• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phase-field modeling of faceted growth in solidification of alloys

    2022-04-12 03:45:02HuiXing邢輝QiAn安琪XiangleiDong董祥雷andYongshengHan韓永生
    Chinese Physics B 2022年4期
    關(guān)鍵詞:安琪

    Hui Xing(邢輝) Qi An(安琪) Xianglei Dong(董祥雷) and Yongsheng Han(韓永生)

    1The Key Laboratory of Space Applied Physics and Chemistry,Northwestern Polytechnical University,Xi’an 710029,China

    2College of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China

    3The EMMS Group,State Key Laboratory of Multiphase Complex Systems,Institute of Process Engineering,Chinese Academy of Sciences,Beijing 100190,China

    Keywords: faceted growth,dendrite,phase-field model

    1. Introduction

    Faceted growth of semiconductors such as Si, Ge and SiGe mixtures in undercooled or supersaturated melts has been attracted great interest in crystal growth field because their huge applications for electronics and photovoltaics industries.[1]It is well known that Jackson’s factorα,[2]the product of the crystallographic factor and the ratio of latent heat to the rare gas constant, approximately describes the tendency of a material to facet. This has been proved in a wide range of materials.[3]Previous experimental investigations from semiconductor to intermetallic demonstrate that the faceted crystal at equilibrium could become less faceted and a transition from facet to dendrite occurs with the undercooling or supersaturation increasing.[4-6]This results from that the faceted crystal still retains tailing rough parts which can be described by a parabolic function at equilibrium. Therefore,the key point of numerical simulation of the faceted growth and its transition to dendrite is how to construct a form of anisotropic function exhibiting perfectly flat vicinal interface with rounded cusps at equilibrium. Obviously, the general form of surface tension anisotropic function cannot be used.The form of anisotropic function for facet in the presence of cusps at faceted orientations can be written as

    whereΘis the angle of the normal direction to the interface with respect to a fixed crystalline axis,andΘfis the orientation of a facet. Equation(1)is indeed valid for a vicinal interface when|Θ-Θf|?1,andεis the cusp amplitude. As a powerful tool for simulating growth pattern selection,the phase-field method has been quantitatively and extensively used for simulating growth pattern selection in the non-faceted dendritic growth with weak and strong anisotropy from undercooled or supersaturated melts.[7-9,11]For faceted growth,it is impossible to separately treat the rough and faceted parts in the framework of the phase-field method. Hence, many attempts have been made for constructing a continuous form of surface tension anisotropic function for faceted growth.[12-17]By modifying a simple form of anisotropic function

    from broken-bond model for faceted solid-gas interface, numerical simulation of the faceted dendritic growth with cusp rounding have been successfully carried out by using phasefield method by Debierreet al.[12]However,the modification of the anisotropy function consists of rounding the cusp over a small range of orientations

    Obviously, Eq. (4) is similar to the form given by Eq. (2) in principle, but it is a handy form to solve numerically. There is no physical meanings of the parameterδ, which is a small but not negligible constant in numerical simulation. The addition ofδto Eq. (4) allows a continuous interface stiffness.Similar form for six-fold anisotropic function was constructed by Bolladaet al.[16]to investigate the intermetallic solidification of Al-Si alloys and the transition from faceted to dendritic morphology. In this paper, the form of Eq.(3)is adopted for studying faceted growth in solidification of a binary alloy from supersaturated melts in a two-dimensional system.

    2. Method descriptions

    We consider the growth of a crystal from a supersaturated alloy melt. The quantitative phase-field model for alloys solidification is developed based on the thin-interface asymptotic analysis by Karma.[18]This model can be successfully used for simulating non-faceted dendritic growth in solidification of alloys due to the inclusion of the anti-trapping current term. The phase-field variableφis-1 (+1) for solid (liquid) and the narrow region where it varies from-1 to +1 is considered as the diffusive solid-liquid interface.For alloys solidification, the solute concentrationcwas converted to the solute supersaturationU, which is defined asU=((2kc/c0)/[1+k-(1-k)φ]-1)/(1-k), wherec0the concentration on the liquid side of the interface andkthe partition coefficient. After neglecting the solute diffusion in the solid phase,governing equations for phase-field variableφand solute concentrationUyield

    is the well-known anti-trapping current term,matched asymptotic analysis links diffusive interface widthW0and interface attachment time scaleτ0with capillary lengthd0and liquid diffusion coefficientDlbyW0=λd0/a1andτ0=λa2W20/Dlfor vanishing interface kinetic coefficient,wherea1=0.8839 anda2=0.6267. In this work, the modified surface tension anisotropic function Eq. (4) for faceted growth by Wanget al.[15]was used here. In this study, the well-characterized Si-3.5 at.% Ge alloy in solidification[19]was selected as the calculation object,and all thermophysical parameters were assumed constants which are listed as follows: average solute concentrationc0=3.5 at.%, equilibrium liquidus slopeml=-1.85 K/at%,equilibrium partition coefficientk=0.45,liquid diffusion coefficientDl=6200 μm2/s, and Gibbs-Thomson coefficientΓ=0.2324 K·μm. The coupling constantλis selected asλ=2 for results that are independent of the interface thickness. In numerical simulation,governing Eqs.(5)and(6)are solved by using the explicit finite difference method on a fixed grid. No-flux boundary conditions are applied to all boundaries. The numerical domain is set as 800×800. As shown in Fig.1,the initial solid seed is introduced as a quarter of square or circle for the reason of symmetry to investigate the effect shape of initial seed of growth pattern selection.

    Fig. 1. Schematic of boundary conditions and initial solid seeds: (a)circl and(b)square.

    3. Results and discussion

    The value ofδis firstly chosen from 0.1 to 0.005 in two cases of supersaturation for a proper value ofδin numerical simulation. Solutions of Eq. (3) forδvarying from 0.1 to 0.005 are shown in Fig. 2(a). The solution of Eq. (2) has a sharp cusp atΘ=0 while solutions of Eq. (3) with finite values ofδare smooth at a small range nearΘ=0. It can be seen that the profiles from Eq.(3)become convergent with the decrease inδ, which indicates that the effect ofδis only remarkably in the region nearΘ=0 similar to the solution of Eq.(2)but Eq.(3)is a continuous function.In order to demonstrate the effect ofδon the crystal growth, we carried out two-dimensional phase-field simulations for variousδin two cases of supersaturationU0=0.20 andU0=0.50,which corresponds to square and dendritic shapes,respectively. Shapes with solute distributions are shown in Figs. 2(b)-2(g). Obviously,phase-field simulations with Eq.(3)exhibit perfectly flat vicinal interface with rounded cusps for lower supersaturation,as shown in Fig.2(b). Due to the growth velocity proportional to the absolute value of the supersaturation,the diffusion length forU0=0.20 is significantly larger than that forU0=0.50.In order to investigate the role ofδ,the solid-liquid interface contours for variousδwith an enlarged drawing near the tips are plotted at the same time. For lower supersaturation, as shown Figs. 2(c) and 2(d), the interface profiles for variousδoverlap except the region near the tip. Clearly, the convergence with respect toδhas been achieved with the decrease ofδnear the tip. For larger supersaturation, as shown in Figs. 2(f) and 2(g), the shape becomes dendritic and the difference of the interface profile for variousδbecomes pronounced. Therefore,a smallerδshould be selected for larger supersaturation. The above study proves that Eq.(3)is a simple but good regularization for Eq.(2)for the cases of solidification. In the following numerical simulation,δ=0.001 are used everywhere.

    Fig. 2. (a) Solutions of the a regularization of the surface tension anisotropic function for δ varying from 0.1 to 0.005; solute distribution in square growth (b) and interface contours for various δ (c) with an enlarged drawing near the tips (d) for U0 =0.20; solute distribution in dendritic growth(e)and interface contours for various δ (f)with an enlarged drawing near the tips(g)U0=0.50.

    For faceted growth, the initial shape of the solid seed plays an important role in growth pattern selection. Two values of supersaturationU0=0.425 andU0=0.475 are chosen and the cusp amplitude is fixed atε=0.5, as shown in Fig.3. It can be found that the solid-liquid interface contours from the two initial conditions overlap except the region of dendritic root forU0=0.425. For a little higher supersaturationU0=0.475, the square shape of the initial seed leads to a dendrite with a single tip while the circle shape results in complicated doublons shape with tip-splitting. Although the effect of initial seeds on the growth pattern selection is a numerical artifact,it is important for simulations of facet growth.This is consistent with the results from Ref.[12]. It should be noted that the doublons are symmetry-broken growth pattern with double tips that are highly dependent on the choice of the initial seed shape. The growth velocities of the leading tips with respect to the time for various initial conditions and supersaturations are presented in Fig.3(c). Clearly,the dendrite has a higher growth velocity than doublon when the growth becomes steady. This means that the initial seed should be square to simulate faceted growth in large supersaturation or undercooling.

    Fig.3. Comparision of interface contours from circle and square seeds for U0 =0.425(a)and U0 =0.475(b); (c)temporal evolution of the leading tip velocity for various initial conditions and supersaturations.

    Fig.4. (a)Steady growth velocity versus the cusp amplitude ε with typical growth patterns;(b)steady growth velocity versus supersaturation with typical growth patterns.

    Now, let us focus on the effect of the cusp amplitude and supersaturation on the growth pattern selection and steady growth velocity in faceted solidification. Figure 4(a) shows the steady growth velocity versus the cusp amplitudeεwith typical growth patterns forU0=0.50. In this study, the initial shape of the solid seed is square. It can be seen that the steady growth velocity increases with the cusp amplitude forε ≤0.8.Meanwhile the growth pattern becomes from doublon to dendrite. Lower cusp amplitude means the unstable tip,and increase of the cusp amplitude results in the steady growth direction. Whenε >0.8, the steady growth velocity decreases with the increase of the cusp amplitude, which is consistent with the finding in Ref.[16]. As expected,the steady growth velocity is an increasing function of supersaturation when the cusp amplitude is fixed atε=0.5,which is shown in Fig.4(b).Obviously,the morphological transition from cube to dendrite is continuous,which indicates that the transition can be quantitatively obtained from phase-field simulations by using the regularization of the anisotropic function Eq.(4).

    4. Conclusion and perspectives

    In this paper, the faceted growth has been numerically investigated by using a quantitative phase-field model with a regularization of the surface tension anisotropic function. The form of the anisotropic function has been used in predicting the vapor-liquid-solid nanowire growth. Results show that the value ofδcan only affect the region near the tip,and the convergence with respect toδcan be achieved with the decrease inδnear the tip. And the difference of the interface profile for large supersaturation is more pronounced than that for lower supersaturation. Moreover, the initial shape of the solid seed also plays an important role in growth pattern selection for faceted growth, and the circle initial seed results in the doublon when the supersaturation is larger. The steady growth velocity is not a monotonic function of the cusp amplitude,which is consistent with the finding in Ref. [12]. The maximum value is approximately atε=0.8 when the supersaturation is fixed. Moreover, the growth velocity is a monotonic function of supersaturation, or at least in the range of the supersaturation. This study is the basis of numerical simulations of faceted growth in solidification of alloys,which proves that the form of Eq. (4) is a simply but good regularization for faceted growth in solidification of alloys. Moreover, it also can be used in the thin film growth and spiral growth in the processing of CVD.

    Acknowledgements

    Project supported by the National Key Research and Development Program of China(Grant No.2018YFB2001800),the National Natural Science Foundation of China (Grant No. 21978298), the Natural Science Foundation of Shaanxi Province in China (Grant No. 2020JM-111), Applied Basic Research Key Project of Yunnan, China (Grant No.202002AB080001-1),and Henan Youth Talent Promotion Project,China(Grant No.2020HYTP019).

    猜你喜歡
    安琪
    安琪酵母股份有限公司
    安琪酵母股份有限公司
    中國釀造(2019年9期)2019-10-08 05:44:26
    臉上灑滿星星的小女孩
    小讀者之友(2019年6期)2019-09-10 08:12:47
    臉上灑滿星星的小女孩
    莫愁(2019年3期)2019-02-22 01:46:04
    臉上灑滿星星的小女孩
    向日葵的微笑
    童話世界(2018年28期)2018-01-28 11:51:42
    安琪的愿望
    奇怪的“小病人”
    中華家教(2012年6期)2012-04-29 00:44:03
    愛情不設(shè)防
    上海故事(2012年5期)2012-04-29 00:44:03
    七月開始
    西部(2011年5期)2011-08-15 00:49:38
    一本综合久久免费| 久久久久亚洲av毛片大全| av天堂久久9| 两人在一起打扑克的视频| tocl精华| 大香蕉久久成人网| 在线观看午夜福利视频| 高清黄色对白视频在线免费看| 午夜亚洲福利在线播放| videosex国产| 长腿黑丝高跟| a级片在线免费高清观看视频| 亚洲男人天堂网一区| 琪琪午夜伦伦电影理论片6080| 久久久久久大精品| 黄色视频不卡| 亚洲精品粉嫩美女一区| 黑丝袜美女国产一区| 视频区欧美日本亚洲| 女性生殖器流出的白浆| 99国产精品免费福利视频| 91精品三级在线观看| 国产亚洲欧美在线一区二区| 1024香蕉在线观看| 97碰自拍视频| 日韩欧美国产一区二区入口| 欧美+亚洲+日韩+国产| 伊人久久大香线蕉亚洲五| ponron亚洲| 久久欧美精品欧美久久欧美| 国产男靠女视频免费网站| 男女午夜视频在线观看| 国产精品综合久久久久久久免费 | 久久天躁狠狠躁夜夜2o2o| 久久久久久久精品吃奶| 欧美在线一区亚洲| 两性夫妻黄色片| 老司机午夜十八禁免费视频| 在线av久久热| 日韩欧美三级三区| 精品国产美女av久久久久小说| 国产主播在线观看一区二区| 精品国产美女av久久久久小说| 国产成年人精品一区二区 | 自拍欧美九色日韩亚洲蝌蚪91| 亚洲一区高清亚洲精品| 中文字幕色久视频| 老司机午夜福利在线观看视频| 久久草成人影院| 国产成人欧美在线观看| 国产亚洲欧美精品永久| 99久久精品国产亚洲精品| av片东京热男人的天堂| 成年女人毛片免费观看观看9| 欧美中文综合在线视频| www.熟女人妻精品国产| 久久久久久久久免费视频了| 看片在线看免费视频| 咕卡用的链子| www日本在线高清视频| 曰老女人黄片| 级片在线观看| 国产精品乱码一区二三区的特点 | 香蕉丝袜av| 久久久久国内视频| 中文字幕人妻丝袜一区二区| 亚洲av成人av| 国产精品av久久久久免费| 亚洲av熟女| 亚洲欧美一区二区三区黑人| 日韩大码丰满熟妇| 国产成人一区二区三区免费视频网站| 亚洲成a人片在线一区二区| 国产单亲对白刺激| 伦理电影免费视频| 一级毛片女人18水好多| 色播在线永久视频| 超碰成人久久| 成人特级黄色片久久久久久久| 亚洲 国产 在线| 两个人免费观看高清视频| 国产午夜精品久久久久久| 51午夜福利影视在线观看| 一个人观看的视频www高清免费观看 | 80岁老熟妇乱子伦牲交| 亚洲男人天堂网一区| 亚洲狠狠婷婷综合久久图片| 69av精品久久久久久| 视频区图区小说| 日韩一卡2卡3卡4卡2021年| 最新美女视频免费是黄的| 窝窝影院91人妻| 成年版毛片免费区| 在线观看www视频免费| 欧美av亚洲av综合av国产av| 国产精品一区二区三区四区久久 | 国产日韩一区二区三区精品不卡| 91精品国产国语对白视频| 9热在线视频观看99| 亚洲精品国产区一区二| 亚洲精品在线观看二区| av视频免费观看在线观看| 女生性感内裤真人,穿戴方法视频| 一夜夜www| 麻豆av在线久日| 别揉我奶头~嗯~啊~动态视频| 精品久久蜜臀av无| av国产精品久久久久影院| 热99国产精品久久久久久7| av免费在线观看网站| 激情视频va一区二区三区| 日韩欧美国产一区二区入口| 男人舔女人下体高潮全视频| 亚洲熟妇中文字幕五十中出 | 可以在线观看毛片的网站| av网站在线播放免费| 午夜成年电影在线免费观看| 脱女人内裤的视频| 黄色毛片三级朝国网站| 精品福利观看| 天天躁夜夜躁狠狠躁躁| 亚洲少妇的诱惑av| 午夜免费观看网址| 在线永久观看黄色视频| 天堂动漫精品| 亚洲av第一区精品v没综合| 青草久久国产| 国产成人欧美在线观看| 我的亚洲天堂| 丝袜美足系列| 丰满饥渴人妻一区二区三| 亚洲自拍偷在线| 亚洲精品粉嫩美女一区| 人成视频在线观看免费观看| 亚洲欧美激情综合另类| 日本撒尿小便嘘嘘汇集6| 日韩有码中文字幕| 国产人伦9x9x在线观看| 成人永久免费在线观看视频| 免费在线观看影片大全网站| 男女做爰动态图高潮gif福利片 | 国产高清激情床上av| 长腿黑丝高跟| 国产成人精品无人区| 国产极品粉嫩免费观看在线| 欧洲精品卡2卡3卡4卡5卡区| 丝袜美足系列| 999精品在线视频| 欧美av亚洲av综合av国产av| 天堂√8在线中文| 亚洲一区二区三区欧美精品| 亚洲欧美精品综合久久99| 亚洲精品av麻豆狂野| 亚洲欧美精品综合一区二区三区| 搡老岳熟女国产| 国产精品自产拍在线观看55亚洲| 操出白浆在线播放| 亚洲国产中文字幕在线视频| 丝袜美足系列| 999精品在线视频| 欧美激情 高清一区二区三区| 久久久久久久精品吃奶| 男人的好看免费观看在线视频 | 91老司机精品| 亚洲熟女毛片儿| 另类亚洲欧美激情| 亚洲精华国产精华精| 久久久久久亚洲精品国产蜜桃av| 看片在线看免费视频| 妹子高潮喷水视频| avwww免费| 色综合站精品国产| 91国产中文字幕| 男女高潮啪啪啪动态图| 不卡av一区二区三区| 99国产极品粉嫩在线观看| 国产一卡二卡三卡精品| 欧美成人性av电影在线观看| 夜夜夜夜夜久久久久| 亚洲色图综合在线观看| 精品国产亚洲在线| 91麻豆精品激情在线观看国产 | 亚洲av五月六月丁香网| 精品国产一区二区三区四区第35| 99精国产麻豆久久婷婷| 亚洲一卡2卡3卡4卡5卡精品中文| 法律面前人人平等表现在哪些方面| 中文字幕高清在线视频| 一进一出抽搐gif免费好疼 | 男女高潮啪啪啪动态图| 亚洲欧美精品综合一区二区三区| 亚洲欧美日韩无卡精品| 精品国产乱码久久久久久男人| 日本一区二区免费在线视频| 精品久久久久久久久久免费视频 | 美女高潮喷水抽搐中文字幕| 亚洲五月天丁香| 大码成人一级视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品中文字幕在线视频| 1024香蕉在线观看| 精品福利永久在线观看| 大码成人一级视频| 热99国产精品久久久久久7| 村上凉子中文字幕在线| 亚洲狠狠婷婷综合久久图片| 热99re8久久精品国产| 日日摸夜夜添夜夜添小说| 天堂俺去俺来也www色官网| 久久精品国产亚洲av香蕉五月| 狠狠狠狠99中文字幕| 久久草成人影院| 免费在线观看视频国产中文字幕亚洲| 久久久久亚洲av毛片大全| 免费高清在线观看日韩| 欧美日韩福利视频一区二区| 久久热在线av| 国产视频一区二区在线看| 国产主播在线观看一区二区| 亚洲一码二码三码区别大吗| 中出人妻视频一区二区| 亚洲一区二区三区不卡视频| 亚洲自拍偷在线| 日日干狠狠操夜夜爽| 校园春色视频在线观看| 老司机亚洲免费影院| 色在线成人网| 中文字幕另类日韩欧美亚洲嫩草| 国产97色在线日韩免费| 怎么达到女性高潮| 国产亚洲av高清不卡| 午夜福利一区二区在线看| 日韩av在线大香蕉| 大码成人一级视频| www日本在线高清视频| 亚洲成人免费av在线播放| 国产av精品麻豆| 久久精品国产99精品国产亚洲性色 | 久久精品国产亚洲av高清一级| 精品欧美一区二区三区在线| 国产精品乱码一区二三区的特点 | av视频免费观看在线观看| 麻豆av在线久日| 久久影院123| 动漫黄色视频在线观看| 亚洲久久久国产精品| 久久精品成人免费网站| 国产日韩一区二区三区精品不卡| 国产乱人伦免费视频| 免费av毛片视频| 午夜日韩欧美国产| 热re99久久精品国产66热6| 亚洲av美国av| 久久久久九九精品影院| 黄色丝袜av网址大全| 精品少妇一区二区三区视频日本电影| 在线观看一区二区三区| 一个人观看的视频www高清免费观看 | 老司机在亚洲福利影院| 一a级毛片在线观看| 人成视频在线观看免费观看| 午夜成年电影在线免费观看| 亚洲欧美精品综合一区二区三区| 国产免费av片在线观看野外av| 久久久久国内视频| √禁漫天堂资源中文www| 在线观看免费视频日本深夜| 18禁国产床啪视频网站| 日韩大码丰满熟妇| 高潮久久久久久久久久久不卡| 亚洲 国产 在线| 国内毛片毛片毛片毛片毛片| 国产成人啪精品午夜网站| 欧美日韩av久久| 他把我摸到了高潮在线观看| 香蕉国产在线看| 亚洲精品久久午夜乱码| 欧美亚洲日本最大视频资源| 欧美激情 高清一区二区三区| 久久性视频一级片| 夜夜躁狠狠躁天天躁| 老熟妇仑乱视频hdxx| 国产精品九九99| 亚洲人成伊人成综合网2020| 精品国产国语对白av| 欧美日本亚洲视频在线播放| 亚洲欧美一区二区三区黑人| 国产亚洲欧美精品永久| 一二三四在线观看免费中文在| 另类亚洲欧美激情| 中文欧美无线码| 真人做人爱边吃奶动态| 男女午夜视频在线观看| 男女之事视频高清在线观看| 十分钟在线观看高清视频www| 日韩国内少妇激情av| av欧美777| 国产av又大| 在线观看免费高清a一片| 成人三级黄色视频| 交换朋友夫妻互换小说| 国产精品永久免费网站| 久久精品91蜜桃| 女生性感内裤真人,穿戴方法视频| 极品人妻少妇av视频| 亚洲va日本ⅴa欧美va伊人久久| av在线播放免费不卡| 麻豆av在线久日| 脱女人内裤的视频| 精品人妻1区二区| 69av精品久久久久久| 国产在线精品亚洲第一网站| 嫩草影视91久久| 久久精品国产亚洲av高清一级| 黑人猛操日本美女一级片| 亚洲精品在线美女| 国产亚洲欧美在线一区二区| 性少妇av在线| 欧美日韩瑟瑟在线播放| 宅男免费午夜| 午夜老司机福利片| 不卡av一区二区三区| 一进一出好大好爽视频| 久久久国产成人免费| 欧美日韩国产mv在线观看视频| 巨乳人妻的诱惑在线观看| 精品福利永久在线观看| 高潮久久久久久久久久久不卡| 国产亚洲精品第一综合不卡| 日日干狠狠操夜夜爽| 黑人欧美特级aaaaaa片| 亚洲精品在线观看二区| 国产成人精品无人区| 91老司机精品| 波多野结衣高清无吗| 久久人妻熟女aⅴ| 亚洲精品国产色婷婷电影| 黑人巨大精品欧美一区二区mp4| 成年人免费黄色播放视频| e午夜精品久久久久久久| 国产精品1区2区在线观看.| 亚洲成av片中文字幕在线观看| aaaaa片日本免费| 午夜激情av网站| 亚洲精品美女久久av网站| 一进一出抽搐动态| 欧美不卡视频在线免费观看 | 午夜亚洲福利在线播放| 日本三级黄在线观看| 欧美日韩亚洲高清精品| 久久人妻福利社区极品人妻图片| 免费av中文字幕在线| 日本免费一区二区三区高清不卡 | 久久久久久久久久久久大奶| 怎么达到女性高潮| 亚洲欧美日韩无卡精品| 亚洲人成电影观看| 看黄色毛片网站| 一级a爱片免费观看的视频| 成人手机av| 麻豆一二三区av精品| 99re在线观看精品视频| 国产精品成人在线| 黄色毛片三级朝国网站| 国产又色又爽无遮挡免费看| 男人的好看免费观看在线视频 | 亚洲国产欧美网| 国产又色又爽无遮挡免费看| 免费女性裸体啪啪无遮挡网站| 国产成人啪精品午夜网站| 神马国产精品三级电影在线观看 | 色尼玛亚洲综合影院| 亚洲av成人不卡在线观看播放网| 母亲3免费完整高清在线观看| 亚洲色图综合在线观看| 精品一品国产午夜福利视频| 18禁黄网站禁片午夜丰满| 欧美日韩av久久| 国产免费现黄频在线看| 夫妻午夜视频| 男女午夜视频在线观看| 久久性视频一级片| 欧美性长视频在线观看| 亚洲国产中文字幕在线视频| 国产伦一二天堂av在线观看| 亚洲成人国产一区在线观看| 久久草成人影院| 男人舔女人的私密视频| 日韩人妻精品一区2区三区| 女人爽到高潮嗷嗷叫在线视频| 99热只有精品国产| 国产亚洲欧美98| 不卡一级毛片| 亚洲国产精品一区二区三区在线| 久久 成人 亚洲| 国产av一区二区精品久久| 桃色一区二区三区在线观看| 成人特级黄色片久久久久久久| 亚洲国产精品一区二区三区在线| 99精品在免费线老司机午夜| 精品人妻在线不人妻| 免费不卡黄色视频| ponron亚洲| 久久久久国内视频| 亚洲自偷自拍图片 自拍| 久久精品人人爽人人爽视色| 高潮久久久久久久久久久不卡| 精品人妻在线不人妻| 国产精品亚洲av一区麻豆| 91字幕亚洲| 69精品国产乱码久久久| 曰老女人黄片| 大陆偷拍与自拍| 精品国内亚洲2022精品成人| 一区福利在线观看| 成人国语在线视频| 纯流量卡能插随身wifi吗| 大香蕉久久成人网| 亚洲专区字幕在线| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲av成人av| 天堂影院成人在线观看| 99re在线观看精品视频| 欧美黄色淫秽网站| 久久人人97超碰香蕉20202| 亚洲五月婷婷丁香| 一边摸一边抽搐一进一出视频| 久久久久久大精品| 免费观看精品视频网站| 两个人免费观看高清视频| 老司机午夜福利在线观看视频| 亚洲少妇的诱惑av| 99热国产这里只有精品6| 妹子高潮喷水视频| 视频在线观看一区二区三区| 好看av亚洲va欧美ⅴa在| 国产黄a三级三级三级人| 91大片在线观看| 精品人妻在线不人妻| 欧美日韩亚洲国产一区二区在线观看| 91成人精品电影| 午夜老司机福利片| 国产亚洲精品久久久久久毛片| 一个人观看的视频www高清免费观看 | 日韩欧美一区视频在线观看| 久久久久久亚洲精品国产蜜桃av| 99久久久亚洲精品蜜臀av| 久久久久久人人人人人| 久久亚洲精品不卡| 亚洲成a人片在线一区二区| 激情视频va一区二区三区| 免费搜索国产男女视频| 成人永久免费在线观看视频| 99在线人妻在线中文字幕| 久久午夜综合久久蜜桃| 无遮挡黄片免费观看| 欧美日韩一级在线毛片| 少妇 在线观看| 亚洲七黄色美女视频| 窝窝影院91人妻| 久久天堂一区二区三区四区| 自拍欧美九色日韩亚洲蝌蚪91| 欧美+亚洲+日韩+国产| 国产精华一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 天天影视国产精品| 无人区码免费观看不卡| 999久久久精品免费观看国产| 亚洲aⅴ乱码一区二区在线播放 | 亚洲全国av大片| tocl精华| 亚洲 欧美 日韩 在线 免费| 日韩人妻精品一区2区三区| 热99国产精品久久久久久7| 国产精品自产拍在线观看55亚洲| 久久 成人 亚洲| 国产欧美日韩精品亚洲av| 久久人妻av系列| 国产精品久久久人人做人人爽| 成人亚洲精品av一区二区 | 亚洲成a人片在线一区二区| ponron亚洲| 后天国语完整版免费观看| 久久精品91蜜桃| 18禁裸乳无遮挡免费网站照片 | 视频区欧美日本亚洲| 怎么达到女性高潮| 免费高清视频大片| 精品第一国产精品| 久久国产精品男人的天堂亚洲| 18禁黄网站禁片午夜丰满| 久久婷婷成人综合色麻豆| 黄片大片在线免费观看| 一边摸一边抽搐一进一出视频| 国产有黄有色有爽视频| 精品卡一卡二卡四卡免费| 在线天堂中文资源库| x7x7x7水蜜桃| 国产精品99久久99久久久不卡| 天堂中文最新版在线下载| 日日摸夜夜添夜夜添小说| 日韩成人在线观看一区二区三区| 国产国语露脸激情在线看| 老司机靠b影院| 成人手机av| 中文亚洲av片在线观看爽| 亚洲精华国产精华精| 精品福利观看| 狠狠狠狠99中文字幕| 国产成+人综合+亚洲专区| 欧美日韩乱码在线| 美国免费a级毛片| 精品久久久久久久毛片微露脸| 啦啦啦在线免费观看视频4| 午夜福利,免费看| 国产日韩一区二区三区精品不卡| 另类亚洲欧美激情| 法律面前人人平等表现在哪些方面| 亚洲精品久久成人aⅴ小说| 国产成人欧美在线观看| 91成人精品电影| 日本wwww免费看| 嫩草影视91久久| 久久国产精品男人的天堂亚洲| 在线av久久热| 女人高潮潮喷娇喘18禁视频| 老司机午夜十八禁免费视频| 伊人久久大香线蕉亚洲五| 18禁黄网站禁片午夜丰满| 男人舔女人的私密视频| 女警被强在线播放| 日韩免费av在线播放| 精品一区二区三区四区五区乱码| 亚洲伊人色综图| 久久久精品国产亚洲av高清涩受| 伊人久久大香线蕉亚洲五| 免费在线观看黄色视频的| 久久久久久人人人人人| 黄色片一级片一级黄色片| 大型黄色视频在线免费观看| 精品熟女少妇八av免费久了| 精品电影一区二区在线| 无人区码免费观看不卡| www.自偷自拍.com| 午夜老司机福利片| 久久人人精品亚洲av| 中文字幕色久视频| 亚洲欧美日韩无卡精品| 亚洲免费av在线视频| 亚洲成人精品中文字幕电影 | 不卡av一区二区三区| 天堂中文最新版在线下载| 欧美性长视频在线观看| 久久99一区二区三区| 老司机在亚洲福利影院| 日韩人妻精品一区2区三区| 国产亚洲av高清不卡| 中文欧美无线码| 欧美一区二区精品小视频在线| 中文字幕人妻熟女乱码| 成人国产一区最新在线观看| 日本撒尿小便嘘嘘汇集6| 人人妻,人人澡人人爽秒播| 亚洲成a人片在线一区二区| 欧美日本亚洲视频在线播放| 日本撒尿小便嘘嘘汇集6| 波多野结衣av一区二区av| 精品欧美一区二区三区在线| 亚洲国产精品999在线| 国产激情久久老熟女| 免费av毛片视频| 久久热在线av| 亚洲精品粉嫩美女一区| 中文字幕高清在线视频| 国内毛片毛片毛片毛片毛片| 久久精品亚洲熟妇少妇任你| 欧美成人性av电影在线观看| 亚洲av五月六月丁香网| 这个男人来自地球电影免费观看| 日本黄色视频三级网站网址| 男人操女人黄网站| 亚洲av成人不卡在线观看播放网| av片东京热男人的天堂| 国产真人三级小视频在线观看| 欧美中文综合在线视频| 午夜免费观看网址| 看免费av毛片| 天天添夜夜摸| 两性午夜刺激爽爽歪歪视频在线观看 | 黄片小视频在线播放| 看免费av毛片| 俄罗斯特黄特色一大片| www日本在线高清视频| 日韩人妻精品一区2区三区| 国产99白浆流出| 极品人妻少妇av视频| 久久狼人影院| 久久人妻av系列| 啦啦啦 在线观看视频| 午夜福利影视在线免费观看| 交换朋友夫妻互换小说| 在线观看免费视频日本深夜| 真人一进一出gif抽搐免费| 99国产极品粉嫩在线观看| 成人亚洲精品av一区二区 | 国产片内射在线| 欧美黑人欧美精品刺激| 热re99久久国产66热| 亚洲精品中文字幕一二三四区| 亚洲中文字幕日韩| 国产精品美女特级片免费视频播放器 | 亚洲欧美激情综合另类| 一a级毛片在线观看| 国产成人av激情在线播放| 99精国产麻豆久久婷婷|