conditions and thereafter,the nitro derivatives were reduced using Sn/HCl to obtain ferro?cenylaniline(Scheme 1).Furthermore,aromatic alde?hydes were reacted with ferrocenylaniline to form imine(Scheme 2 and 3).The reactions were performed under nitrogen conditions.

    Scheme 1 Synthesis of 3?nitrophenylferrocene and 3?ferrocenylaniline

    1:R1=OCH3,R2=OCH3,R3=R4=H;2:R1=OH,R3=OH,R2=R4=H;3:R3=Cl,R1=R2=R4=H;4:R3=NO2,R1=R2=R4=H;6:R1=NO2,R3=NO2,R2=R4=H;7:R3=NH(C8H9),R1=R2=R4=H;8:R2=Br,R1=R3=R4=H;9:R2=NO2,R1=R3=R4=HScheme 2 Synthesis of 3?ferrocenylphenylimine Schiff bases 1?4 and 6?9

    5:X=S;10:X=OScheme 3 Synthesis of 3?ferrocenylphenylimine Schiff bases 5 and 10

    An equal volume of 3?ferrocenylaniline and aro?matic aldehyde were mixed and dissolved with 15 mL dried ethanol in a two?necked flask equipped with a magnetic stirrer.The reaction was performed under a reflux atmosphere and the mixture was heated for 5?6 h.Thereafter,the TLC was used to determine the for?mation of 1?10 after 5?6 h.A pressure vacuum was adopted to remove the solvent.

    1.4.1 Synthesis ofN?(2,3?dimethoxy?benzylidene)?3?ferrocenylimine(1)

    3?Ferrocenylanline(0.036 g,0.21 mmol)and 2,3?dimethoxybenzaldehydes(0.034 g,0.23 mmol)were used.The product was collected as brownish colour powder(0.051 3 g,63%).m.p.240.5?242.3 ℃.UV?Vis(nm):261,304,325,454.FT ?IR(KBr,cm?1):3 088(Ar—H),2942,2 873,2 830,2 753,1 680(CH=N),1 581(C=C),1 475,1 384,1 311,1 258(Cp),1 173(ν—C—O),1 068(ν—C—O),996,906,784,751(Fe?Cp).1H NMR(500 MHz,CDCl3):δ10.46(s,1H,N=CH),8.93(s,1H,C6H3),7.80(dd,1H,J=5.0 Hz,C6H3),7.38(d,1H,J=7.8 Hz,C6H3),7.34(t,2H,J=1.8 Hz,C6H3),7.17(t,1H,J=1.8 Hz,C6H3),7.07(dd,1H,J=5.0 Hz,C6H3),4.71(s,2H,C5H4),4.35(s,2H,C5H4),4.09(s,5H,C5H5),4.02(s,3H,OCH3),3.96(s,3H,OCH3).13C NMR(125 MHz,CDCl3):δ190.14,156.49,153.05,152.92,150.26,140.40,129.98,129.04,124.30,124.14,123.78,119.29,119.03,118.16,117.91,115.14,85.06,69.64,68.97,66.63,56.07,55.96.HRMS(ESI):m/zCalcd.for C25H23FeNO2:425.300 6;Found([M+H]+):426.110 2.Anal.Calcd.for C25H23FeNO2(%):H,5.45;C,70.60;N,3.29.Found(%):H,5.54;C,70.62;N,3.19.

    1.4.2 Synthesis ofN?(2,4?dihydroxyl?benzylidene)?3?ferrocenylimine(2)

    3?Ferrocenylanline(0.040 g,0.23 mmol)and 2,4?dihydroxylbenzaldehydes(0.048 g,0.25 mmol)were used.The product was collected as orange colour pow?der(0.073 3 g,81%).m.p.250.2?251.5 ℃.UV?Vis(nm):235,275,327,430.FT ?IR(KBr,cm?1):3 329(—OH),3 096(Ar—H),2 861,1 668(CH=N),1 585(C=C),1 495,1 439,1 326,1 223(Cp),1 159,1 120,973,800(Fe?Cp).1H NMR(500 MHz,CDCl3):δ11.24(s,1H,OH),9.73(s,1H,N=CH),8.55(s,1H,C6H3),7.46(d,2H,J=7.8 Hz,C6H3),7.35(s,1H,C6H5),7.12(d,1H,J=7.8 Hz,C6H4),6.42(d,1H,J=7.8 Hz,C6H4),6.52(m,2H,C6H4),4.70(s,2H,C5H4),4.37(s,2H,C5H4),4.09(s,5H,C5H5).13C NMR(125 MHz,CDCl3):δ194.34,164.45,163.47,160.73,141.10,136.05,134.34,129.39,124.40,118.66,117.69,115.55,108.69,107.71,103.70,103.18,84.48,69.67,69.18,66.61.HRMS(ESI):m/zCalcd.for C23H19FeNO2:397.247 3;Found([M+H]+):398.079 7.Anal.Calcd.for C23H19FeNO2(%):H,4.82;C,69.54;N,3.53.Found(%):H,4.81;C,69.27;N,3.50.

    1.4.3 Synthesis ofN?(4?chlorobenzylidene)?3?ferroce?nylimine(3)

    3?Ferrocenylanline(0.048 g,0.27 mmol)and 4?chlorobenzaldehydes(0.042 g,0.30 mmol)were used.The product was collected as yellow colour powder(0.094 1 g,87%).m.p.224.8?226.5 ℃.UV?Vis(nm):262,301,330,454.FT?IR(KBr,cm?1):3 099(Ar?H),2922,2864,1681,1657(CH=N),1578,1365,1285,1 166,1 084,1 008(Cp),813,710(Fc?Cp).1H NMR(500 MHz,CDCl3):δ10.01(s,1H,N=CH),8.50(s,1H,C6H4),7.91(d,2H,J=7.8 Hz,C6H4),7.50(d,2H,J=7.8 Hz,C6H4),7.36(dd,1H,J=5.0 Hz,C6H4),7.34(t,1H,J=1.8 Hz,C6H4),7.05(dd,1H,J=5.0 Hz,C6H4),4.71(s,2H,C5H4),4.36(s,2H,C5H4),4.09(s,5H,C5H5).13C NMR(125 MHz,CDCl3):δ190.76,158.79,151.84,140.58,137.42,134.77,130.89,129.47,129.14,129.11,124.02,118.93,117.73,117.06,113.06,112.90,84.84,69.65,69.06,66.58.HRMS(ESI):m/zCalcd.for C23H18FeNCl:399.693 7;Found([M+H]+):400.049 7.Anal.Calcd.for C23H18FeNCl(%):H,4.54;C,69.11;N,3.50.Found(%):H,4.48;C,69.17;N,3.57.

    1.4.4 Synthesis ofN?(4?nitrobenzylidene)?3?ferroce?nylimine(4)

    3?Ferrocenylanline(0.040 g,0.23 mmol)and 4?nitrobenzaldehydes(0.035 g,0.23 mmol).The product was collected as gold colour powder(0.081 0 g,86%).m.p.330.5?332.5 ℃.UV?Vis(nm):287,300,352,463.FT?IR(KBr,cm?1):3 097(Ar?H),2 934,2 853,1 702,1 660,1 511,1 338(C—N),1 192,1 101,1 003(Cp),840,678(Fe?Cp).1H NMR(500 MHz,CDCl3):δ10.19(s,1H,N=CH),8.63(s,1H,C6H4),8.40(dd,2H,J=5.0 Hz,C6H4),8.12(dd,2H,J=5.0 Hz,C6H4),7.45(d,1H,J=7.8 Hz,C6H4),7.37(t,1H,J=1.8 Hz,C6H4),7.10(d,1H,J=7.8 Hz,C6H4),4.72(s,2H,C5H4),4.37(s,2H,C5H4),4.09(s,5H,C5H5).13C NMR(125 MHz,CDCl3):δ190.14,157.80,151.12,147.14,141.63,141.14,140.88,130.44,129.42,124.80,124.30,119.04,84.57,69.66,69.15,66.60.HRMS(ESI):m/zCalcd.for C23H18FeN2O2:410.246 2;Found([M+H]+):411.051 1.Anal.Calcd.for C23H18FeN2O2(%):H,4.42;C,67.34;N,6.83.Found(%):H,4.68;C,67.41;N,6.72.

    1.4.5 Synthesis ofN?(2?thiophenecarboxbenzylidene)?3?ferrocenylimine(5)

    3?Ferrocenylanline(0.044 g,0.25 mmol)and 2?thiophenecarboxaldehyde(0.034 mL,170 mmol)were used.The product was collected as faint yellow colour powder(0.0701 g,76%).m.p.196.6?198.5 ℃.UV?Vis(nm):260,300,333,461.FT?IR(KBr,cm?1):3 099(Ar?H),2 934,2 873,2 753,1 680(N=CH),1 579(C=C),1 430,1 384,1 264,1 183,1 069(Cp),998,906,751(C—S),656(Fe?Cp).1H NMR(500 MHz,CDCl3):δ8.64(s,1H,N=CH),7.55(dd,2H,J=5.0 Hz,C4H5?S),7.37(dd,1H,J=5.0 Hz,C6H4),7.34(t,2H,J=1.8 Hz,C6H4),7.18(d,1H,J=7.8 Hz,C6H4),7.06(d,1H,J=7.8 Hz,C6H4),4.71(s,2H,C5H4),4.35(s,2H,C5H4),4.08(s,5H,C5H4).13C NMR(125 MHz,CDCl3):δ152.99,151.61,142.91,140.46,132.12,130.00,129.06,127.74,123,64,119.13,69.63,69.00,66.55.HRMS(ESI):m/zCalcd.for C21H17FeNS:371.276 4;Found([M+H]+):372.045 7.Anal.Calcd.for C21H17FeNS(%):H,4.62;C,67.93;N,3.77.Found(%):H,4.71;C,67.91;N,3.68.

    1.4.6 Synthesis ofN?(2,4?dinitrobenzylidene)?3?ferro?cenylimine(6)

    3?Ferrocenylanline(0.040 g,0.23 mmol)and 2,4?dinitrobenzylidene(0.045 g,0.23 mmol)were used.The product was collected as black powder(0.071 1 g,74%).m.p.235.8?236.5 ℃.UV?Vis(nm):261,296,360,465.FT?IR(KBr,cm?1):3 095(Ar?H),2 936,2 853,1 676(CH=N),1 531(C=C),1 338(C—N),1 194,1 101,1 003(Cp),845(Fe?Cp).1H NMR(500 MHz,CDCl3):δ10.19(s,1H,N=CH),8.65(s,1H,C6H4),8.40(dd,2H,J=5.0 Hz,C6H4),7.54(d,2H,J=7.8 Hz,C6H4),7.36(t,1H,J=1.8 Hz,C6H4),7.10(d,1H,J=7.8 Hz,C6H4),4.71(s,2H,C5H4),4.37(s,2H,C5H4),4.09(s,5H,C5H5).13CNMR(125MHz,CDCl3):δ151.20,149.03,148.40,147.46,140.43,136.16,131.23,127.35,126.85,121.89,120.35,84.11,69.74,69.46,66.60.HRMS(ESI):m/zCalcd.for C23H17FeN3O4:455.243 8;Found([M+H]+):456.057 1.Anal.Calcd.for C23H17FeN3O4(%):H,3.76;C,60.68;N,9.23.Found(%):H,3.62;C,60.67;N,9.37.

    1.4.7 Synthesis ofN?(4?dimethyaminobenzylidene)?3?ferrocenylimine(7)

    3?Ferrocenylanline(0.040 g,0.23 mmol)and 4?dimethyaminobenzaldehydes(0.038 g,0.25 mmol)were used.The product was collected as armor yellow colour powder(0.064 4 g,69%).m.p.210.6?212.5 ℃.UV?Vis(nm):236,266,343,442.FT?IR(KBr,cm?1):3 095(Ar?H),2 926,2 811,1 663(CH=N),1 585(C=C),1 443,1 437,1 361(C—N),1 231,1 159,1 003(Cp),973,808(Fe?Cp).1H NMR(500 MHz,CDCl3):δ9.77(s,1H,N=CH),8.39(s,1H,C6H4),7.83(d,1H,J=7.8 Hz,C6H4),7.77(d,1H,J=7.8 Hz,C6H4),7.33(t,1H,J=1.8 Hz,C6H4),6.79(dd,2H,J=5.0 Hz,C6H4),6.74(dd,2H,J=5.0 Hz,C6H4),4.71(s,2H,C5H4),4.33(s,2H,C5H4),4.08(s,5H,C5H5),3.11(s,3H,N—CH3),3.09(s,3H,N—CH3).13C NMR(125 MHz,CDCl3):δ190.04,152.90,140.42,131.98,130.50,128.96,119.06,117.96,111.64,111.04,85.06,69.63,68.88,66.57,40.18,40.06.HRMS(ESI):m/zCalcd.for C25H24FeN2:408.316 5;Found([M+H]+):409.133 2.Anal.Calcd.for C25H24FeN2(%):H,5.92;C,73.54;N,6.86.Found(%):H,5.60;C,73.58;N,6.88.

    1.4.8 Synthesis ofN?(3?bromobenzylidene)?3?ferroce?nylimine(8)

    3?Ferrocenylanline(0.094 g,0.53 mmol)and 3?bromobenzaldehyde(0.103 g,0.56 mmol)were used.The product was collected as orange colour powder(0.175 1 g,74%).m.p.210.4?212.8 ℃.UV?Vis(nm):262,299,321,458.FT?IR(KBr,cm?1):3 062(Ar?H),2 931,2 824,2 546,1 689(CH=N),1 565(C=C),1 467,1 420,1 286,1 186,1 062(—Br),933,746(Fe?Cp).1H NMR(500 MHz,CDCl3):δ9.52(s,1H,N=CH),8.50(s,1H,C6H4),7.91(d,2H,J=7.8 Hz,C6H4),7.50(d,2H,J=7.8 Hz,C6H4),7.36(dd,1H,J=5.0 Hz,C6H4),7.35(t,1H,J=1.8 Hz,C6H4),7.05(dd,1H,J=5.0 Hz,C6H4),4.71(s,2H,C5H4),4.36(s,2H,C5H4),4.09(s,5H,C5H5).13C NMR(125 MHz,CDCl3):δ190.73,158.61,151.54,140.58,137.31,134.23,130.89,129.47,129.14,129.11,127.64,124.20,119.00,84.76,69.65,69.06,66.58.HRMS(ESI):m/zCalcd.for C23H18FeBrN:444.144 7;Found([M+H]+):445.000 6.Anal.Calcd.for C23H18FeBrN(%):H,4.08;C,62.20;N,3.15.Found(%):H,4.13;C,62.27;N,3.17.

    1.4.9 Synthesis ofN?(3?nitrobenzylidene)?3?ferroce?nylimine(9)

    3?Ferrocenylanline(0.040 g,0.23 mmol)and 3?nitrobenzaldehydes(0.035 g,0.23 mmol)were used.The product was collected as gold colour powder(0.731 g,78%).m.p.335.5?337.5 ℃.UV?Vis(nm):259,296,328,441.FT?IR(KBr,cm?1):3 085(Ar?H),2 936,2 853,1 701,1 665(CH=N),1 531,1 346(NO2),1 192,1 101,1 002(Cp),841,731(Fc?Cp).1H NMR(500 MHz,CDCl3):δ10.19(s,1H,N=CH),8.64(s,1H,C6H4),8.40(dd,2H,J=5.0 Hz,C6H4),8.12(dd,2H,J=5.0 Hz,C6H4),7.55(d,1H,J=8.7 Hz,C6H4),7.36(t,1H,J=1.8 Hz,C6H4),7.10(d,1H,J=7.8 Hz,C6H4),4.72(s,2H,C5H4),4.37(s,2H,C5H4),4.09(s,5H,C5H5).13CNMR(125 MHz,CDCl3):δ189.65,157.18,151.03,148.77,140.89,137.43,134.57,134.09,130.37,129.82,124.66,124.30,119.08,84.61,69.66,69.15,66.60.HRMS(ESI):m/zCalcd.for C23H18FeN2O2:410.246 2;Found([M+H]+):411.074 3.Anal.Calcd.for C23H18FeN2O2(%):H,4.42;C,67.34;N,6.83.Found(%):H,4.48;C,67.41;N,6.72.

    1.4.10 Synthesis ofN?(2?furabenzylidene)?3?ferroce?nylimine(10)

    3?Ferrocenylanline(0.096 g,0.55 mmol)and 2?furaldehyde(0.092 g,0.96 mmol)were used.The prod?uct was collected as black colour powder(0.140 7 g,76%).m.p.193.5?195.2 ℃;UV?Vis(nm):259,298,329,466.FT?IR(KBr,cm?1):3 357(C—O),3 092(Ar?H),2 865,1 676(CH=N),1 594,1 464,1 389,1 338,1 277,1 230,1 155,1 010(Cp),928,882,812,749(Fc?Cp).1H NMR(500 MHz,CDCl3):δ9.70(s,1H,N=CH),8.37(s,1H,C6H4),7.69(d,1H,J=7.8 Hz,—OC4H3),7.43(t,1H,J=1.8 Hz,C6H4),7.34(t,1H,J=1.5 Hz,—OC4H3),7.09(dd,1H,J=5.0 Hz,—OC4H3),6.61(dd,1H,J=5.0 Hz,C6H4),6.40(d,1H,J=7.8 Hz,C6H4),4.70(s,2H,C5H4),4.35(s,2H,C5H4),4.08(s,5H,C5H5).13C NMR(125 MHz,CDCl3):δ177.86,153.07,148.01,147.65,145.69,140.55,129.11,124.00,119.62,117.49,116.27,112.55,112.19,69.64,69.03,66.55.HRMS(ESI):m/zCalcd.for C21H17FeNO:355.210 8;Found([M+H]+):356.067 9.Anal.Calcd.for C21H17FeNO(%):H,4.82;C,71.01;N,3.94.Found(%):H,4.82;C,70.80;N,3.21.

    All the spectra of the compounds can be found in Supporting information.

    1.5 Antibacterial testing

    Antibacterial studies of the ferrocenyl Schiff bas?es were carried out by determining the minimum inhibi?tory concentration(MIC)of all the strains through broth microdilution assay described by Andrew[43].The test compounds were accurately weighed and dissolved in DMSO to yield 1 mg·mL?1.The dissolved compounds were then serially diluted in Mueller?Hinton broth till the lowest volume of 100 μL.All dilutions were tested five?fold against each bacterial strain.100 μL of the bacterial suspension was mixed with 100 μL of the pre?diluted test compound in a 96 microwell plate and left to incubate overnight at 37℃.A 0.02% resazurin dye(10 μL)as the solution was added to each well and the plates were re?incubated for 2 h.Visual change of the solution from blue to pink indicated that the bacteria were still alive.MIC was determined as the minimum concentration of a compound where no color change could be observed.The MICs of all strains tested were compared to two reference antibiotics(nalidixic acid and streptomycin sulfate).This was because whilst streptomycin is a broad?based antibiotic,nalidixic acid is exclusively active against Gram?negative bacteria[44].

    2 Results and discussion

    2.1 FT?IR and NMR analysis

    The synthesized compounds were characterized using FT?IR spectroscopy and the absorption bands at 3 441 and 3 357 cm?1correspond to the N—H stretch?ing band of aniline on aromatic compounds while the bands at 3 103 and 2 919 cm?1are attributed to the C—H band of symmetric and asymmetric stretching of aromatic compounds[45].The formations of the pure products were monitored using TLC in conjunction with FT?IR.

    All ferrocenyl Schiff bases revealed the absence of N—H and disappearance of C=O stretching peak at 1 720?1 712 cm?1on aldehyde compound,and the appearance of absorption at 1 681?1 669 cm?1indicate the formation of C=N imine functional group[42,45].The vibrational stretching of the C—N band for all ferroce?nyl Schiff bases appeared at 1 361 ?1 330 cm?1while the presence of 3 329 cm?1indicates the vibrational stretching of the—OH group on aromatic moieties[45].

    The1H NMR and13C NMR spectra of the synthe?sized Schiff bases were recorded in CDCl3relative to the reference TMS.In1H NMR spectra of all azome?thine compounds,the CH=N proton happens to be the most de?shielded and it appeared as a singletδranging from 8.45 to 10.46 while aromatic protons showed their signals in theδrange of 7.45?8.42.Four distinct pro?tons are directly attached to benzene indicating a dou?blet and doublet of double.Substituted cyclopentadi?ene attached to an aromatic compound contains two types of protons,which appeared as two singlets atδ=4.3 and 4.7,respectively.Furthermore,the unsubstitut?ed five protons of cyclopentadiene that are attached directly to ferrocene were chemically equivalent and showed one singlet atδ=4.0.13C NMR spectra revealed azomethine carbon to be the most de?shielded,which appeared in aδrange of 152 ?190.Aromatic carbon atoms showed their signals atδ=124,129,134,and 158,respectively.Carbon atoms of the ferrocenyl moi?ety appeared atδ=66.6,69.0,69.6,respectively[42,45].

    2.2 UV?Vis spectroscopy

    The UV?Vis spectroscopy analysis shown in Fig.1 and Table 1 revealed three major absorptions in the ranges of 200?300 nm,300?400 nm,and 400?425 nm.The absorption peaks in 200?300 nm are assigned toπ?π* transition of metal?to?ligand charge transfer(MLCT),which permits the charge transferred from cyclopentadienyl to be delocalized while the absorption in the range between 300 and 400 nm corresponds ton?π*transition of the aromatic compound of Schiff bases.Furthermore,the absorption peaks in 400?425 nm are ascribed ton?π*intramolecular charge transfer(ICT)of lone pairs of the electron from imine nitrogen atom(N=CH)to antibondingπorbital in conjunction with the Schiff base derivative[6].

    Fig.1 UV?Vis absorption for Schiff bases 1?10

    Table 1 UV?Vis spectroscopy bands of 3?ferrocenylphenylimine Schiff bases 1?10 nm

    2.3 Antibacterial analysis

    The potent activities of the synthesized com?pounds 1?10 were investigated against eleven microbes of bacteria strains.The antibacterial result is shown in Table 2.Compounds 1 and 2 show significant activities againstK.anogeneusandE.faecalisthan the reported standard streptomycin sulfate with the MIC of 31.25 μg·mL?1and nalidixic acid with the MIC range of 15.6?125 μg·mL?1.The presence of electron?donating groups of their substituents is attributed to it which shows that the biological activities of the ferrocene?containing compounds could be very active against microbes when more electron donor substituents are attached with ferrocene molecules[33].This will also interest you to know that all the synthesized compounds 1?10 show more significant active activities than the reported stan?dards againstK.anogeneuswith the MICs range of 15.6?31.25 μg·mL?1andE.faecaliswith the MIC range of 31.25?125 μg·mL?1except for 4.Their good activities could be attributed to the good lipophilic nature of dif?ferent substituents attached to imine Schiff bases,which allows easy permeation of the compounds through the lipoid layer of the microbial membrane.This is surprising as it is against the studies carried out by Muhammad et al.[45],where all the compounds show no good activities against six tested microbes[45].Theelectron?withdrawing group on aromatic compound 4 mitigates the potent of 4 against theK.anogeneusby disallowing 4 penetration into the lipoid layer of the microorganism membrane.Furthermore,the activities of 6 and 7 compounds againstB.subtilismicroorganism revealed good potent than the standards with the MIC of 15.62 μg·mL?1as against the streptomycin and nali?dixic acid having MIC value of 16 μg·mL?1,which is attributed to the strong electron?withdrawing group of the nitro couple with ferrocene molecule which facili?tates easy penetration into the lipoid layer of microbe while others show a relatively high value than the reported standards.

    Table 2 Potential inhibitory activities of the synthesized compounds against eleven strains of bacteria μg·mL?1

    A similar trend was also observed withS.aureusandE.cloacaemicroorganisms against all tested com?pounds 1?10.They showed superior activities than stan?dard streptomycin sulfate with the MIC range of 125?250 μg·mL?1forS.aureusand the MIC range of 62.5?250 μg·mL?1forE.cloacae.Although,we observed relatively low activities for compounds 1?10 againstS.aureusandE.cloacaethan the reported standard nalidixic acid(MIC of 64 and 16 μg·mL?1).However,most of the compounds display good activities againstE.coli,while compounds 1,2,and 4 exhibited weak activities when compared with the standards(MIC of 54 and>512 μg·mL?1),which could be attributed to the strong electron?donating effect of their attached substituents.Also,againstM.smegmatisthe tested compounds show high activities than streptomycin stan?dard and show weak activities than nalidixic acid with MIC of<4 and>512 μg·mL?1.It could be observed that all compounds displayed different activities and the antibacterial activity of compounds 1?10 againstE.coliandS.aureusmicrobes are similar to the report?ed activities of the compounds H1?H12and L1,L6,L11by Liu et al[46].Generally,most of the compounds displayed weak to mild activities against certain micro?bial organisms at the prepared concentration of 500 μg·mL?1.These activities could be attributed to the redox behavior of the central ferrocenyl moiety which inhibits their penetration ability through the lipoid layer of the microorganism membrane[45].

    3 Conclusions

    Ten compounds were successfully synthesized,characterized by various techniques like FT?IR,UV?Vis spectroscopy,NMR,and tested against eleven strains of bacteria under a sterilized condition.The results displayed a good activity of compounds 1?10 againstK.aerogeneswith MIC ranging from 15.6 to 31.25 μg·mL?1and againstE.faecaliswith the MIC ranges between 31.25 and 125 μg·mL?1except for compound 4.6 and 7 also displayed good activities againstB.subtiliswith the MIC of 15.62 μg·mL?1.It was also observed that most compounds experienced low to mild activities against some microorganisms.Therefore,to understand the full biological potential activity of 1?10 compounds,there is a need to perform other activities such as antifungal,cytotoxicity,and minimum bactericidal concentration(MBC)to ascer?tain their level of performance against various microor?ganisms.

    Acknowledgments:All the authors are very grateful to the Department of Applied Chemistry,the University of Johan?nesburg for providing an enabling condition and funding to carry out this project.

    Supporting information is available at http://www.wjhxxb.cn

    九色国产91popny在线| 亚洲男人的天堂狠狠| 女人精品久久久久毛片| 首页视频小说图片口味搜索| 欧美色欧美亚洲另类二区 | 嫩草影视91久久| 国产野战对白在线观看| 亚洲国产精品sss在线观看| 国产又色又爽无遮挡免费看| 黄片小视频在线播放| 美女高潮到喷水免费观看| 在线免费观看的www视频| 波多野结衣巨乳人妻| 一区二区三区国产精品乱码| 亚洲 欧美 日韩 在线 免费| 亚洲国产精品sss在线观看| АⅤ资源中文在线天堂| 老鸭窝网址在线观看| 99精品久久久久人妻精品| 国产亚洲欧美精品永久| 一区二区三区国产精品乱码| 麻豆成人av在线观看| 久久人人97超碰香蕉20202| 久久亚洲精品不卡| 成人亚洲精品一区在线观看| 国产精品 国内视频| 男人操女人黄网站| 国产三级黄色录像| 天天添夜夜摸| 欧美激情高清一区二区三区| 一边摸一边抽搐一进一小说| 桃色一区二区三区在线观看| 人妻丰满熟妇av一区二区三区| www日本在线高清视频| 日本免费一区二区三区高清不卡 | 亚洲成av人片免费观看| 婷婷丁香在线五月| 亚洲中文日韩欧美视频| 在线观看www视频免费| 日韩精品免费视频一区二区三区| 在线观看一区二区三区| 19禁男女啪啪无遮挡网站| av超薄肉色丝袜交足视频| 国产三级黄色录像| 少妇裸体淫交视频免费看高清 | 国产精品亚洲美女久久久| 777久久人妻少妇嫩草av网站| 老司机靠b影院| 丁香欧美五月| 亚洲男人天堂网一区| 精品国产乱码久久久久久男人| 亚洲人成电影观看| 国产亚洲欧美98| av天堂久久9| 香蕉久久夜色| 国产一区二区三区视频了| 久久久国产欧美日韩av| 中文字幕另类日韩欧美亚洲嫩草| 十分钟在线观看高清视频www| 搡老熟女国产l中国老女人| 神马国产精品三级电影在线观看 | 88av欧美| 精品国产一区二区久久| 热re99久久国产66热| 大型黄色视频在线免费观看| 少妇裸体淫交视频免费看高清 | 大型av网站在线播放| 成人三级做爰电影| 中文亚洲av片在线观看爽| 亚洲成人国产一区在线观看| 国产欧美日韩综合在线一区二区| 国产亚洲精品一区二区www| 人人妻人人澡欧美一区二区 | 女同久久另类99精品国产91| 99在线人妻在线中文字幕| 可以在线观看的亚洲视频| 久久国产亚洲av麻豆专区| 波多野结衣高清无吗| or卡值多少钱| 精品午夜福利视频在线观看一区| 国产精品98久久久久久宅男小说| 两个人免费观看高清视频| 一级,二级,三级黄色视频| 日本在线视频免费播放| 不卡一级毛片| 亚洲av电影在线进入| 国产区一区二久久| 97人妻天天添夜夜摸| 久久婷婷人人爽人人干人人爱 | 久久人人97超碰香蕉20202| 免费高清在线观看日韩| 人妻久久中文字幕网| 成年版毛片免费区| АⅤ资源中文在线天堂| 国产精品亚洲av一区麻豆| 午夜福利影视在线免费观看| 国产免费av片在线观看野外av| 午夜免费激情av| 精品一区二区三区av网在线观看| 神马国产精品三级电影在线观看 | 国产亚洲欧美在线一区二区| 老司机午夜福利在线观看视频| 色婷婷久久久亚洲欧美| 18禁国产床啪视频网站| 美女 人体艺术 gogo| 成人永久免费在线观看视频| 色综合亚洲欧美另类图片| 青草久久国产| 精品卡一卡二卡四卡免费| 天天躁狠狠躁夜夜躁狠狠躁| 欧美成人一区二区免费高清观看 | 久久中文字幕人妻熟女| 色综合欧美亚洲国产小说| 老熟妇乱子伦视频在线观看| 色综合亚洲欧美另类图片| 亚洲成av人片免费观看| 中文字幕av电影在线播放| 国产精品综合久久久久久久免费 | 99国产精品一区二区三区| 精品午夜福利视频在线观看一区| 色尼玛亚洲综合影院| 国产免费男女视频| 精品国产超薄肉色丝袜足j| 日韩 欧美 亚洲 中文字幕| 久久久久久久午夜电影| 99riav亚洲国产免费| 国产97色在线日韩免费| 看免费av毛片| 欧美不卡视频在线免费观看 | 日韩一卡2卡3卡4卡2021年| 怎么达到女性高潮| 韩国av一区二区三区四区| 一边摸一边抽搐一进一出视频| 日韩免费av在线播放| 亚洲美女黄片视频| 日韩欧美三级三区| 麻豆av在线久日| 狂野欧美激情性xxxx| 国产精品 欧美亚洲| 午夜免费鲁丝| 精品福利观看| 日本免费一区二区三区高清不卡 | 亚洲,欧美精品.| 国产成年人精品一区二区| 国产成人精品久久二区二区91| 两性夫妻黄色片| 操美女的视频在线观看| 欧美中文日本在线观看视频| 91大片在线观看| 好看av亚洲va欧美ⅴa在| 亚洲 欧美 日韩 在线 免费| 午夜福利欧美成人| avwww免费| 亚洲狠狠婷婷综合久久图片| 波多野结衣一区麻豆| 在线av久久热| 久久久精品国产亚洲av高清涩受| 欧美一区二区精品小视频在线| 老司机在亚洲福利影院| 亚洲色图av天堂| 午夜免费成人在线视频| 亚洲中文av在线| 亚洲精品久久国产高清桃花| 女人高潮潮喷娇喘18禁视频| 一本综合久久免费| 大型黄色视频在线免费观看| 在线观看免费视频网站a站| 午夜福利,免费看| 女性生殖器流出的白浆| 中亚洲国语对白在线视频| 18禁黄网站禁片午夜丰满| 脱女人内裤的视频| 成年版毛片免费区| 乱人伦中国视频| 午夜福利一区二区在线看| 久久精品影院6| 亚洲aⅴ乱码一区二区在线播放 | 午夜日韩欧美国产| 精品不卡国产一区二区三区| 久久国产乱子伦精品免费另类| 亚洲熟妇熟女久久| 一个人观看的视频www高清免费观看 | 国产精品久久久人人做人人爽| 一夜夜www| 可以免费在线观看a视频的电影网站| 欧美日本视频| 日本五十路高清| 亚洲精品美女久久av网站| 国产亚洲av嫩草精品影院| 最近最新中文字幕大全电影3 | 国产亚洲精品综合一区在线观看 | av福利片在线| 欧美中文综合在线视频| 免费在线观看视频国产中文字幕亚洲| 黄色 视频免费看| 国产真人三级小视频在线观看| 久久久国产精品麻豆| a在线观看视频网站| 老司机福利观看| 欧美乱色亚洲激情| 日韩精品免费视频一区二区三区| 国产亚洲精品久久久久5区| 在线av久久热| 日日爽夜夜爽网站| 侵犯人妻中文字幕一二三四区| 亚洲视频免费观看视频| a级毛片在线看网站| 日本撒尿小便嘘嘘汇集6| 免费一级毛片在线播放高清视频 | 欧美日韩乱码在线| 国产熟女午夜一区二区三区| 国产成人啪精品午夜网站| 好看av亚洲va欧美ⅴa在| 国产亚洲精品第一综合不卡| 中文字幕人妻丝袜一区二区| 国产精品久久久久久人妻精品电影| 欧美色视频一区免费| 色播在线永久视频| 久久久久久人人人人人| 国产一区二区在线av高清观看| 久久久久国内视频| 可以免费在线观看a视频的电影网站| 欧美一级a爱片免费观看看 | 禁无遮挡网站| 日韩欧美在线二视频| 又黄又粗又硬又大视频| 亚洲欧美日韩无卡精品| 国内毛片毛片毛片毛片毛片| 麻豆国产av国片精品| 香蕉久久夜色| 日韩欧美一区二区三区在线观看| 精品欧美国产一区二区三| 在线观看舔阴道视频| 国产精品久久久av美女十八| 免费高清在线观看日韩| 日韩有码中文字幕| 精品高清国产在线一区| 亚洲一区二区三区色噜噜| 天堂动漫精品| 国产极品粉嫩免费观看在线| 99国产精品99久久久久| 免费看a级黄色片| 中文字幕另类日韩欧美亚洲嫩草| 精品久久蜜臀av无| 国产免费男女视频| 色在线成人网| 亚洲国产精品成人综合色| 久久人妻av系列| 国产精品乱码一区二三区的特点 | 波多野结衣一区麻豆| 日韩高清综合在线| aaaaa片日本免费| 免费在线观看日本一区| www.自偷自拍.com| 天天添夜夜摸| 欧美另类亚洲清纯唯美| 亚洲欧美精品综合一区二区三区| 免费少妇av软件| 亚洲欧美一区二区三区黑人| 日韩欧美在线二视频| 精品久久久久久久久久免费视频| 亚洲成a人片在线一区二区| 熟妇人妻久久中文字幕3abv| 国产av在哪里看| 国内毛片毛片毛片毛片毛片| av片东京热男人的天堂| 不卡av一区二区三区| 国产又色又爽无遮挡免费看| 满18在线观看网站| 国产极品粉嫩免费观看在线| 最近最新中文字幕大全免费视频| 精品日产1卡2卡| 欧美日本视频| 午夜影院日韩av| 亚洲av电影在线进入| aaaaa片日本免费| 国产亚洲精品综合一区在线观看 | 1024视频免费在线观看| 黄色丝袜av网址大全| 亚洲熟女毛片儿| 国产一区二区激情短视频| 中文字幕色久视频| 亚洲精品av麻豆狂野| 97碰自拍视频| 免费看美女性在线毛片视频| 自拍欧美九色日韩亚洲蝌蚪91| 老熟妇乱子伦视频在线观看| 亚洲av成人av| 狂野欧美激情性xxxx| 国产精品亚洲一级av第二区| 亚洲精品粉嫩美女一区| 久久久久久亚洲精品国产蜜桃av| 成年版毛片免费区| 一二三四社区在线视频社区8| 久久久久久亚洲精品国产蜜桃av| 国产精品一区二区精品视频观看| 亚洲精品粉嫩美女一区| 免费不卡黄色视频| 少妇熟女aⅴ在线视频| 亚洲成av片中文字幕在线观看| 真人一进一出gif抽搐免费| 国产亚洲精品av在线| 色在线成人网| 免费人成视频x8x8入口观看| 欧美另类亚洲清纯唯美| 天天一区二区日本电影三级 | 老司机福利观看| 一级a爱视频在线免费观看| 亚洲激情在线av| 国产成人影院久久av| 久久久久久久久免费视频了| 亚洲成人精品中文字幕电影| 亚洲精品久久国产高清桃花| 人人澡人人妻人| 午夜视频精品福利| 精品久久久久久久毛片微露脸| 国产精品亚洲av一区麻豆| 欧美不卡视频在线免费观看 | 波多野结衣巨乳人妻| 久久国产乱子伦精品免费另类| 大型av网站在线播放| av天堂久久9| 神马国产精品三级电影在线观看 | 亚洲 国产 在线| 久久久久久久精品吃奶| 啦啦啦观看免费观看视频高清 | 在线国产一区二区在线| av有码第一页| 成人精品一区二区免费| 久久精品人人爽人人爽视色| 99精品在免费线老司机午夜| 国产三级黄色录像| 久久久久久久久中文| 亚洲精品国产精品久久久不卡| 亚洲男人天堂网一区| 在线播放国产精品三级| 国产又色又爽无遮挡免费看| 欧美中文综合在线视频| 色综合亚洲欧美另类图片| 欧美中文综合在线视频| 国产蜜桃级精品一区二区三区| 亚洲国产中文字幕在线视频| 亚洲精品久久成人aⅴ小说| 老司机福利观看| 一级a爱片免费观看的视频| 久久久国产成人精品二区| 亚洲精品在线观看二区| 免费不卡黄色视频| 在线视频色国产色| 午夜福利成人在线免费观看| 久热这里只有精品99| 法律面前人人平等表现在哪些方面| 国产xxxxx性猛交| 大码成人一级视频| 中文字幕人成人乱码亚洲影| 午夜成年电影在线免费观看| 亚洲免费av在线视频| av天堂在线播放| 亚洲人成伊人成综合网2020| 国产男靠女视频免费网站| 亚洲人成伊人成综合网2020| 亚洲自拍偷在线| 成人国语在线视频| 美女免费视频网站| 亚洲av电影不卡..在线观看| 午夜福利一区二区在线看| 国产精品 欧美亚洲| 黄色女人牲交| 国产在线精品亚洲第一网站| 国产精品一区二区三区四区久久 | 9191精品国产免费久久| 国产av精品麻豆| 搡老熟女国产l中国老女人| av在线天堂中文字幕| 韩国av一区二区三区四区| 亚洲性夜色夜夜综合| 女人爽到高潮嗷嗷叫在线视频| 精品久久久久久久毛片微露脸| 9191精品国产免费久久| 51午夜福利影视在线观看| 国产精品乱码一区二三区的特点 | 不卡一级毛片| 18禁黄网站禁片午夜丰满| 成人国产一区最新在线观看| 亚洲免费av在线视频| 亚洲美女黄片视频| 成熟少妇高潮喷水视频| 国产蜜桃级精品一区二区三区| 国产片内射在线| 国产91精品成人一区二区三区| 国产日韩一区二区三区精品不卡| 欧美日本中文国产一区发布| 一级毛片高清免费大全| 香蕉丝袜av| 免费在线观看视频国产中文字幕亚洲| 免费人成视频x8x8入口观看| 久久香蕉精品热| 亚洲成av人片免费观看| 亚洲专区中文字幕在线| 搡老熟女国产l中国老女人| 国产一区二区激情短视频| 成人精品一区二区免费| 午夜亚洲福利在线播放| 国产精品99久久99久久久不卡| 国产精品久久视频播放| 亚洲一区二区三区色噜噜| 亚洲人成电影免费在线| 国产三级在线视频| 熟女少妇亚洲综合色aaa.| 日韩精品免费视频一区二区三区| 日韩欧美国产在线观看| 一二三四社区在线视频社区8| 国产激情欧美一区二区| 成在线人永久免费视频| 色老头精品视频在线观看| 一级,二级,三级黄色视频| 亚洲中文字幕日韩| 日本一区二区免费在线视频| 亚洲成人精品中文字幕电影| 中文字幕色久视频| 国产精品久久久久久精品电影 | 亚洲 欧美 日韩 在线 免费| 久99久视频精品免费| www.自偷自拍.com| 91麻豆av在线| 国产91精品成人一区二区三区| 女生性感内裤真人,穿戴方法视频| 91老司机精品| 啦啦啦 在线观看视频| 色播在线永久视频| 日日干狠狠操夜夜爽| 777久久人妻少妇嫩草av网站| www.www免费av| 国产成人欧美| aaaaa片日本免费| 日本欧美视频一区| 国内久久婷婷六月综合欲色啪| 国产91精品成人一区二区三区| 人妻丰满熟妇av一区二区三区| 国产免费av片在线观看野外av| 精品久久蜜臀av无| 香蕉国产在线看| 国产区一区二久久| 欧美日韩黄片免| 久久天躁狠狠躁夜夜2o2o| 久久精品亚洲精品国产色婷小说| 亚洲精品国产精品久久久不卡| 在线播放国产精品三级| 亚洲国产毛片av蜜桃av| 麻豆国产av国片精品| 少妇 在线观看| 一夜夜www| 精品高清国产在线一区| 91精品三级在线观看| √禁漫天堂资源中文www| 丁香欧美五月| 桃色一区二区三区在线观看| 好男人电影高清在线观看| 在线观看午夜福利视频| 欧美绝顶高潮抽搐喷水| 日韩三级视频一区二区三区| 国内久久婷婷六月综合欲色啪| 美女午夜性视频免费| 国产97色在线日韩免费| 自线自在国产av| 一级作爱视频免费观看| 国产高清视频在线播放一区| 性欧美人与动物交配| 国产蜜桃级精品一区二区三区| 国内精品久久久久精免费| 成在线人永久免费视频| 九色亚洲精品在线播放| 别揉我奶头~嗯~啊~动态视频| 国产三级在线视频| www.熟女人妻精品国产| 日韩三级视频一区二区三区| 中文字幕精品免费在线观看视频| a在线观看视频网站| 欧美+亚洲+日韩+国产| 色综合欧美亚洲国产小说| 亚洲,欧美精品.| 丝袜美足系列| 免费搜索国产男女视频| 一区二区三区高清视频在线| 欧美黄色淫秽网站| 欧美老熟妇乱子伦牲交| 黑人操中国人逼视频| 一个人观看的视频www高清免费观看 | 国产99白浆流出| 操美女的视频在线观看| 他把我摸到了高潮在线观看| 一区二区三区国产精品乱码| 国产精品久久久久久人妻精品电影| 国产一级毛片七仙女欲春2 | 99国产精品一区二区三区| a在线观看视频网站| www.自偷自拍.com| 法律面前人人平等表现在哪些方面| 天堂动漫精品| 两性午夜刺激爽爽歪歪视频在线观看 | 久久精品国产亚洲av香蕉五月| 脱女人内裤的视频| 狠狠狠狠99中文字幕| 激情视频va一区二区三区| 性少妇av在线| 黄色女人牲交| 在线国产一区二区在线| 久久精品91无色码中文字幕| 嫩草影视91久久| 欧洲精品卡2卡3卡4卡5卡区| 美女高潮到喷水免费观看| 女性被躁到高潮视频| 给我免费播放毛片高清在线观看| 亚洲美女黄片视频| 国产精品一区二区免费欧美| 日韩欧美免费精品| 精品国产超薄肉色丝袜足j| 国产亚洲欧美98| 宅男免费午夜| 美国免费a级毛片| 高清毛片免费观看视频网站| 国产野战对白在线观看| 9色porny在线观看| 黄频高清免费视频| 999精品在线视频| 亚洲第一欧美日韩一区二区三区| 欧美黄色片欧美黄色片| 中文字幕精品免费在线观看视频| 给我免费播放毛片高清在线观看| 在线视频色国产色| 午夜免费鲁丝| 亚洲av熟女| 黄色 视频免费看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲熟妇中文字幕五十中出| 色婷婷久久久亚洲欧美| av福利片在线| 一区二区日韩欧美中文字幕| 久久国产亚洲av麻豆专区| 啪啪无遮挡十八禁网站| 欧美+亚洲+日韩+国产| 色尼玛亚洲综合影院| 亚洲av电影在线进入| 一级黄色大片毛片| 桃色一区二区三区在线观看| 亚洲男人天堂网一区| 免费在线观看视频国产中文字幕亚洲| 真人一进一出gif抽搐免费| 巨乳人妻的诱惑在线观看| 精品国内亚洲2022精品成人| 欧美成人性av电影在线观看| 老熟妇仑乱视频hdxx| 日韩欧美在线二视频| 国产成人精品在线电影| 国产亚洲av高清不卡| 亚洲免费av在线视频| 99精品欧美一区二区三区四区| 亚洲va日本ⅴa欧美va伊人久久| 国产欧美日韩一区二区精品| 男女下面进入的视频免费午夜 | 日韩精品中文字幕看吧| 国产欧美日韩综合在线一区二区| 少妇被粗大的猛进出69影院| 午夜日韩欧美国产| 男人的好看免费观看在线视频 | 波多野结衣高清无吗| 亚洲天堂国产精品一区在线| 欧美日韩乱码在线| 国产高清视频在线播放一区| svipshipincom国产片| 国产精品自产拍在线观看55亚洲| 午夜两性在线视频| 精品久久蜜臀av无| 国产精品九九99| 少妇 在线观看| 最新在线观看一区二区三区| 免费高清视频大片| 777久久人妻少妇嫩草av网站| 国内精品久久久久久久电影| 88av欧美| 手机成人av网站| 午夜老司机福利片| 在线免费观看的www视频| 在线十欧美十亚洲十日本专区| 免费在线观看黄色视频的| 免费av毛片视频| 国产精品亚洲美女久久久| 99在线视频只有这里精品首页| 久久精品aⅴ一区二区三区四区| 亚洲色图综合在线观看| 制服丝袜大香蕉在线| 97人妻天天添夜夜摸| 老鸭窝网址在线观看| 一边摸一边做爽爽视频免费| 可以在线观看的亚洲视频| 国产精品影院久久| 国产激情久久老熟女| 天堂动漫精品| 色综合婷婷激情| 欧美成人性av电影在线观看| 国产亚洲精品久久久久久毛片| 嫁个100分男人电影在线观看| 久久久久久免费高清国产稀缺| 18禁黄网站禁片午夜丰满| 成人三级黄色视频| 亚洲欧洲精品一区二区精品久久久| 97人妻天天添夜夜摸| 人成视频在线观看免费观看| 黄色成人免费大全| 一区在线观看完整版| 亚洲美女黄片视频| 窝窝影院91人妻| 18禁裸乳无遮挡免费网站照片 | 18禁国产床啪视频网站| 又黄又爽又免费观看的视频|