曹妍妍, 陸炎珂, 魏俊潮
(揚(yáng)州大學(xué)數(shù)學(xué)科學(xué)學(xué)院,江蘇揚(yáng)州 225002)
AGA=A,GAG=G, (AG)H=AG, (GA)H=GA,
則稱G為A的Moore-Penrose逆矩陣,簡(jiǎn)稱MP逆矩陣.眾所周知,任意復(fù)矩陣A有唯一的MP逆矩陣,通常記為[1].
若存在復(fù)矩陣X,滿足條件
AXA=A, XAX=X, AX=XA,
則稱A是群可逆矩陣,并稱X是A的群逆矩陣.但并不是每個(gè)矩陣都是群可逆矩陣.一個(gè)復(fù)矩陣A是群可逆矩陣當(dāng)且僅當(dāng)rank(A)=rank(A2).若A是群可逆矩陣,則其群逆矩陣是唯一確定的,通常記為A#[2].
設(shè)A是群可逆矩陣,且A#=A+,則稱A是range-Hermitian矩陣(簡(jiǎn)稱EP矩陣)[3].近年來(lái),關(guān)于EP矩陣及環(huán)上EP元的研究很多,有興趣的讀者可參考文獻(xiàn)[4-7].
設(shè)A是n階復(fù)矩陣,若AAH=AHA,則稱A是正規(guī)矩陣[8-10],受參考文獻(xiàn)[9-11]的啟發(fā),本文主要借助EP矩陣的構(gòu)造,研究正規(guī)矩陣的性質(zhì)刻畫,這是研究正規(guī)矩陣的新方法.
引理1設(shè)A是群可逆矩陣,則AAH(A#)H是EP矩陣,且(AAH(A#)H)+=AA+A+.
證因?yàn)?/p>
(AAH(A#)H)(AA+A+)=AAH((A#)HAA+)A+=A(AH(A#)HA+)=AA+,
且
(AA+A+)(AAH(A#)H)=AA+(A+AAH)(A#)H=A(A+AH(A#)H)=AA+,
所以
(AAH(A#)H)(AA+A+)=(AA+A+)(AAH(A#)H)=((AAH(A#)H)(AA+A+))H,
因?yàn)?/p>
(AA+A+)(AAH(A#)H)(AA+A+)=AA+(AA+A+)=AA+A+,
且
(AAH(A#)H)(AA+A+)(AAH(A#)H)=AA+(AAH(A#)H)=AAH(A#)H,
AAH(A#)H是EP矩陣且(AAH(A#)H)+=(AAH(A#)H)#=AA+A+.
定理1設(shè)A為n階群可逆矩陣,則A為EP矩陣當(dāng)且僅當(dāng)(AAH(A#)H)+=A+.
證必要性.假設(shè)A為EP矩陣,則AA+A+=A+.故由引理1知(AAH(A#)H)+=AA+A+=A+.
充分性.假設(shè)(AAH(A#)H)+=A+.則由引理1知AA+A+=A+.右乘AAH得AA+AH=AH,取共軛轉(zhuǎn)置得A=A2A+,故A#A=A#A2A+=AA+.因此A為EP矩陣.
定理2設(shè)A∈n×n為群可逆矩陣,則A為正規(guī)矩陣當(dāng)且僅當(dāng)(AHA(A#)H)+=AA+A+.
證必要性.由于A為正規(guī)矩陣,則AAH=AHA,故AHA(A#)H=AAH(A#)H,由引理1知
(AHA(A#)H)+=AA+A+.
充分性.假設(shè)(AHA(A#)H)+=AA+A+,則
AHA(A#)HAA+A+=(AHA(A#)HAA+A+)H,
(1)
且
AHA(A#)HAA+A+AHA(A#)H=AHA(A#)H.
(2)
由(1)知
AHA(A#)HA+=(A+)HA#AHA,
(3)
將(3)式右乘En-AA+得
(A+)HA#AHA(En-AA+)=O.
(4)
將(4)式左乘(A+)HA+A2AH得A(En-AA+)=O,故A為EP矩陣.由(1)知
AHA(A#)H=AHA(A#)HA+AHA(A#)H,
(5)
(5)式左乘(A+)H,右乘AHA+A得
A=A(A#)HA+AHA,
(6)
(6)式左乘A+,右乘A+得A+=(A#)HA+AH.故AHA+=AH(A#)HA+AH=A+AH.由于A為EP矩陣,故
AHA#=A#AH,
(7)
將(7)等式左右兩邊同時(shí)右乘A得
AHAA+=A#AHA.
(8)
將(8)等式左右兩邊同時(shí)左乘A得AHA=AAH,從而A為正規(guī)矩陣.
定理3設(shè)A為群可逆矩陣,則(AHA(A#)H)+=AA+AHA+(A+)H.
證因?yàn)?/p>
(AA+AHA+(A+)H)(AHA(A#)H)=AA+AHA+A(A#)H=AA+AH(A#)H=AA+,
且
(AHA(A#)H)(AA+AHA+(A+)H)=AHA(A#)HAHA+(A+)H=AHAA+(A+)H=A+A.
所以
(AHA(A#)H)(AA+AHA+(A+)H)=((AHA(A#)H)(AA+AHA+(A+)H))H,
(AA+AHA+(A+)H)(AHA(A#)H)=((AA+AHA(A+)H)(AHA(A#)H))H.
由于
(AHA(A#)H)(AA+AHA+(A+)H)(AHA(A#)H)=A+A(AHA(A#)H)=AHA(A#)H,
(AA+AHA+(A+)H)(AHA(A#)H)(AA+AHA+(A+)H)=AA+(AA+AHA+(A+)H)=AA+AHA(A+)H,
故
(AHA(A#)H)+=AA+AHA+(A+)H.
由定理2及定理3可得下面的推論:
推論1設(shè)A為群可逆矩陣,則A為正規(guī)矩陣當(dāng)且僅當(dāng)A+AHA+(A+)H=A+A+.
證必要性.假設(shè)A為正規(guī)矩陣,則由定理3知(AHA(A#)H)+=AA+A+,又由定理3知
(AHA(A#)H)+=AA+AHA+(A+)H,
因此AA+A+=AA+AHA+(A+)H,左乘A+得A+A+=A+AHA+(A+)H.
充分性.假設(shè)A+A+=A+AHA+(A+)H,則由定理3知
(AHA(A#)H)+=AA+AHA+(A+)H=AA+A+,
由定理2知A為正規(guī)矩陣.
引理2設(shè)A為群可逆矩陣,B為n階方陣,若A+A+B=O,則A+B=O.
證由于A+=(A#)HAHA+=(A#)HAHAA+A+,故A+B=(A#)HAHAA+A+B=O.
定理4設(shè)A為群可逆矩陣,則A為正規(guī)矩陣當(dāng)且僅當(dāng)AHA+(A+)H=A+.
證必要性.假設(shè)A為正規(guī)矩陣,則由推論1知A+AHA+(A+)H=A+A+,故
A+A+(En-AAHA+(A+)H)=O,
由引理2知A+=AHA+(A+)H.
充分性.若A+=AHA+(A+)H,則A+A+=A+AHA+(A+)H,由推論1知A為正規(guī)矩陣.
引理3設(shè)A為群可逆矩陣,則AHA+(A+)H是EP矩陣且
(AHA+(A+)H)+=AHA(A#)HA+A.
證因?yàn)?/p>
(AHA+(A+)H)(AHA(A#)HA+A)=AHA+((A+)HAH)A(A#)HA+A,
AHA+((A+)HAH)A(A#)HA+A=AHA+A(A#)HA+A,
AHA+A(A#)HA+A=AH(A#)HA+A=A+A,
所以
(AHA+(A+)H)(AHA(A#)HA+A)(AHA+(A+)H)=A+AAHA+(A+)H=AHA+(A+)H.
又因?yàn)?/p>
(AHA(A#)HA+A)(AHA+(A+)H)=AHA(A#)HAHA+(A+)H=AHAA+(A+)H,
AHAA+(A+)H=AH(A+)H=A+A.
所以
(AHA(A#)HA+A)(AHA+(A+)H)(AHA(A#)HA+A)=AHA(A#)HA+A,
且[(AHA+(A+)H)(AHA(A#)HA+A)]H=(A+A)H=A+A=(AHA+(A+)H)(AHA(A#)HA+A),
(AHA+(A+)H)(AHA(A#)HA+A)=(AHA(A#)HA+A)(AHA+(A+)H),
故AHA+(A+)H為EP矩陣且(AHA+(A+)H)+=AHA(A#)HA+A.
定理5設(shè)A為群可逆矩陣,則A為正規(guī)矩陣當(dāng)且僅當(dāng)AHA(A#)HA+A=A.
證必要性.若A為正規(guī)矩陣,則由定理7知,AHA+(A+)H=A+,又由引理4知
AHA(A#)HA+A=(AHA+(A+)H)+=(A+)+=A.
充分性.假設(shè)AHA(A#)HA+A=A,所以由引理4知
(AHA+(A+)H)+=A=(A+)+, AHA+(A+)H=A+,
由定理3知A為正規(guī)矩陣.
推論2設(shè)A為群可逆矩陣,則A為正規(guī)矩陣當(dāng)且僅當(dāng)AHA(A#)HA+=AA+.
證必要性.若A為正規(guī)矩陣,則由定理5知, AHA(A#)HA+A=A,右乘A+得
AHA(A#)HA+=AA+.
充分性.若AHA(A#)HA+=AA+,右乘A得AHA(A#)HA+A=A,由定理5知A為正規(guī)矩陣.
推論3設(shè)A為群可逆矩陣,則A為正規(guī)矩陣當(dāng)且僅當(dāng)AHA(A#)H=A.
證必要性.若A為正規(guī)矩陣,則A為EP矩陣,且由定理5知,AHA(A#)HA+A=A,由于(A#)HA+A=(A#)HAA+=(A#)H,故AHA(A#)H=A.
充分性.若AHA(A#)H=A,左乘En-A+A得(En-A+A)A=O,故A=A+A2,從而A為EP矩陣.因此(A#)H=(A#)HAA+,于是
A=AHA(A#)H=AHA(A#)HA+A,
由定理5知A為正規(guī)矩陣.
定理6設(shè)A為群可逆矩陣,則A為正規(guī)矩陣當(dāng)且僅當(dāng)A(A#)H=(A+)HA.
證必要性.由于A為正規(guī)矩陣,由推論3知AHA(A#)H=A,左乘(A+)H得
A(A#)H=(A+)HA.
充分性.若A(A#)H=(A+)HA,右乘AA+得(A+)HA=(A+)HA2A+,左乘A#AAH得A=A2A+,故A為EP矩陣.從而
AHA(A#)H=AH(A+)HA=A+A2=A,
由推論3知A為正規(guī)矩陣.
引理4設(shè)A為群可逆矩陣,則
(i) A(A#)H為EP矩陣,且(A(A#)H)+=AA+AHA+;
(ii) ((A+)HA)+=A+AA#AH;
(iii) A是EP矩陣當(dāng)且僅當(dāng)(A+)HA是EP矩陣.
證(i) 因?yàn)?/p>
(A(A#)H)(AA+AHA+)=A(A#)HAHA+=AA+,
(AA+AHA+)(A(A#)H)=AA+AH(A#)H=AA+,
又
(AA+AHA+)(A(A#)H)(AA+AHA+)=AA+(AA+AHA+)=AA+AHA+,
(A(A#)H)(AA+AHA+)(A(A#)H)=AA+(A(A#)H)=(A(A#)H),
故A(A#)H為EP矩陣,且(A(A#)H)+=AA+AHA+.
(ii) 因?yàn)?/p>
(A+AA#AH)((A+)HA)=A+AA#A=A+A,
((A+)HA)(A+AA#AH)=(A+)HAA#AH=(A+)HAH=AA+,
又
((A+)HA)(A+AA#AH)((A+)HA)=AA+((A+)HA)=((A+)HA),
(A+AA#AH)((A+)HA)(A+AA#AH)=A+A(A+AA#AH)=A+AA#AH,
故((A+)HA)+=A+AA#AH.
(iii)這是(ii)的直接推論.
推論4設(shè)A為群可逆矩陣,則A為正規(guī)矩陣當(dāng)且僅當(dāng)AA+AHA+=A+AA#AH.
證必要性.由定理6和引理4知
AA+AHA+=(A(A#)H)+=((A+)HA)+=A+AA#AH.
充分性.因?yàn)锳A+AHA+=A+AA#AH,所以由引理4知
(A(A#)H)+=A+AA#AH=((A+)HA)+,
則A(A#)H=(A+)HA,由定理6知A為正規(guī)矩陣.
本文通過(guò)對(duì)EP矩陣和群可逆矩陣的性質(zhì)研究,對(duì)正規(guī)矩陣的性質(zhì)給出更加簡(jiǎn)潔明了的證明,并且文中將三種矩陣互相推導(dǎo),提供了有研究?jī)r(jià)值的證明,為正規(guī)矩陣性質(zhì)刻畫提供了新方法、新角度,闡明了正規(guī)矩陣的性質(zhì).
本文最初的出發(fā)點(diǎn)是通過(guò)構(gòu)造EP矩陣,并且借助這些EP矩陣的形式變換,給出正規(guī)矩陣的性質(zhì)刻畫.該問(wèn)題和EP矩陣的新的形式變換密切相關(guān).
致謝作者非常感謝相關(guān)文獻(xiàn)對(duì)本文的啟發(fā)以及審稿專家提出的寶貴意見(jiàn).