• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical design of thermal spin molecular logic gates by using a combinational molecular junction

    2022-04-12 03:47:38YiGuo郭逸PengZhao趙朋andGangChen陳剛
    Chinese Physics B 2022年4期
    關(guān)鍵詞:陳剛

    Yi Guo(郭逸) Peng Zhao(趙朋) and Gang Chen(陳剛)

    1School of Physics and Technology,University of Jinan,Jinan 250022,China

    2School of Physics and Electronics,Shandong Normal University,Jinan 250358,China

    Keywords: thermal molecular logic gate,thermally-driven spin-dependent transport,combinational molecular junction,nonequilibrium Green’s function

    1. Introduction

    Digital electronic devices are ubiquitous in today’s information world. Meanwhile, logic gates are basic building blocks in any modern digital electronic devices. They are devices having one or more than one input and only one output. And the input and the output satisfy a certain logical relationship. Among different kinds of logic gates,the AND,OR and NOT gates are three most essential and elementary logic gates. The AND gate is a logical multiplication device,which only yields an output logic 1 when all of its inputs are logic 1. In Boolean algebra terms the output of an AND gate will be true only when all of its inputs are true. The OR gate is a logical addition device,whose output is logic 1 once any of its inputs are logic 1. In Boolean algebra terms the output of an OR gate will be true once any of its inputs are true. The NOT gate is simply a single input inverter that changes the input of a logic l to an output of logic 0 and vice versa. In Boolean algebra terms the output of a NOT gate will be false when its input is true.

    In recent years, the design and manufacturing of spin molecular devices being able to perform specific logical functions has attracted ever-increasing attention owing to the rapid development of molecular spintronics.[1-4]In these socalled spin molecular logic gates, magnetic molecular materials can switch among different states under the action of one or more input signals, and such transition leads to a single logical output signal. Evidently, selection of appropriate magnetic molecular materials becomes a key factor to construct spin molecular logic gates. So far, many research groups have paid intensive attention to finding the suitable magnetic molecular materials. For example, taking the magnetic field in different directions as input signals and the produced spin-polarized current or total current as output signal, different research groups proposed zigzag graphene nanoribbon-, zigzag silicene nanoribbon- and Mnphthalocyanie nanoribbon-based spin molecular AND, OR and NOT gates in the early studies.[5-8]Recently, we also conceived and designed planar four-coordinate Fe (PFCF)molecule-based spin molecular AND,OR,NOT gates, etc.[9]Nevertheless, since the proposed PFCF-based spin molecular gates are very tiny, it is difficult to modulate experimentally the direction of external magnetic field in an adjacent Fe atom region at the moment. Very recently,with an attempt to settle this problem,we have further proposed a novel combinational molecular junction (CMJ), which contains a PFCF molecule and a photochromic molecule (15,16-dinitrile dihydropyrene(DDP)/cyclophanediene (CPD)) linked together in series by a finite single-walled armchair carbon nanotube (SWACNT)bridge.[10]Here,the photochromic molecule is respectively in the DDP/CPD form with rapid response time upon the ultraviolet(UV)/visible(VIS)photo-excitation.[11-13]By utilizing the magnetic field in different directions,the light of different wavelengths as input signals and the produced spin-polarized current or total current as an output signal,the spin molecular AND,OR and NOT gates are realized.[10]

    In the meantime, with the continuous miniaturization of the electronic devices, the problems resulting from the waste heat become more and more serious. Fortunately, spin caloritronics provides a favorable approach to convert untapped waste heat to electricity,[14-16]which increases the energy utilizing efficiency to a large extent. In the present work,we further investigate the thermally-driven spin-dependent transport properties of the PFCF+DDP/CPD-based CMJ.The results demonstrate that the magnetic field and light can effectively regulate the thermally-driven spin-dependent currents.And with that, we can design three elementary thermal spin molecular AND, OR and NOT gates. In the following parts of this article,theoretical model and computational details are given in Section 2. Numerical results and discussion are presented in Section 3.Finally,a conclusion is given in Section 4.

    2. Theoretical model and computational details

    Fig. 1. Schematic of the studied PFCF+DDP/CPD-based combinational molecular junction (CMJ) consisting of a PFCF molecule and a DDP/CPD molecule linked in series by a finite (4,4) SWACNT bridge sandwiched between two (4,4) SWACNT electrodes. The orange, yellow, gray, white and blue spheres stand for the Fe,S,C,H and N atoms,respectively. The CMJ is divided into three regions in simulations: the central scattering region(CSR),the hot semi-infinite left electrode(LE),and the cold semi-infinite right electrode (RE). By tuning the direction of magnetic field (↑=up and ↓=down)and the wavelength of light (UV = ultraviolet and VIS = visible), the CMJ can interconvert among four states,(a)state 1(S1: the direction of magnetic field is ↑and the light is UV),(b)state 2(S2: the direction of magnetic field is ↓and the light is UV), (c) state 3 (S3: the direction of magnetic field is ↑and the light is VIS),and(d)state 4(S4: the direction of magnetic field is ↓and the light is VIS).A temperature gradient is applied along the CMJ from left to right. TL and TR represent the temperature of LE and RE (TL >TR),respectively,while ΔT indicates the temperature difference between them.

    The studied PFCF+DDP/CPD-based CMJ is schematically depicted in Fig.1,consisting of the central scattering region(CSR),the hot semi-infinite left and the cold semi-infinite right electrodes(LE and RE,marked by red and green rectangles,respectively).Nonmagnetic metallic(4,4)SWACNTs are adopted as electrodes due to their high electrical conductivity.The CSR includes a PFCF molecule and a DDP/CPD molecule linked in series by a finite (4,4) SWACNT bridge, as well as portions of two electrodes to screen out the effect of molecular kernels on bulk electrodes. All the dangling bonds at the open ends of SWACNT electrode and bridge are saturated by H atoms. A thickness of 16 °A in the vacuum interlayer is used in the non-periodic direction to isolate the CMJ from its periodic images. As shown in Figs. 1(a)-1(d), the PFCF+DDP/CPDbased CMJ can interconvert among four states under the action of magnetic field and light,referred to as S1,S2,S3 and S4 in sequence. To be specific,in S1 state(see Fig.1(a)),the direction of magnetic field is up(↑)and the light is UV.Compared with S1 state,the direction of magnetic field in S2 is changed to down (↓) while the light is still UV (see Fig. 1(b)). In S3 state (see Fig. 1(c)), the direction of magnetic field is↑and the light is VIS.Compared with S3 state,the magnetic field is changed to↓while the light is still VIS(see Fig.1(d)). Before the spin caloritronic transport calculations, the CSR is fully relaxed until the force tolerance of 0.02 eV/°A is met.

    All the calculation are carried out by using the density functional theory (DFT) combined with the non-equilibrium Green function (NEGF) methodology, as implemented in the software package of Atomistix Toolkit (ATK).[17-20]This methodology has been widely adopted to deal with the thermally-driven spin-dependent transport properties in molecular junctions.[21-25]The exchange-correlation energy is treated by the spin generalized gradient approximation (SGGA) with the Perdew-Burke-Ernzerhof (PBE)functional.[26]To ensure the computational accuracy, the wavefunction of valence electrons are expanded by the doubleζplus polarization (DZP) basis set, while the electronion interactions are modeled by the Troullier-Martins normconserving pseudopotentials.[27]Also,ak-mesh of 1×1×21 and 1×1×100 according to the Monkhorst-Pack scheme[28]is employed in the geometry relaxation and thermally-driven spin-dependent transport calculations, respectively, while the cutoff energy for the electrostatic potentials is set to be 200 Ry.A temperature gradient is applied along the CMJ from the left to the right,and then the thermally-driven spin-polarized current flowing through the CMJ under the temperature difference(ΔT=TL-TR)between the temperature of LE(TL)and the temperature of RE(TR)can be obtained via the Landauer-B¨uttiker formula[29]

    whereTσ(E) is the spin-resolved transmission function with the spin indexσ(up or down indicating spin-up and spindown), andfL(R)is the Fermi-Dirac distribution function of electrons in LE(RE).Here,Eis the carrier(electron or hole)energy. Moreover,a positive(negative)current represents the flow of current from the LE (RE) to RE (LE). Meantime, we must point out that in ATK code one can set the initial relative spin for every atom in a molecular junction to simulate the effect of the magnetic field. To be specific, when the initial relative spin of iron atom in the PFCF molecule is set to be 1, it indicates the magnetic field is up; whereas, when the initial relative spin of iron atom in the PFCF molecule is set to be-1,it indicates the magnetic field is down. Then,after a self-consistent DFT+NEGF calculation,one can get the converged spin densities. Furthermore,we calculate the transport properties of CMJ with closed-ring state DDP and open-ring state CPD,respectively,to simulate the cases under UV or VIS action.This method has been widely adopted to study the photochromic molecule-based photoswitches.[30-32]

    3. Results and discussion

    3.1. Thermally-driven spin transport properties

    Figures 2(a)-2(d) present the thermally-driven spindependent currents as a function of ΔTwithTL=300 K for the CMJ in S1, S2, S3 and S4 states, respectively. The cases withTL=350 and 400 K are also tested, which give similar results. It can be seen clearly from Figs. 2(a)-2(d), the magnetic field and light modulations have significant effects on the thermally-driven currents. In S1 state as shown in Fig. 2(a),obvious negative spin-up current(Iup)can go through the CMJ,while the spin-down current (Idn) is forbidden. On the contrary,in S2 state as shown in Fig.2(b),theIupis blocked,and obvious negativeIdncan pass through the CMJ due to the reversal in the direction of magnetic field. Clearly, only one spin channel is open while the other one is closed in S1 and S2 states,giving rise to a significant thermal spin filtering effect. Unlike S1 and S2 states,in S3 and S4 states as shown in Figs.2(c)and 2(d),both two channels are shut down,and there is almost no observableIupandIdnflowing through the CMJ due to the photochromic molecule is in the CPD form under the action of VIS light regardless of the direction of the magnetic field. This will undoubtedly cause the total thermallydriven current (Isum=Iup+Idn) in S1/S2 state to be much larger than that in S3/S4 state. And a good thermal switching effect can be achieved when the CMJ converts between S1 and S3(S2 and S4)states upon photo-excitation.

    The observed thermal spin-filtering and thermal switching effects can be quantified by two parameters, namely,the spin-filtering efficiency (SFE) and switching ratio (SR).The former is the relative ratio of current with a particular spin index over the other and defined as SFE =[(Iup-Idn)/(Iup+Idn)]×100%.The latter is the absolute ratio of total current between different states and defined as SR = (Isumin S1)/(Isumin S3)× 100% and(Isumin S2)/(Isumin S4)×100%, respectively. Figure 3(a)plots the SFE as a function of ΔTfor the CMJ in S1 and S2 states. It is evident that both S1 and S2 states exhibit perfect spin-filtering performance with the SFEs approaching to±100% efficiency, respectively, indicating the CMJ in S1 and S2 states can behave as perfect spin-filters. Figure 3(b)plots the SR as a function of ΔTfor the CMJ in S1/S3 and S2/S4 states. It can be seen that both the two cases exhibit good switching performance with the SRs up to 104%, indicating the CMJ can behave as a good molecular switch when it converts between S1 and S3(S2 and S4)states upon photoexcitation.

    Fig.2. Calculated thermally-driven spin-dependent currents as a function of ΔT with TL =300 K for the CMJ in (a) S1, (b) S2, (c) S3 and(d)S4 states,respectively.

    Fig.3. (a)Calculated spin filtering efficiency(SFE)as a function of ΔT for the CMJ in S1 and S2 states. (b)Calculated switching ratio(SR)as a function of ΔT for the CMJ in S1/S3 and S2/S4 states.

    Based on Eq.(1),we know that the thermally-driven spindependent currents are essentially determined by the product of two factors,namely,Tσ(E)and the difference between the Fermi-Dirac distribution function of two electrodes, i.e.,(fL-fR). Figure 4(a) plots thefLandfRwith different temperature (TL=300 K andTR=240 K) as a function of(E-EF), respectively. Here, theEFis the Fermi energy. It can be seen clearly that the carrier (hole whenE <EFand electron whenE >EF)concentration in the hot LE is always higher than that in the cold RE.Therefore,both the holes and electrons flow from the hot LE to the cold RE. And thus the former results in a positive currentIh,while the latter leads to a negative currentIedue to the holes are positively charged and the electrons are negatively charged. Moreover, as shown in the insert of Fig. 4(a), (fL-fR) is a strictly symmetric function with respect toEF, and also presents a typical exponential decaying feature. This indicates that onlyTσ(E) in the energy region nearEFcontributes to the thermally-driven currents, while the contribution fromTσ(E) in other energy regions can be actually ignored. Meantime, in order to avoid the cancelation between the positiveIhand negativeIeand obtain observable thermally-driven currents,Tσ(E)in the energy region nearEFshould be anti-symmetric aboutEF. Taking S1 and S3 states as examples, in Fig. 4(b), we plot their spin-resolved transmission spectra. Clearly, an obvious and a very faint spin-up transmission peak just above theEFappears in S1 and S3 states, respectively, while we cannot observe any spin-down transmission peak nearEF. Those distinct transmission characteristics can be elucidated by the spatial distribution of molecular projected self-consistent Hamiltonian(MPSH)orbitals[33]aroundEF. As shown in Fig.4(b),there is only one spin-up MPSH orbital (185) just aboveEFat 0.018 eV and 0.026 eV for S1 and S3 states, respectively.As shown by the spatial distribution in the insert of Fig.4(b),the spin-up MPSH 185 is a relatively extended and completely localized orbital in S1 and S3 sates, respectively. As further shown by the spin-resolved projected density of states(PDOS)in Fig.S1(a)in the supporting information,for S1 state,there is a strong spin-up PDOS from the PFCF molecule, a weak spin-up PDOS from the SWACNT bridge and an observable spin-up PDOS from the DDP molecule at 0.018 eV.Hybrid between them leads to the relatively extended spin-up MPSH 185 orbital and the obvious spin-up transmission peak in S1 state at corresponding energy region. As shown by the spin-resolved projected density of states (PDOS) in Fig. S1(b) in the supporting information,for S3 state,there is still a strong spin-up PDOS from the PFCF molecule, a weak spin-up PDOS from the SWACNT bridge at 0.026 eV,but the spin-up PDOS from the CPD molecule vanishes,resulting in the completely localized spin-up MPSH 185 orbital and the very faint transmission peak in S3 state at corresponding energy region. In stark contrast,no any spin-down MPSH orbital can be found nearEFin two states (see Figs. S1(a) and S1(b) in the supporting information,no any spin-down PDOS hybrid nearEF),bringing out the disappearance of spin-down transmission peak in the vicinity ofEF. Figures 4(c) and 4(d) then plot the spin-resolved current spectra,Jσ(E)=Tσ(E)×(fL-fR), as a function of(E-EF) for S1 and S3 states with ΔT=60 K. Clearly, the size of the integral area ofJσ(E)below and above theEFdetermines the magnitude of the positiveIhand negativeIe, respectively. In S1 state,as shown in Fig.4(c),one can observe an obviousJuppeak just above and belowEF, respectively.The integral area ofJuppeak aboveEFis much larger than that belowEF.As a result,the negative spin-upIeoverruns the positive spin-upIh,giving rise to an obvious nonzero net negativeIup. Meantime,no anyJdnpeak can be found due to the disappearance of spin-down transmission peak nearEF,resulting in the vanishing ofIdn. In S3 state, as shown in Fig. 4(d), there is no anyJdnpeak aroundEF,meanwhile theJuppeak aroundEFis also reduced significantly. Therefore,bothIupandIdnare strongly suppressed in S3 state.

    Fig.4. (a)Calculated Fermi-Dirac distribution function of electrons in LE with TL =300 K and in RE with TR =240 K.The insert presents the difference between them. (b) Calculated spin-resolved transmission spectra for S1 and S3 states. The positions of molecular projected self-consistent Hamiltonian(MPSH)eigenvalues are marked with squares for S1 state and with triangle for S3 state,respectively. The inserts show the spatial distributions of corresponding MPSH orbitals. (c)Calculated spin-resolved current spectra for S1 state with ΔT =60 K.(d)Calculated spin-resolved current spectra for S3 state.

    3.2. Thermal spin molecular AND,OR and NOT gates

    Based on these thermally-driven spin-dependent transport properties of the PFCF+DDP/CPD-based CMJ, we can design three elementary thermal spin molecular logic gates,taking the magnetic field in different directions and the light with different wavelengths as input signals and the produced spinpolarized current or total current as output signal. Those thermal spin molecular gates utilize two different types of external stimuli as input signals, and then avoid the problem of modulating the direction of the external magnetic field on a very small scale.

    3.2.1. The design of AND gate

    As shown in Fig.5(a),the magnetic field and light are the input signalsAandB,respectively,and the producedIupis the output signalY. ForAandB,the upward/downward magnetic field and the UV/VIS light are defined as logic 1/0, respectively. ForY,the high/lowIupis taken as logic 1/0. As one can see from Figs.2(a)-2(d), theIupis only high in S1 state, and it is extremely low in S2, S3 and S4 states. Clearly, the CMJ only produces logic 1 (Y=1) when the magnetic field is up(A=1) and the light is UV (B=1), namely,Yis the logical product ofAandB(see the truth table in Fig.5(a)),indicating the AND logical relationship is established.

    Fig.5. The inputs,output,truth table and circuit symbol for thermal spin molecular logic(a)AND,(b)OR and(c)NOT gates.

    3.2.2. The design of OR gate

    As opposed to the AND gate,forAandBin the OR gate,the downward/upward magnetic field and the VIS/UV light are defined as logic 1/0, respectively. ForY, the low/highIupis taken as logic 1/0. It can been seen from Figs. 2(a)-2(d)that theIupis only high in S1 state,and it is extremely low in S2,S3 and S4 states. Clearly,the CMJ only produces logic 0(Y=0)when the magnetic field is up(A=0)and the light is UV (B=0), otherwise it produces logic 1 (Y=1) when the magnetic field is down(A=1)or the light is VIS(B=1).That is to say thatYis the logical sum ofAandB(see the truth table in Fig.5(b)),and thus the OR logical function is achieved.

    3.2.3. The design of NOT gate

    The magnetic field is always up. The input signalAand the output signalYcorrespond to the light and the produced total currentIsum,respectively. ForA,the UV/VIS light is defined as logic 1/0. ForY,the high/lowIsumis defined as logic 0/1. From Figs. 2(a) and 2(c), it can be seen that theIsumis high and extremely low in S1(i.e.,Y=0,A=1)and S3(i.e.,Y=1,A=0)states,respectively. Clearly,Yis the logic inversion ofA(see the truth table in Fig.5(b)),indicating the NOT logical operation is realized.

    4. Conclusion

    We have studied theoretically the thermally-driven spindependent transport properties of the PFCF+DDP/CPDbased combinational molecular junction consisting of a PFCF molecule and a DDP/CPD molecule with SWACNT bridge and electrodes by using the DFT+NEGF methodology. The results demonstrate that the magnetic field and light can effectively regulate the thermally-driven spin-dependent currents. Perfect thermal spin-filtering effect and good thermal switching effect are achieved. The results are analyzed from four aspects, i.e., the Fermi-Dirac distribution function, the spin-resolved transmission spectra, the spatial distribution of MPSH orbitals, and the spin-resolved current spectra. On the basis of these intriguing thermally-driven spin-dependent transport properties, we have designed three elementary thermal spin molecular AND, OR and NOT gates. To summarize,our studies provide a route to realize thermal spin molecular logic gates avoiding the problem of modulating the direction of the external magnetic field on a very small scale by constructing the combinational molecular junction, which may have a great development prospect in the fields of spin caloritronics and digital electronics.

    Acknowledgements

    Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2021MA059)and the Major Scientific and Technological Innovation Project (MSTIP) of Shandong Province, China (Grant No.2019JZZY010209).

    猜你喜歡
    陳剛
    Hard-core Hall tube in superconducting circuits
    Characterization of topological phase of superlattices in superconducting circuits
    雙組分速凝劑在長(zhǎng)大隧道濕噴中的優(yōu)勢(shì)探討
    Topological phases and type-II edge state in two-leg-coupled Su–Schrieffer–Heeger chains
    SU(3)spin–orbit coupled fermions in an optical lattice
    Dissipative Kerr solitons in optical microresonators with Raman effect and third-order dispersion*
    “三數(shù)”求解大揭秘
    Effect of dike line adjustment on the tidal bore in the Qiantang Estuary, China*
    Compressible effect on the cavitating flow: A numeric study *
    “最美援疆干部”禮贊
    ——讀《用生命踐行諾言》有感
    湖南教育(2016年26期)2016-03-16 00:37:54
    国产伦人伦偷精品视频| 日日夜夜操网爽| 欧美 亚洲 国产 日韩一| 国产一级毛片在线| 蜜桃在线观看..| 欧美日韩综合久久久久久| 后天国语完整版免费观看| 国产男人的电影天堂91| 一边摸一边抽搐一进一出视频| 男女午夜视频在线观看| 人人妻人人爽人人添夜夜欢视频| 母亲3免费完整高清在线观看| 首页视频小说图片口味搜索 | 国产日韩欧美在线精品| 久久精品国产亚洲av高清一级| 亚洲人成电影免费在线| 男男h啪啪无遮挡| 黄色 视频免费看| 国产91精品成人一区二区三区 | 18禁国产床啪视频网站| 最新的欧美精品一区二区| 中文精品一卡2卡3卡4更新| 丰满少妇做爰视频| 午夜福利视频在线观看免费| 成人亚洲欧美一区二区av| 美女主播在线视频| 真人做人爱边吃奶动态| 亚洲伊人色综图| 精品久久久久久久毛片微露脸 | 中文精品一卡2卡3卡4更新| 又黄又粗又硬又大视频| 乱人伦中国视频| videosex国产| 国产成人91sexporn| xxxhd国产人妻xxx| 伊人久久大香线蕉亚洲五| 日韩,欧美,国产一区二区三区| 在线观看免费日韩欧美大片| 精品第一国产精品| 久久久久久久大尺度免费视频| 在线精品无人区一区二区三| 后天国语完整版免费观看| 久久人人爽av亚洲精品天堂| 一区二区三区激情视频| 午夜福利,免费看| 宅男免费午夜| 一区二区三区精品91| av一本久久久久| 日韩 亚洲 欧美在线| 精品一品国产午夜福利视频| 亚洲精品日韩在线中文字幕| 国产精品一区二区在线不卡| 黄网站色视频无遮挡免费观看| 少妇被粗大的猛进出69影院| 亚洲色图 男人天堂 中文字幕| 精品第一国产精品| 嫩草影视91久久| 久久精品人人爽人人爽视色| 18禁裸乳无遮挡动漫免费视频| 咕卡用的链子| 成年动漫av网址| 精品福利永久在线观看| av天堂久久9| 亚洲五月色婷婷综合| 考比视频在线观看| 麻豆国产av国片精品| 一级毛片女人18水好多 | 亚洲成国产人片在线观看| 天天躁日日躁夜夜躁夜夜| 亚洲少妇的诱惑av| 国产福利在线免费观看视频| 丰满人妻熟妇乱又伦精品不卡| 欧美精品亚洲一区二区| 国产一卡二卡三卡精品| 香蕉国产在线看| 我的亚洲天堂| 国产亚洲av高清不卡| 亚洲三区欧美一区| a 毛片基地| 999精品在线视频| 男人舔女人的私密视频| 日韩视频在线欧美| 黄片小视频在线播放| 国产三级黄色录像| 性色av乱码一区二区三区2| 满18在线观看网站| 亚洲精品自拍成人| 可以免费在线观看a视频的电影网站| 又黄又粗又硬又大视频| 国产精品国产av在线观看| 婷婷色麻豆天堂久久| 欧美久久黑人一区二区| 蜜桃国产av成人99| 美女脱内裤让男人舔精品视频| 国产精品亚洲av一区麻豆| 不卡av一区二区三区| 久久狼人影院| 久久性视频一级片| 久久青草综合色| 中文字幕制服av| 视频区欧美日本亚洲| 免费不卡黄色视频| 精品少妇一区二区三区视频日本电影| 五月开心婷婷网| 亚洲国产av新网站| a 毛片基地| 午夜免费男女啪啪视频观看| 国产精品偷伦视频观看了| 50天的宝宝边吃奶边哭怎么回事| 在线观看人妻少妇| 日韩人妻精品一区2区三区| 国产激情久久老熟女| 少妇 在线观看| 亚洲国产精品999| 欧美人与性动交α欧美精品济南到| 国产免费视频播放在线视频| 欧美97在线视频| 一级,二级,三级黄色视频| 精品第一国产精品| 91成人精品电影| 亚洲av日韩在线播放| 国产激情久久老熟女| 建设人人有责人人尽责人人享有的| 在线精品无人区一区二区三| 少妇人妻 视频| 热re99久久国产66热| 久久久国产欧美日韩av| 十八禁人妻一区二区| 免费在线观看日本一区| 天天躁夜夜躁狠狠躁躁| 国产精品 国内视频| 亚洲欧美日韩高清在线视频 | 久久久精品区二区三区| 一级毛片黄色毛片免费观看视频| 久久午夜综合久久蜜桃| 男女午夜视频在线观看| 国产黄频视频在线观看| 一本综合久久免费| 亚洲国产精品999| 欧美日韩福利视频一区二区| 国产片特级美女逼逼视频| 亚洲成人国产一区在线观看 | 天天影视国产精品| 超色免费av| 美女福利国产在线| 午夜免费男女啪啪视频观看| 操美女的视频在线观看| 亚洲成人免费电影在线观看 | 欧美国产精品va在线观看不卡| 久久久精品免费免费高清| 如日韩欧美国产精品一区二区三区| 真人做人爱边吃奶动态| 热99久久久久精品小说推荐| 亚洲伊人久久精品综合| 久久久久网色| 在线天堂中文资源库| 日本vs欧美在线观看视频| 欧美 亚洲 国产 日韩一| 日本91视频免费播放| 99re6热这里在线精品视频| 人成视频在线观看免费观看| 久久久久久久精品精品| 欧美精品高潮呻吟av久久| 色精品久久人妻99蜜桃| 9191精品国产免费久久| 亚洲第一青青草原| 国产精品人妻久久久影院| 久久国产精品影院| 精品国产一区二区三区久久久樱花| 国产精品免费大片| 免费看av在线观看网站| 久久女婷五月综合色啪小说| 十八禁人妻一区二区| 亚洲av男天堂| 日本av手机在线免费观看| 国产无遮挡羞羞视频在线观看| 黑丝袜美女国产一区| 日本猛色少妇xxxxx猛交久久| 久久精品久久久久久久性| 国产免费现黄频在线看| av网站在线播放免费| 亚洲av综合色区一区| 大陆偷拍与自拍| 免费观看av网站的网址| 制服人妻中文乱码| 国产精品麻豆人妻色哟哟久久| 亚洲精品自拍成人| 免费在线观看视频国产中文字幕亚洲 | 18禁观看日本| 亚洲一区二区三区欧美精品| 真人做人爱边吃奶动态| 国产精品久久久人人做人人爽| 美女主播在线视频| 亚洲国产精品成人久久小说| 国产三级黄色录像| 两个人看的免费小视频| 日本91视频免费播放| 大香蕉久久成人网| 亚洲精品日本国产第一区| 精品少妇黑人巨大在线播放| 美女扒开内裤让男人捅视频| 十八禁高潮呻吟视频| 亚洲精品自拍成人| 精品卡一卡二卡四卡免费| 人妻 亚洲 视频| 欧美日韩福利视频一区二区| 日韩中文字幕欧美一区二区 | 国产精品一区二区精品视频观看| 国产av精品麻豆| 亚洲欧洲精品一区二区精品久久久| 亚洲专区中文字幕在线| 国产熟女欧美一区二区| 七月丁香在线播放| 超碰成人久久| 日韩精品免费视频一区二区三区| 汤姆久久久久久久影院中文字幕| 我的亚洲天堂| 伊人久久大香线蕉亚洲五| 久久精品国产亚洲av高清一级| 国产片内射在线| 国产一级毛片在线| 欧美激情极品国产一区二区三区| 久久久精品国产亚洲av高清涩受| 午夜日韩欧美国产| 亚洲精品一区蜜桃| 男女下面插进去视频免费观看| 777米奇影视久久| 久热爱精品视频在线9| 国产不卡av网站在线观看| 视频在线观看一区二区三区| 国产日韩一区二区三区精品不卡| 晚上一个人看的免费电影| 黄色视频不卡| 亚洲人成电影免费在线| 亚洲 欧美一区二区三区| 久久久久久免费高清国产稀缺| 国产在线视频一区二区| 制服人妻中文乱码| 日韩欧美一区视频在线观看| 日韩制服骚丝袜av| 老司机靠b影院| 久久99一区二区三区| 免费一级毛片在线播放高清视频 | 精品亚洲成国产av| 操出白浆在线播放| 老汉色∧v一级毛片| 交换朋友夫妻互换小说| 国产在视频线精品| 老司机影院毛片| 黄片播放在线免费| 1024香蕉在线观看| 多毛熟女@视频| 亚洲av在线观看美女高潮| 在线观看免费日韩欧美大片| 97精品久久久久久久久久精品| 夫妻性生交免费视频一级片| 高清不卡的av网站| 一本一本久久a久久精品综合妖精| 大码成人一级视频| 精品人妻一区二区三区麻豆| 中文字幕人妻熟女乱码| 妹子高潮喷水视频| 久久久亚洲精品成人影院| 一本综合久久免费| 久久国产精品大桥未久av| 天堂8中文在线网| 精品一区二区三卡| 各种免费的搞黄视频| 中文字幕亚洲精品专区| 香蕉国产在线看| 欧美日韩精品网址| 欧美xxⅹ黑人| 中文字幕精品免费在线观看视频| 国产高清不卡午夜福利| 99久久综合免费| 亚洲国产精品999| 亚洲精品国产一区二区精华液| 亚洲国产精品国产精品| 亚洲欧美成人综合另类久久久| 一边摸一边做爽爽视频免费| 日韩av在线免费看完整版不卡| 女人爽到高潮嗷嗷叫在线视频| 宅男免费午夜| 亚洲精品国产色婷婷电影| 亚洲第一av免费看| 国产精品亚洲av一区麻豆| 亚洲专区中文字幕在线| 91国产中文字幕| netflix在线观看网站| 美女中出高潮动态图| 久久精品成人免费网站| 人人妻人人添人人爽欧美一区卜| 黄片小视频在线播放| 2018国产大陆天天弄谢| 亚洲第一av免费看| xxx大片免费视频| 日韩制服丝袜自拍偷拍| 人人妻人人澡人人看| 久久久精品区二区三区| 国产黄频视频在线观看| 天堂俺去俺来也www色官网| 天天躁夜夜躁狠狠久久av| 超碰成人久久| 男女之事视频高清在线观看 | 晚上一个人看的免费电影| 国产一区二区激情短视频 | 91老司机精品| 国产精品国产av在线观看| 成年女人毛片免费观看观看9 | 别揉我奶头~嗯~啊~动态视频 | 人妻一区二区av| 黑人猛操日本美女一级片| 日本欧美视频一区| 自拍欧美九色日韩亚洲蝌蚪91| 十八禁高潮呻吟视频| 国产极品粉嫩免费观看在线| 国产欧美日韩一区二区三区在线| 日本午夜av视频| 久久久精品区二区三区| 中文欧美无线码| 一级黄片播放器| 欧美精品人与动牲交sv欧美| a级毛片黄视频| 精品免费久久久久久久清纯 | 亚洲五月婷婷丁香| 亚洲欧美激情在线| 汤姆久久久久久久影院中文字幕| 一边摸一边做爽爽视频免费| 免费人妻精品一区二区三区视频| 一级黄片播放器| 久久免费观看电影| 一级黄片播放器| 色精品久久人妻99蜜桃| 精品少妇一区二区三区视频日本电影| 汤姆久久久久久久影院中文字幕| 一区二区三区激情视频| 成年人黄色毛片网站| 久久人人爽人人片av| 日韩人妻精品一区2区三区| 亚洲精品日本国产第一区| 国产野战对白在线观看| 日本色播在线视频| 老司机靠b影院| 国产一区二区三区av在线| 国产视频一区二区在线看| 天天躁夜夜躁狠狠久久av| 曰老女人黄片| 久久免费观看电影| 日韩一区二区三区影片| 嫁个100分男人电影在线观看 | 免费在线观看黄色视频的| 天堂俺去俺来也www色官网| 亚洲精品久久久久久婷婷小说| 97人妻天天添夜夜摸| 人成视频在线观看免费观看| 国产精品免费视频内射| 久久精品成人免费网站| 国产亚洲一区二区精品| 国产熟女午夜一区二区三区| 国产欧美日韩一区二区三区在线| 精品国产一区二区久久| 日本五十路高清| 99久久精品国产亚洲精品| 久久人人97超碰香蕉20202| 成人黄色视频免费在线看| 婷婷色av中文字幕| 精品国产乱码久久久久久小说| 纯流量卡能插随身wifi吗| 亚洲一卡2卡3卡4卡5卡精品中文| 在线亚洲精品国产二区图片欧美| 久久久精品国产亚洲av高清涩受| videos熟女内射| 日韩大片免费观看网站| 国产又爽黄色视频| 欧美国产精品一级二级三级| 亚洲视频免费观看视频| 久久久久久久久免费视频了| 十八禁网站网址无遮挡| 日日爽夜夜爽网站| 亚洲成色77777| 久久精品国产综合久久久| 精品国产一区二区三区久久久樱花| 久久精品国产综合久久久| 99精国产麻豆久久婷婷| 免费日韩欧美在线观看| 男的添女的下面高潮视频| 下体分泌物呈黄色| 汤姆久久久久久久影院中文字幕| 蜜桃国产av成人99| 亚洲欧美成人综合另类久久久| 国产深夜福利视频在线观看| 99热网站在线观看| 国产真人三级小视频在线观看| 午夜激情久久久久久久| 久久久欧美国产精品| 亚洲国产精品一区三区| 19禁男女啪啪无遮挡网站| 真人做人爱边吃奶动态| 香蕉丝袜av| 热99国产精品久久久久久7| 国产免费福利视频在线观看| 一二三四在线观看免费中文在| 18在线观看网站| 激情视频va一区二区三区| 久久性视频一级片| 91字幕亚洲| 久久久精品国产亚洲av高清涩受| 欧美精品高潮呻吟av久久| 国产亚洲欧美精品永久| 久久久欧美国产精品| 9色porny在线观看| 亚洲av日韩精品久久久久久密 | 欧美人与善性xxx| 黄色怎么调成土黄色| 亚洲精品美女久久av网站| 国产成人a∨麻豆精品| 色网站视频免费| 2021少妇久久久久久久久久久| 精品福利永久在线观看| 国产亚洲一区二区精品| bbb黄色大片| 亚洲av在线观看美女高潮| 国产精品亚洲av一区麻豆| 美女中出高潮动态图| 男女高潮啪啪啪动态图| 一二三四社区在线视频社区8| 啦啦啦视频在线资源免费观看| 性高湖久久久久久久久免费观看| 欧美人与性动交α欧美软件| 男女边摸边吃奶| 韩国高清视频一区二区三区| 亚洲欧洲国产日韩| 一个人免费看片子| 精品一区在线观看国产| 欧美日本中文国产一区发布| 国产免费一区二区三区四区乱码| 男女下面插进去视频免费观看| 极品少妇高潮喷水抽搐| 在线av久久热| 少妇被粗大的猛进出69影院| xxxhd国产人妻xxx| 99国产综合亚洲精品| 色婷婷久久久亚洲欧美| 免费高清在线观看视频在线观看| 久久久久久久国产电影| 最新在线观看一区二区三区 | 最新在线观看一区二区三区 | 成人国语在线视频| 赤兔流量卡办理| 黄色a级毛片大全视频| 看十八女毛片水多多多| 老司机影院成人| 亚洲精品久久久久久婷婷小说| 飞空精品影院首页| 在线av久久热| 国产欧美日韩一区二区三 | 日本欧美国产在线视频| 国产黄色免费在线视频| 天天躁夜夜躁狠狠躁躁| 亚洲国产欧美在线一区| 国产伦理片在线播放av一区| 亚洲国产欧美网| 久久99一区二区三区| 午夜两性在线视频| 亚洲国产av影院在线观看| 亚洲欧美色中文字幕在线| 精品一区在线观看国产| 岛国毛片在线播放| www日本在线高清视频| 国产成人影院久久av| 飞空精品影院首页| 可以免费在线观看a视频的电影网站| 80岁老熟妇乱子伦牲交| 丁香六月欧美| 男女之事视频高清在线观看 | 欧美在线一区亚洲| 国产一级毛片在线| 各种免费的搞黄视频| 热99久久久久精品小说推荐| 美女福利国产在线| 天天操日日干夜夜撸| 亚洲精品中文字幕在线视频| 首页视频小说图片口味搜索 | 国产成人精品久久二区二区免费| 永久免费av网站大全| 亚洲三区欧美一区| 99久久精品国产亚洲精品| 午夜免费观看性视频| 国产成人av激情在线播放| 国产高清不卡午夜福利| 久久国产精品影院| 久久这里只有精品19| avwww免费| 亚洲欧美日韩高清在线视频 | 国产精品.久久久| 2021少妇久久久久久久久久久| 国产成人影院久久av| 黑人巨大精品欧美一区二区蜜桃| 午夜久久久在线观看| 老汉色av国产亚洲站长工具| 超碰成人久久| 制服诱惑二区| 在线观看一区二区三区激情| 天堂8中文在线网| 国产有黄有色有爽视频| 亚洲成人免费电影在线观看 | 赤兔流量卡办理| 久久 成人 亚洲| cao死你这个sao货| 中文字幕亚洲精品专区| 大片电影免费在线观看免费| 亚洲国产日韩一区二区| 不卡av一区二区三区| 两性夫妻黄色片| 丝袜喷水一区| 黄片播放在线免费| 性色av乱码一区二区三区2| 韩国高清视频一区二区三区| 久久久久久亚洲精品国产蜜桃av| 熟女av电影| 午夜91福利影院| 久久免费观看电影| 老熟女久久久| 欧美少妇被猛烈插入视频| 性高湖久久久久久久久免费观看| a 毛片基地| 女警被强在线播放| 两个人免费观看高清视频| 91精品国产国语对白视频| 国产精品久久久久久人妻精品电影 | 国产高清videossex| 亚洲av日韩精品久久久久久密 | 天堂中文最新版在线下载| 热re99久久精品国产66热6| 成人国产av品久久久| 老司机靠b影院| 可以免费在线观看a视频的电影网站| 久久久精品免费免费高清| 日日摸夜夜添夜夜爱| 男的添女的下面高潮视频| 天天躁夜夜躁狠狠躁躁| 一级毛片电影观看| 色网站视频免费| 亚洲三区欧美一区| 少妇的丰满在线观看| 91精品三级在线观看| 欧美性长视频在线观看| 别揉我奶头~嗯~啊~动态视频 | 欧美xxⅹ黑人| 欧美成人精品欧美一级黄| 婷婷丁香在线五月| 大香蕉久久网| 久久国产精品影院| 亚洲免费av在线视频| 国产成人一区二区在线| 欧美精品啪啪一区二区三区 | 日韩中文字幕视频在线看片| 男女床上黄色一级片免费看| 女性被躁到高潮视频| 精品国产乱码久久久久久小说| 久久精品aⅴ一区二区三区四区| 免费一级毛片在线播放高清视频 | 亚洲国产精品一区二区三区在线| 欧美 日韩 精品 国产| 日本猛色少妇xxxxx猛交久久| videosex国产| 亚洲熟女毛片儿| 国产一区亚洲一区在线观看| 看免费成人av毛片| 亚洲欧美精品综合一区二区三区| 日本wwww免费看| 久久亚洲国产成人精品v| 免费在线观看视频国产中文字幕亚洲 | 国产一区二区在线观看av| 亚洲成人国产一区在线观看 | 91国产中文字幕| 久久国产精品男人的天堂亚洲| 久久青草综合色| 一级片免费观看大全| 97在线人人人人妻| 国产成人av激情在线播放| 纵有疾风起免费观看全集完整版| 黑人巨大精品欧美一区二区蜜桃| 青春草亚洲视频在线观看| 亚洲欧美精品自产自拍| 欧美成人精品欧美一级黄| 欧美少妇被猛烈插入视频| 国产有黄有色有爽视频| 欧美 日韩 精品 国产| 男女高潮啪啪啪动态图| 欧美日韩亚洲综合一区二区三区_| 妹子高潮喷水视频| 国产精品人妻久久久影院| 精品少妇黑人巨大在线播放| 国产老妇伦熟女老妇高清| 99热国产这里只有精品6| 久热这里只有精品99| 亚洲中文日韩欧美视频| 视频在线观看一区二区三区| 伊人久久大香线蕉亚洲五| 欧美少妇被猛烈插入视频| 久久女婷五月综合色啪小说| 亚洲五月色婷婷综合| 99热网站在线观看| 男女床上黄色一级片免费看| 五月天丁香电影| 免费观看a级毛片全部| 精品视频人人做人人爽| 国产免费视频播放在线视频| 久久久亚洲精品成人影院| 国产亚洲精品第一综合不卡| av在线播放精品| 18在线观看网站| 日韩 欧美 亚洲 中文字幕| 久久精品国产综合久久久|