• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical design of thermal spin molecular logic gates by using a combinational molecular junction

    2022-04-12 03:47:38YiGuo郭逸PengZhao趙朋andGangChen陳剛
    Chinese Physics B 2022年4期
    關(guān)鍵詞:陳剛

    Yi Guo(郭逸) Peng Zhao(趙朋) and Gang Chen(陳剛)

    1School of Physics and Technology,University of Jinan,Jinan 250022,China

    2School of Physics and Electronics,Shandong Normal University,Jinan 250358,China

    Keywords: thermal molecular logic gate,thermally-driven spin-dependent transport,combinational molecular junction,nonequilibrium Green’s function

    1. Introduction

    Digital electronic devices are ubiquitous in today’s information world. Meanwhile, logic gates are basic building blocks in any modern digital electronic devices. They are devices having one or more than one input and only one output. And the input and the output satisfy a certain logical relationship. Among different kinds of logic gates,the AND,OR and NOT gates are three most essential and elementary logic gates. The AND gate is a logical multiplication device,which only yields an output logic 1 when all of its inputs are logic 1. In Boolean algebra terms the output of an AND gate will be true only when all of its inputs are true. The OR gate is a logical addition device,whose output is logic 1 once any of its inputs are logic 1. In Boolean algebra terms the output of an OR gate will be true once any of its inputs are true. The NOT gate is simply a single input inverter that changes the input of a logic l to an output of logic 0 and vice versa. In Boolean algebra terms the output of a NOT gate will be false when its input is true.

    In recent years, the design and manufacturing of spin molecular devices being able to perform specific logical functions has attracted ever-increasing attention owing to the rapid development of molecular spintronics.[1-4]In these socalled spin molecular logic gates, magnetic molecular materials can switch among different states under the action of one or more input signals, and such transition leads to a single logical output signal. Evidently, selection of appropriate magnetic molecular materials becomes a key factor to construct spin molecular logic gates. So far, many research groups have paid intensive attention to finding the suitable magnetic molecular materials. For example, taking the magnetic field in different directions as input signals and the produced spin-polarized current or total current as output signal, different research groups proposed zigzag graphene nanoribbon-, zigzag silicene nanoribbon- and Mnphthalocyanie nanoribbon-based spin molecular AND, OR and NOT gates in the early studies.[5-8]Recently, we also conceived and designed planar four-coordinate Fe (PFCF)molecule-based spin molecular AND,OR,NOT gates, etc.[9]Nevertheless, since the proposed PFCF-based spin molecular gates are very tiny, it is difficult to modulate experimentally the direction of external magnetic field in an adjacent Fe atom region at the moment. Very recently,with an attempt to settle this problem,we have further proposed a novel combinational molecular junction (CMJ), which contains a PFCF molecule and a photochromic molecule (15,16-dinitrile dihydropyrene(DDP)/cyclophanediene (CPD)) linked together in series by a finite single-walled armchair carbon nanotube (SWACNT)bridge.[10]Here,the photochromic molecule is respectively in the DDP/CPD form with rapid response time upon the ultraviolet(UV)/visible(VIS)photo-excitation.[11-13]By utilizing the magnetic field in different directions,the light of different wavelengths as input signals and the produced spin-polarized current or total current as an output signal,the spin molecular AND,OR and NOT gates are realized.[10]

    In the meantime, with the continuous miniaturization of the electronic devices, the problems resulting from the waste heat become more and more serious. Fortunately, spin caloritronics provides a favorable approach to convert untapped waste heat to electricity,[14-16]which increases the energy utilizing efficiency to a large extent. In the present work,we further investigate the thermally-driven spin-dependent transport properties of the PFCF+DDP/CPD-based CMJ.The results demonstrate that the magnetic field and light can effectively regulate the thermally-driven spin-dependent currents.And with that, we can design three elementary thermal spin molecular AND, OR and NOT gates. In the following parts of this article,theoretical model and computational details are given in Section 2. Numerical results and discussion are presented in Section 3.Finally,a conclusion is given in Section 4.

    2. Theoretical model and computational details

    Fig. 1. Schematic of the studied PFCF+DDP/CPD-based combinational molecular junction (CMJ) consisting of a PFCF molecule and a DDP/CPD molecule linked in series by a finite (4,4) SWACNT bridge sandwiched between two (4,4) SWACNT electrodes. The orange, yellow, gray, white and blue spheres stand for the Fe,S,C,H and N atoms,respectively. The CMJ is divided into three regions in simulations: the central scattering region(CSR),the hot semi-infinite left electrode(LE),and the cold semi-infinite right electrode (RE). By tuning the direction of magnetic field (↑=up and ↓=down)and the wavelength of light (UV = ultraviolet and VIS = visible), the CMJ can interconvert among four states,(a)state 1(S1: the direction of magnetic field is ↑and the light is UV),(b)state 2(S2: the direction of magnetic field is ↓and the light is UV), (c) state 3 (S3: the direction of magnetic field is ↑and the light is VIS),and(d)state 4(S4: the direction of magnetic field is ↓and the light is VIS).A temperature gradient is applied along the CMJ from left to right. TL and TR represent the temperature of LE and RE (TL >TR),respectively,while ΔT indicates the temperature difference between them.

    The studied PFCF+DDP/CPD-based CMJ is schematically depicted in Fig.1,consisting of the central scattering region(CSR),the hot semi-infinite left and the cold semi-infinite right electrodes(LE and RE,marked by red and green rectangles,respectively).Nonmagnetic metallic(4,4)SWACNTs are adopted as electrodes due to their high electrical conductivity.The CSR includes a PFCF molecule and a DDP/CPD molecule linked in series by a finite (4,4) SWACNT bridge, as well as portions of two electrodes to screen out the effect of molecular kernels on bulk electrodes. All the dangling bonds at the open ends of SWACNT electrode and bridge are saturated by H atoms. A thickness of 16 °A in the vacuum interlayer is used in the non-periodic direction to isolate the CMJ from its periodic images. As shown in Figs. 1(a)-1(d), the PFCF+DDP/CPDbased CMJ can interconvert among four states under the action of magnetic field and light,referred to as S1,S2,S3 and S4 in sequence. To be specific,in S1 state(see Fig.1(a)),the direction of magnetic field is up(↑)and the light is UV.Compared with S1 state,the direction of magnetic field in S2 is changed to down (↓) while the light is still UV (see Fig. 1(b)). In S3 state (see Fig. 1(c)), the direction of magnetic field is↑and the light is VIS.Compared with S3 state,the magnetic field is changed to↓while the light is still VIS(see Fig.1(d)). Before the spin caloritronic transport calculations, the CSR is fully relaxed until the force tolerance of 0.02 eV/°A is met.

    All the calculation are carried out by using the density functional theory (DFT) combined with the non-equilibrium Green function (NEGF) methodology, as implemented in the software package of Atomistix Toolkit (ATK).[17-20]This methodology has been widely adopted to deal with the thermally-driven spin-dependent transport properties in molecular junctions.[21-25]The exchange-correlation energy is treated by the spin generalized gradient approximation (SGGA) with the Perdew-Burke-Ernzerhof (PBE)functional.[26]To ensure the computational accuracy, the wavefunction of valence electrons are expanded by the doubleζplus polarization (DZP) basis set, while the electronion interactions are modeled by the Troullier-Martins normconserving pseudopotentials.[27]Also,ak-mesh of 1×1×21 and 1×1×100 according to the Monkhorst-Pack scheme[28]is employed in the geometry relaxation and thermally-driven spin-dependent transport calculations, respectively, while the cutoff energy for the electrostatic potentials is set to be 200 Ry.A temperature gradient is applied along the CMJ from the left to the right,and then the thermally-driven spin-polarized current flowing through the CMJ under the temperature difference(ΔT=TL-TR)between the temperature of LE(TL)and the temperature of RE(TR)can be obtained via the Landauer-B¨uttiker formula[29]

    whereTσ(E) is the spin-resolved transmission function with the spin indexσ(up or down indicating spin-up and spindown), andfL(R)is the Fermi-Dirac distribution function of electrons in LE(RE).Here,Eis the carrier(electron or hole)energy. Moreover,a positive(negative)current represents the flow of current from the LE (RE) to RE (LE). Meantime, we must point out that in ATK code one can set the initial relative spin for every atom in a molecular junction to simulate the effect of the magnetic field. To be specific, when the initial relative spin of iron atom in the PFCF molecule is set to be 1, it indicates the magnetic field is up; whereas, when the initial relative spin of iron atom in the PFCF molecule is set to be-1,it indicates the magnetic field is down. Then,after a self-consistent DFT+NEGF calculation,one can get the converged spin densities. Furthermore,we calculate the transport properties of CMJ with closed-ring state DDP and open-ring state CPD,respectively,to simulate the cases under UV or VIS action.This method has been widely adopted to study the photochromic molecule-based photoswitches.[30-32]

    3. Results and discussion

    3.1. Thermally-driven spin transport properties

    Figures 2(a)-2(d) present the thermally-driven spindependent currents as a function of ΔTwithTL=300 K for the CMJ in S1, S2, S3 and S4 states, respectively. The cases withTL=350 and 400 K are also tested, which give similar results. It can be seen clearly from Figs. 2(a)-2(d), the magnetic field and light modulations have significant effects on the thermally-driven currents. In S1 state as shown in Fig. 2(a),obvious negative spin-up current(Iup)can go through the CMJ,while the spin-down current (Idn) is forbidden. On the contrary,in S2 state as shown in Fig.2(b),theIupis blocked,and obvious negativeIdncan pass through the CMJ due to the reversal in the direction of magnetic field. Clearly, only one spin channel is open while the other one is closed in S1 and S2 states,giving rise to a significant thermal spin filtering effect. Unlike S1 and S2 states,in S3 and S4 states as shown in Figs.2(c)and 2(d),both two channels are shut down,and there is almost no observableIupandIdnflowing through the CMJ due to the photochromic molecule is in the CPD form under the action of VIS light regardless of the direction of the magnetic field. This will undoubtedly cause the total thermallydriven current (Isum=Iup+Idn) in S1/S2 state to be much larger than that in S3/S4 state. And a good thermal switching effect can be achieved when the CMJ converts between S1 and S3(S2 and S4)states upon photo-excitation.

    The observed thermal spin-filtering and thermal switching effects can be quantified by two parameters, namely,the spin-filtering efficiency (SFE) and switching ratio (SR).The former is the relative ratio of current with a particular spin index over the other and defined as SFE =[(Iup-Idn)/(Iup+Idn)]×100%.The latter is the absolute ratio of total current between different states and defined as SR = (Isumin S1)/(Isumin S3)× 100% and(Isumin S2)/(Isumin S4)×100%, respectively. Figure 3(a)plots the SFE as a function of ΔTfor the CMJ in S1 and S2 states. It is evident that both S1 and S2 states exhibit perfect spin-filtering performance with the SFEs approaching to±100% efficiency, respectively, indicating the CMJ in S1 and S2 states can behave as perfect spin-filters. Figure 3(b)plots the SR as a function of ΔTfor the CMJ in S1/S3 and S2/S4 states. It can be seen that both the two cases exhibit good switching performance with the SRs up to 104%, indicating the CMJ can behave as a good molecular switch when it converts between S1 and S3(S2 and S4)states upon photoexcitation.

    Fig.2. Calculated thermally-driven spin-dependent currents as a function of ΔT with TL =300 K for the CMJ in (a) S1, (b) S2, (c) S3 and(d)S4 states,respectively.

    Fig.3. (a)Calculated spin filtering efficiency(SFE)as a function of ΔT for the CMJ in S1 and S2 states. (b)Calculated switching ratio(SR)as a function of ΔT for the CMJ in S1/S3 and S2/S4 states.

    Based on Eq.(1),we know that the thermally-driven spindependent currents are essentially determined by the product of two factors,namely,Tσ(E)and the difference between the Fermi-Dirac distribution function of two electrodes, i.e.,(fL-fR). Figure 4(a) plots thefLandfRwith different temperature (TL=300 K andTR=240 K) as a function of(E-EF), respectively. Here, theEFis the Fermi energy. It can be seen clearly that the carrier (hole whenE <EFand electron whenE >EF)concentration in the hot LE is always higher than that in the cold RE.Therefore,both the holes and electrons flow from the hot LE to the cold RE. And thus the former results in a positive currentIh,while the latter leads to a negative currentIedue to the holes are positively charged and the electrons are negatively charged. Moreover, as shown in the insert of Fig. 4(a), (fL-fR) is a strictly symmetric function with respect toEF, and also presents a typical exponential decaying feature. This indicates that onlyTσ(E) in the energy region nearEFcontributes to the thermally-driven currents, while the contribution fromTσ(E) in other energy regions can be actually ignored. Meantime, in order to avoid the cancelation between the positiveIhand negativeIeand obtain observable thermally-driven currents,Tσ(E)in the energy region nearEFshould be anti-symmetric aboutEF. Taking S1 and S3 states as examples, in Fig. 4(b), we plot their spin-resolved transmission spectra. Clearly, an obvious and a very faint spin-up transmission peak just above theEFappears in S1 and S3 states, respectively, while we cannot observe any spin-down transmission peak nearEF. Those distinct transmission characteristics can be elucidated by the spatial distribution of molecular projected self-consistent Hamiltonian(MPSH)orbitals[33]aroundEF. As shown in Fig.4(b),there is only one spin-up MPSH orbital (185) just aboveEFat 0.018 eV and 0.026 eV for S1 and S3 states, respectively.As shown by the spatial distribution in the insert of Fig.4(b),the spin-up MPSH 185 is a relatively extended and completely localized orbital in S1 and S3 sates, respectively. As further shown by the spin-resolved projected density of states(PDOS)in Fig.S1(a)in the supporting information,for S1 state,there is a strong spin-up PDOS from the PFCF molecule, a weak spin-up PDOS from the SWACNT bridge and an observable spin-up PDOS from the DDP molecule at 0.018 eV.Hybrid between them leads to the relatively extended spin-up MPSH 185 orbital and the obvious spin-up transmission peak in S1 state at corresponding energy region. As shown by the spin-resolved projected density of states (PDOS) in Fig. S1(b) in the supporting information,for S3 state,there is still a strong spin-up PDOS from the PFCF molecule, a weak spin-up PDOS from the SWACNT bridge at 0.026 eV,but the spin-up PDOS from the CPD molecule vanishes,resulting in the completely localized spin-up MPSH 185 orbital and the very faint transmission peak in S3 state at corresponding energy region. In stark contrast,no any spin-down MPSH orbital can be found nearEFin two states (see Figs. S1(a) and S1(b) in the supporting information,no any spin-down PDOS hybrid nearEF),bringing out the disappearance of spin-down transmission peak in the vicinity ofEF. Figures 4(c) and 4(d) then plot the spin-resolved current spectra,Jσ(E)=Tσ(E)×(fL-fR), as a function of(E-EF) for S1 and S3 states with ΔT=60 K. Clearly, the size of the integral area ofJσ(E)below and above theEFdetermines the magnitude of the positiveIhand negativeIe, respectively. In S1 state,as shown in Fig.4(c),one can observe an obviousJuppeak just above and belowEF, respectively.The integral area ofJuppeak aboveEFis much larger than that belowEF.As a result,the negative spin-upIeoverruns the positive spin-upIh,giving rise to an obvious nonzero net negativeIup. Meantime,no anyJdnpeak can be found due to the disappearance of spin-down transmission peak nearEF,resulting in the vanishing ofIdn. In S3 state, as shown in Fig. 4(d), there is no anyJdnpeak aroundEF,meanwhile theJuppeak aroundEFis also reduced significantly. Therefore,bothIupandIdnare strongly suppressed in S3 state.

    Fig.4. (a)Calculated Fermi-Dirac distribution function of electrons in LE with TL =300 K and in RE with TR =240 K.The insert presents the difference between them. (b) Calculated spin-resolved transmission spectra for S1 and S3 states. The positions of molecular projected self-consistent Hamiltonian(MPSH)eigenvalues are marked with squares for S1 state and with triangle for S3 state,respectively. The inserts show the spatial distributions of corresponding MPSH orbitals. (c)Calculated spin-resolved current spectra for S1 state with ΔT =60 K.(d)Calculated spin-resolved current spectra for S3 state.

    3.2. Thermal spin molecular AND,OR and NOT gates

    Based on these thermally-driven spin-dependent transport properties of the PFCF+DDP/CPD-based CMJ, we can design three elementary thermal spin molecular logic gates,taking the magnetic field in different directions and the light with different wavelengths as input signals and the produced spinpolarized current or total current as output signal. Those thermal spin molecular gates utilize two different types of external stimuli as input signals, and then avoid the problem of modulating the direction of the external magnetic field on a very small scale.

    3.2.1. The design of AND gate

    As shown in Fig.5(a),the magnetic field and light are the input signalsAandB,respectively,and the producedIupis the output signalY. ForAandB,the upward/downward magnetic field and the UV/VIS light are defined as logic 1/0, respectively. ForY,the high/lowIupis taken as logic 1/0. As one can see from Figs.2(a)-2(d), theIupis only high in S1 state, and it is extremely low in S2, S3 and S4 states. Clearly, the CMJ only produces logic 1 (Y=1) when the magnetic field is up(A=1) and the light is UV (B=1), namely,Yis the logical product ofAandB(see the truth table in Fig.5(a)),indicating the AND logical relationship is established.

    Fig.5. The inputs,output,truth table and circuit symbol for thermal spin molecular logic(a)AND,(b)OR and(c)NOT gates.

    3.2.2. The design of OR gate

    As opposed to the AND gate,forAandBin the OR gate,the downward/upward magnetic field and the VIS/UV light are defined as logic 1/0, respectively. ForY, the low/highIupis taken as logic 1/0. It can been seen from Figs. 2(a)-2(d)that theIupis only high in S1 state,and it is extremely low in S2,S3 and S4 states. Clearly,the CMJ only produces logic 0(Y=0)when the magnetic field is up(A=0)and the light is UV (B=0), otherwise it produces logic 1 (Y=1) when the magnetic field is down(A=1)or the light is VIS(B=1).That is to say thatYis the logical sum ofAandB(see the truth table in Fig.5(b)),and thus the OR logical function is achieved.

    3.2.3. The design of NOT gate

    The magnetic field is always up. The input signalAand the output signalYcorrespond to the light and the produced total currentIsum,respectively. ForA,the UV/VIS light is defined as logic 1/0. ForY,the high/lowIsumis defined as logic 0/1. From Figs. 2(a) and 2(c), it can be seen that theIsumis high and extremely low in S1(i.e.,Y=0,A=1)and S3(i.e.,Y=1,A=0)states,respectively. Clearly,Yis the logic inversion ofA(see the truth table in Fig.5(b)),indicating the NOT logical operation is realized.

    4. Conclusion

    We have studied theoretically the thermally-driven spindependent transport properties of the PFCF+DDP/CPDbased combinational molecular junction consisting of a PFCF molecule and a DDP/CPD molecule with SWACNT bridge and electrodes by using the DFT+NEGF methodology. The results demonstrate that the magnetic field and light can effectively regulate the thermally-driven spin-dependent currents. Perfect thermal spin-filtering effect and good thermal switching effect are achieved. The results are analyzed from four aspects, i.e., the Fermi-Dirac distribution function, the spin-resolved transmission spectra, the spatial distribution of MPSH orbitals, and the spin-resolved current spectra. On the basis of these intriguing thermally-driven spin-dependent transport properties, we have designed three elementary thermal spin molecular AND, OR and NOT gates. To summarize,our studies provide a route to realize thermal spin molecular logic gates avoiding the problem of modulating the direction of the external magnetic field on a very small scale by constructing the combinational molecular junction, which may have a great development prospect in the fields of spin caloritronics and digital electronics.

    Acknowledgements

    Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2021MA059)and the Major Scientific and Technological Innovation Project (MSTIP) of Shandong Province, China (Grant No.2019JZZY010209).

    猜你喜歡
    陳剛
    Hard-core Hall tube in superconducting circuits
    Characterization of topological phase of superlattices in superconducting circuits
    雙組分速凝劑在長(zhǎng)大隧道濕噴中的優(yōu)勢(shì)探討
    Topological phases and type-II edge state in two-leg-coupled Su–Schrieffer–Heeger chains
    SU(3)spin–orbit coupled fermions in an optical lattice
    Dissipative Kerr solitons in optical microresonators with Raman effect and third-order dispersion*
    “三數(shù)”求解大揭秘
    Effect of dike line adjustment on the tidal bore in the Qiantang Estuary, China*
    Compressible effect on the cavitating flow: A numeric study *
    “最美援疆干部”禮贊
    ——讀《用生命踐行諾言》有感
    湖南教育(2016年26期)2016-03-16 00:37:54
    搡老岳熟女国产| 亚洲性夜色夜夜综合| 精品久久久久久久人妻蜜臀av| 69av精品久久久久久| 亚洲第一区二区三区不卡| 露出奶头的视频| 搡老熟女国产l中国老女人| 一夜夜www| 搞女人的毛片| 在线观看午夜福利视频| 精品一区二区三区人妻视频| 别揉我奶头~嗯~啊~动态视频| 神马国产精品三级电影在线观看| 亚洲av电影不卡..在线观看| 欧美性感艳星| 在线观看av片永久免费下载| 最新在线观看一区二区三区| 亚洲精品成人久久久久久| 亚洲欧美精品综合久久99| 五月伊人婷婷丁香| 国产 一区 欧美 日韩| 久久精品影院6| 国产伦一二天堂av在线观看| 18禁在线无遮挡免费观看视频 | av天堂中文字幕网| 99久久精品国产国产毛片| 欧美+亚洲+日韩+国产| 欧洲精品卡2卡3卡4卡5卡区| 亚洲va在线va天堂va国产| 97在线视频观看| 日本 av在线| 中文字幕av成人在线电影| 一级毛片aaaaaa免费看小| 韩国av在线不卡| a级毛片免费高清观看在线播放| 国产精品一区二区性色av| 久久久久国产精品人妻aⅴ院| 亚洲av电影不卡..在线观看| 久99久视频精品免费| 国产高清有码在线观看视频| 一进一出好大好爽视频| 亚洲专区国产一区二区| 亚洲欧美成人精品一区二区| 青春草视频在线免费观看| 蜜桃久久精品国产亚洲av| 久久久久性生活片| 少妇裸体淫交视频免费看高清| 精品不卡国产一区二区三区| 中文字幕免费在线视频6| 成人午夜高清在线视频| av在线观看视频网站免费| 搡老熟女国产l中国老女人| 国产久久久一区二区三区| 麻豆国产av国片精品| 天美传媒精品一区二区| 久久久久久久久大av| 嫩草影视91久久| 免费在线观看影片大全网站| 国产高清不卡午夜福利| 亚洲av第一区精品v没综合| 国产亚洲精品av在线| 午夜福利成人在线免费观看| 午夜爱爱视频在线播放| 狂野欧美激情性xxxx在线观看| 国产女主播在线喷水免费视频网站 | 麻豆成人午夜福利视频| 99热网站在线观看| 蜜臀久久99精品久久宅男| 波野结衣二区三区在线| 亚洲成av人片在线播放无| 国产成人a∨麻豆精品| 精品人妻偷拍中文字幕| 国产在视频线在精品| 一本久久中文字幕| 99在线人妻在线中文字幕| 欧美激情国产日韩精品一区| 亚洲国产色片| 国产蜜桃级精品一区二区三区| 日本-黄色视频高清免费观看| 亚洲国产精品国产精品| 哪里可以看免费的av片| 亚洲最大成人中文| 三级毛片av免费| 国产乱人视频| 色尼玛亚洲综合影院| 成人av在线播放网站| 日韩欧美三级三区| 国产亚洲精品av在线| 简卡轻食公司| 亚洲综合色惰| 一个人看视频在线观看www免费| 国产精品美女特级片免费视频播放器| 一区福利在线观看| 天天一区二区日本电影三级| 最近的中文字幕免费完整| 久久久成人免费电影| 欧美日韩国产亚洲二区| 69人妻影院| 草草在线视频免费看| 国产精品国产高清国产av| 简卡轻食公司| 久久中文看片网| 黄色一级大片看看| 最近的中文字幕免费完整| 舔av片在线| 久久久午夜欧美精品| 国产高清三级在线| 麻豆国产97在线/欧美| 亚洲欧美成人精品一区二区| 亚洲成人久久爱视频| 精品一区二区三区视频在线观看免费| 一级av片app| 丰满乱子伦码专区| 我的老师免费观看完整版| 欧美另类亚洲清纯唯美| 插阴视频在线观看视频| 亚洲av美国av| .国产精品久久| 晚上一个人看的免费电影| 在线观看美女被高潮喷水网站| 久久精品国产亚洲av香蕉五月| 黄色日韩在线| 校园春色视频在线观看| 国产亚洲精品久久久久久毛片| 久久精品国产99精品国产亚洲性色| 哪里可以看免费的av片| 国产熟女欧美一区二区| 日本一本二区三区精品| 久久天躁狠狠躁夜夜2o2o| 成人国产麻豆网| 国产精品99久久久久久久久| 色尼玛亚洲综合影院| 综合色丁香网| 寂寞人妻少妇视频99o| 午夜激情福利司机影院| 国产国拍精品亚洲av在线观看| 波多野结衣高清作品| 高清毛片免费看| 波多野结衣高清作品| 亚洲激情五月婷婷啪啪| 中国美白少妇内射xxxbb| 搞女人的毛片| av在线亚洲专区| 天堂av国产一区二区熟女人妻| 亚洲久久久久久中文字幕| 免费看日本二区| 97超级碰碰碰精品色视频在线观看| 在现免费观看毛片| 欧美zozozo另类| 成人特级av手机在线观看| 久久这里只有精品中国| 色5月婷婷丁香| 成年免费大片在线观看| 亚洲欧美日韩高清专用| а√天堂www在线а√下载| 长腿黑丝高跟| 免费看日本二区| 久久国内精品自在自线图片| 亚洲精品国产成人久久av| 国产熟女欧美一区二区| 中文亚洲av片在线观看爽| 亚洲最大成人中文| 久久久久国产精品人妻aⅴ院| 欧美在线一区亚洲| 亚洲av二区三区四区| 欧美色欧美亚洲另类二区| 国产成人a∨麻豆精品| 露出奶头的视频| 国产成人91sexporn| 大型黄色视频在线免费观看| 伦理电影大哥的女人| 午夜精品一区二区三区免费看| 特大巨黑吊av在线直播| 老司机影院成人| 免费搜索国产男女视频| 淫秽高清视频在线观看| 免费高清视频大片| 色噜噜av男人的天堂激情| 22中文网久久字幕| 成年版毛片免费区| 日日摸夜夜添夜夜添av毛片| 99精品在免费线老司机午夜| 久久久精品大字幕| 国产精品永久免费网站| 校园春色视频在线观看| 国产精品伦人一区二区| 亚洲欧美精品综合久久99| 欧美另类亚洲清纯唯美| 色视频www国产| 桃色一区二区三区在线观看| 在线播放国产精品三级| 美女xxoo啪啪120秒动态图| 免费不卡的大黄色大毛片视频在线观看 | 嫩草影院精品99| 欧美不卡视频在线免费观看| 精品欧美国产一区二区三| 最近视频中文字幕2019在线8| 麻豆国产97在线/欧美| 日日啪夜夜撸| 天堂av国产一区二区熟女人妻| 极品教师在线视频| 国产日本99.免费观看| 男女之事视频高清在线观看| 在线免费观看的www视频| 久久久久久伊人网av| 国产高清视频在线观看网站| 日韩三级伦理在线观看| 国产精品久久久久久亚洲av鲁大| 日本熟妇午夜| 色5月婷婷丁香| 成人鲁丝片一二三区免费| 日日干狠狠操夜夜爽| 97在线视频观看| 色在线成人网| 一个人看的www免费观看视频| 精品一区二区三区av网在线观看| 蜜桃久久精品国产亚洲av| 国产精品嫩草影院av在线观看| 亚洲精品国产成人久久av| 草草在线视频免费看| 91av网一区二区| 免费观看在线日韩| 久久久欧美国产精品| 麻豆av噜噜一区二区三区| 91久久精品国产一区二区成人| 久久久成人免费电影| 男人舔奶头视频| 波多野结衣巨乳人妻| 国产av一区在线观看免费| av女优亚洲男人天堂| 91在线精品国自产拍蜜月| 国国产精品蜜臀av免费| 久久这里只有精品中国| 国产精品一区二区性色av| 韩国av在线不卡| 色播亚洲综合网| 岛国在线免费视频观看| eeuss影院久久| 精品熟女少妇av免费看| 人妻制服诱惑在线中文字幕| 亚洲丝袜综合中文字幕| 一本久久中文字幕| 久久精品综合一区二区三区| 男女做爰动态图高潮gif福利片| 国内精品一区二区在线观看| 欧美最黄视频在线播放免费| 精品午夜福利视频在线观看一区| 人妻少妇偷人精品九色| 天天躁日日操中文字幕| 国产黄a三级三级三级人| 最新中文字幕久久久久| 色在线成人网| 高清午夜精品一区二区三区 | 色综合色国产| 亚洲中文日韩欧美视频| 中文字幕久久专区| 特大巨黑吊av在线直播| 国产麻豆成人av免费视频| 久久九九热精品免费| 精品免费久久久久久久清纯| 亚洲精品日韩av片在线观看| 亚洲av二区三区四区| 三级经典国产精品| 国产精品人妻久久久久久| 亚洲av成人精品一区久久| 欧美3d第一页| 久久国内精品自在自线图片| 69av精品久久久久久| 久久久久久久午夜电影| 久久久久久久久久黄片| 少妇高潮的动态图| 中国美白少妇内射xxxbb| 啦啦啦观看免费观看视频高清| 久久精品国产99精品国产亚洲性色| 美女xxoo啪啪120秒动态图| 亚洲熟妇中文字幕五十中出| 国产亚洲91精品色在线| 一级a爱片免费观看的视频| 在线观看一区二区三区| 此物有八面人人有两片| h日本视频在线播放| 色5月婷婷丁香| 美女xxoo啪啪120秒动态图| 亚洲精品日韩在线中文字幕 | 久久久久久久久久黄片| 国产精品一区二区三区四区久久| 国产av不卡久久| or卡值多少钱| 3wmmmm亚洲av在线观看| 嫩草影视91久久| 国产黄片美女视频| 亚洲精品亚洲一区二区| 久久亚洲精品不卡| 亚洲最大成人av| 狂野欧美激情性xxxx在线观看| 欧美性感艳星| 天天躁日日操中文字幕| 欧美丝袜亚洲另类| 亚洲无线在线观看| av卡一久久| 天天躁日日操中文字幕| 听说在线观看完整版免费高清| 性插视频无遮挡在线免费观看| 免费观看的影片在线观看| 可以在线观看的亚洲视频| 成人二区视频| 国产av一区在线观看免费| 日韩大尺度精品在线看网址| 亚洲,欧美,日韩| av福利片在线观看| 国产一级毛片七仙女欲春2| 国产爱豆传媒在线观看| 亚洲国产精品sss在线观看| 国产精品免费一区二区三区在线| 麻豆国产97在线/欧美| 免费不卡的大黄色大毛片视频在线观看 | 三级经典国产精品| 国产黄片美女视频| 国产亚洲精品久久久久久毛片| 在线观看av片永久免费下载| 人人妻人人澡欧美一区二区| 精品久久久久久久久亚洲| 久久精品国产亚洲av香蕉五月| 变态另类成人亚洲欧美熟女| 亚洲精品在线观看二区| 久久久成人免费电影| 精品乱码久久久久久99久播| 亚洲精品色激情综合| 乱人视频在线观看| 俺也久久电影网| 麻豆乱淫一区二区| 人妻少妇偷人精品九色| 一进一出抽搐动态| 欧美另类亚洲清纯唯美| 99久久精品一区二区三区| 精品人妻一区二区三区麻豆 | 亚洲七黄色美女视频| 国产欧美日韩一区二区精品| 老司机福利观看| 日韩欧美国产在线观看| 国产伦一二天堂av在线观看| 网址你懂的国产日韩在线| 麻豆久久精品国产亚洲av| 97人妻精品一区二区三区麻豆| 成人国产麻豆网| 国产一区二区在线av高清观看| 男女视频在线观看网站免费| 最近的中文字幕免费完整| 最近最新中文字幕大全电影3| 欧美绝顶高潮抽搐喷水| 小说图片视频综合网站| 国产精品福利在线免费观看| 99在线人妻在线中文字幕| 亚洲精品影视一区二区三区av| 精品无人区乱码1区二区| 99热6这里只有精品| 尤物成人国产欧美一区二区三区| av在线老鸭窝| 精品日产1卡2卡| 观看免费一级毛片| 亚洲丝袜综合中文字幕| 精品不卡国产一区二区三区| 18禁黄网站禁片免费观看直播| 亚洲成人中文字幕在线播放| 日本五十路高清| 欧美精品国产亚洲| a级毛片a级免费在线| 亚洲av第一区精品v没综合| 夜夜爽天天搞| 国产成年人精品一区二区| 亚洲婷婷狠狠爱综合网| 毛片女人毛片| 国产v大片淫在线免费观看| 亚洲七黄色美女视频| 午夜福利在线观看吧| 国产欧美日韩一区二区精品| 午夜爱爱视频在线播放| 欧美色欧美亚洲另类二区| 成人亚洲精品av一区二区| 久久草成人影院| 亚洲丝袜综合中文字幕| 中文资源天堂在线| av福利片在线观看| 日本黄色视频三级网站网址| 国产极品精品免费视频能看的| 国产三级在线视频| 国产高清激情床上av| 黑人高潮一二区| 91久久精品国产一区二区三区| 一夜夜www| 美女xxoo啪啪120秒动态图| 又粗又爽又猛毛片免费看| 村上凉子中文字幕在线| 一级毛片电影观看 | 久久国内精品自在自线图片| 免费看av在线观看网站| 夜夜夜夜夜久久久久| 久久久久精品国产欧美久久久| 美女被艹到高潮喷水动态| 国产精品99久久久久久久久| 日韩欧美 国产精品| 久久热精品热| 亚洲欧美成人综合另类久久久 | 男人狂女人下面高潮的视频| 精品国内亚洲2022精品成人| 一级毛片aaaaaa免费看小| 欧美区成人在线视频| 日本免费一区二区三区高清不卡| 婷婷色综合大香蕉| 亚洲av免费在线观看| 我要搜黄色片| 欧美一区二区亚洲| 麻豆国产97在线/欧美| 国产精品久久久久久亚洲av鲁大| 男女下面进入的视频免费午夜| 五月玫瑰六月丁香| www.色视频.com| 噜噜噜噜噜久久久久久91| 久久韩国三级中文字幕| 国产真实乱freesex| 国产91av在线免费观看| 成人鲁丝片一二三区免费| 最近最新中文字幕大全电影3| 性欧美人与动物交配| 久久久a久久爽久久v久久| 一本精品99久久精品77| 日日摸夜夜添夜夜添av毛片| 看十八女毛片水多多多| 亚洲,欧美,日韩| 嫩草影视91久久| 免费av毛片视频| 免费观看人在逋| 国产真实乱freesex| 欧美高清性xxxxhd video| 亚洲av电影不卡..在线观看| 免费人成在线观看视频色| 欧美日韩国产亚洲二区| 欧美三级亚洲精品| 国产精品乱码一区二三区的特点| 成年女人看的毛片在线观看| 国产三级中文精品| 美女大奶头视频| 哪里可以看免费的av片| 女人十人毛片免费观看3o分钟| 欧美xxxx性猛交bbbb| 成年免费大片在线观看| 成人精品一区二区免费| 亚洲国产高清在线一区二区三| 天堂动漫精品| 51国产日韩欧美| 97超碰精品成人国产| 午夜福利在线在线| 最近中文字幕高清免费大全6| 人妻久久中文字幕网| 亚洲精品一卡2卡三卡4卡5卡| 美女黄网站色视频| 免费人成视频x8x8入口观看| 欧美极品一区二区三区四区| 国产老妇女一区| 一级毛片电影观看 | 晚上一个人看的免费电影| 看片在线看免费视频| 亚洲内射少妇av| 男女视频在线观看网站免费| 日本爱情动作片www.在线观看 | 亚洲内射少妇av| 高清毛片免费观看视频网站| 亚洲av不卡在线观看| 成人永久免费在线观看视频| 伦理电影大哥的女人| 波多野结衣高清无吗| 国产私拍福利视频在线观看| 日本欧美国产在线视频| 成年女人毛片免费观看观看9| 欧美高清成人免费视频www| 级片在线观看| 国产精品永久免费网站| 色av中文字幕| 欧美日韩国产亚洲二区| 国产成人freesex在线 | 亚洲不卡免费看| 中国美白少妇内射xxxbb| 九九在线视频观看精品| 午夜福利18| 69人妻影院| 91精品国产九色| 国产精品乱码一区二三区的特点| 亚洲精品一卡2卡三卡4卡5卡| 99久久精品热视频| 69人妻影院| 欧美高清性xxxxhd video| 人人妻人人看人人澡| 欧美日韩综合久久久久久| 97人妻精品一区二区三区麻豆| 国产成人91sexporn| 少妇猛男粗大的猛烈进出视频 | 成人鲁丝片一二三区免费| 亚洲精品456在线播放app| 国产91av在线免费观看| 伦精品一区二区三区| 3wmmmm亚洲av在线观看| 卡戴珊不雅视频在线播放| 老女人水多毛片| 伦精品一区二区三区| av在线蜜桃| 久久久久久久午夜电影| a级毛色黄片| 亚洲无线观看免费| 黄色配什么色好看| 蜜臀久久99精品久久宅男| 22中文网久久字幕| 色哟哟哟哟哟哟| 日韩中字成人| 中国国产av一级| 女人被狂操c到高潮| 日本黄色片子视频| 成年av动漫网址| 免费av不卡在线播放| 国产精品久久久久久精品电影| 嫩草影院入口| 久久久a久久爽久久v久久| 国产精品亚洲一级av第二区| 国产一区亚洲一区在线观看| 亚洲国产色片| 两性午夜刺激爽爽歪歪视频在线观看| 婷婷色综合大香蕉| 禁无遮挡网站| 一级毛片aaaaaa免费看小| 老熟妇仑乱视频hdxx| 成年女人永久免费观看视频| 国产成人a∨麻豆精品| 老女人水多毛片| 免费在线观看影片大全网站| 噜噜噜噜噜久久久久久91| 欧美3d第一页| 亚洲成人av在线免费| 五月玫瑰六月丁香| 国产私拍福利视频在线观看| 成人午夜高清在线视频| 老司机福利观看| 在线观看66精品国产| 午夜亚洲福利在线播放| 成人一区二区视频在线观看| 热99在线观看视频| 97超级碰碰碰精品色视频在线观看| 成人亚洲欧美一区二区av| 欧美激情在线99| 国产亚洲精品综合一区在线观看| 亚洲综合色惰| 老司机福利观看| 亚洲激情五月婷婷啪啪| 亚洲欧美清纯卡通| 大香蕉久久网| 美女内射精品一级片tv| 伦理电影大哥的女人| 夜夜爽天天搞| 久久久久久久久久成人| 国产一区二区在线av高清观看| 精品人妻一区二区三区麻豆 | 一进一出抽搐gif免费好疼| 性插视频无遮挡在线免费观看| 国产精品国产高清国产av| 亚洲最大成人av| 精品久久久噜噜| 日韩制服骚丝袜av| 91精品国产九色| av中文乱码字幕在线| 在线免费十八禁| 你懂的网址亚洲精品在线观看 | 看黄色毛片网站| 亚洲自偷自拍三级| 久久精品国产鲁丝片午夜精品| 热99在线观看视频| 性欧美人与动物交配| 男人舔奶头视频| 少妇熟女欧美另类| 午夜福利高清视频| 国产精品嫩草影院av在线观看| 亚洲第一区二区三区不卡| 六月丁香七月| 伦理电影大哥的女人| 丝袜美腿在线中文| 中国美白少妇内射xxxbb| 97在线视频观看| 国产激情偷乱视频一区二区| 99久久中文字幕三级久久日本| 久久精品国产亚洲av天美| 亚洲成人中文字幕在线播放| 在线免费观看不下载黄p国产| 99久久久亚洲精品蜜臀av| 男人和女人高潮做爰伦理| 在线天堂最新版资源| 日韩高清综合在线| 国产精品1区2区在线观看.| 亚洲aⅴ乱码一区二区在线播放| 国产探花极品一区二区| 欧美日韩乱码在线| 久久亚洲国产成人精品v| 淫秽高清视频在线观看| 波多野结衣巨乳人妻| 十八禁网站免费在线| 亚洲在线自拍视频| 国产男人的电影天堂91| 国产又黄又爽又无遮挡在线| 菩萨蛮人人尽说江南好唐韦庄 | 青春草视频在线免费观看| 亚洲自偷自拍三级| 日韩一区二区视频免费看| 我的女老师完整版在线观看| 亚洲av电影不卡..在线观看| 久久亚洲精品不卡| 色av中文字幕| 亚洲美女视频黄频| 一本精品99久久精品77| 高清日韩中文字幕在线|