劉百靈,李倉水,劉芳業(yè)
(1.河南省豫北水利勘測設計院有限公司,河南 安陽 455000;2.武漢大學 水資源與水電工程科學國家重點實驗室,湖北 武漢 430072)
在水資源總量有限的前提下,為滿足流域綜合開發(fā)用水需求,實現(xiàn)水資源高效利用,一方面要開展節(jié)水工程建設,另一方面需要探究合理的水資源調(diào)度方式,最大限度地實現(xiàn)一水多用,即開展水庫多目標調(diào)度研究。 黃河上游修建有以龍羊峽、劉家峽水庫為主的梯級水庫群,主要承擔農(nóng)業(yè)灌溉、城市生活、河道生態(tài)、興利發(fā)電、防洪防凌等綜合任務,因此黃河上游水庫群調(diào)度屬典型的多目標調(diào)度[1]。
目前,針對多目標調(diào)度問題主要的處理手段有兩種:一種是將多目標通過約束法[2]或加權(quán)法[3]轉(zhuǎn)化為單目標,采用動態(tài)規(guī)劃[4]、逐步優(yōu)化算法[5]、粒子群算法[6]、遺傳算法[7]等單目標算法進行求解,獲得某種情形下單一目標的最優(yōu)解,這種處理方式具有較大的主觀性,無法為決策者提供全面的信息,也難以平衡多用戶間的用水矛盾;另一種是建立多目標調(diào)度模型,采用MOPSO[8]、NNIA[9]、NSGA-Ⅱ[10]等多目標算法進行求解,可以獲得多個目標的帕累托解集,這種處理方式可為決策者提供全面的信息,有利于平衡多用戶間的用水矛盾。 隨著計算機性能提升及多目標算法發(fā)展,越來越多的學者開始采用多目標算法研究水庫群多目標調(diào)度問題。
NSGA-Ⅱ在水庫多目標調(diào)度中應用較為廣泛,但其僅依靠個體的擁擠度選擇非支配解,導致帕累托解集均勻性較差,且目標值范圍較?。?1-12]。 NSGA-Ⅲ是在NSGA-Ⅱ基礎上發(fā)展起來的算法,采用參考點維持種群的多樣性,能夠獲得均勻的帕累托解集。 目前NSGA-Ⅲ已在無人機控制[13]、能源控制[14]、水資源配置[15]中有所應用,取得了理想的計算效果。 因此,本文采用NSGA-Ⅲ分析黃河上游多目標調(diào)度問題,以期獲得黃河上游多目標用水規(guī)律,為黃河上游水資源管理提供決策依據(jù)。
黃河上游水庫眾多,但具有調(diào)節(jié)能力的水庫主要是龍羊峽水庫和劉家峽水庫,因此本文選擇龍羊峽水庫和劉家峽水庫作為研究對象,水庫節(jié)點如圖1 所示。
圖1 黃河上游水庫節(jié)點
黃河上游水庫主要承擔發(fā)電、防洪、防凌、供水、生態(tài)等調(diào)度任務,其中防洪目標以汛期不超過汛限水位控制,防凌目標通過控制劉家峽水庫防凌期下泄流量實現(xiàn),生態(tài)目標主要指滿足河道內(nèi)生態(tài)基流。 上述3個目標均可以轉(zhuǎn)化為約束條件進行控制,因此本文建立黃河上游梯級水庫發(fā)電與供水多目標模型,具體目標函數(shù)和約束條件如下。
(1)發(fā)電目標。 表達式為
式中:E為梯級發(fā)電量,億kW·h;N(i,t) 為第i個水庫在t時段的平均出力,MW;N1為水庫總數(shù);T為總時段;ΔT(t) 為調(diào)度時長。
(2)供水目標。 以蘭州斷面作為黃河上游取水控制斷面,以農(nóng)業(yè)灌溉缺水量最小為目標,表達式為
式中:W為缺水量,億m3;QN(t)為t時段灌溉需水量,億m3;QR(t)為t時段供水量,億m3,當需水量等于供水量時時段不缺水,當需水量小于供水量時時段缺水。
(3)防凌目標約束。 防凌期為11 月至次年3 月,控制劉家峽水庫出庫流量小于防凌流量閾值,若防凌期劉家峽水庫蓄滿、無法存蓄多余水量,則龍羊峽水庫補償調(diào)節(jié)以存蓄多余水量。
式中:Qf(t)為防凌期t時段劉家峽水庫下泄流量,m3/s;Qfmax(t) 為防凌期t時段劉家峽水庫允許最大下泄流量,m3/s。
(4)防洪目標約束。 黃河上游汛期為7 月至10月,防洪目標是控制龍羊峽水庫和劉家峽水庫汛期庫水位不高于汛限水位:
式中:Z(i,t) 為i水庫t時段水位,m;Zmax(i,t) 為i水庫在t時段的防洪限制水位,m。
(5)生態(tài)目標約束。 黃河上游生態(tài)目標以控制蘭州斷面生態(tài)基流為主,要求蘭州斷面取水后,剩余流量滿足生態(tài)基流流量要求:
式中:Ql(t)為t時段蘭州斷面取水后河道剩余流量,m3/s;Qlmax為蘭州斷面生態(tài)基流流量,m3/s。
(6)其他約束條件。 主要包括水庫發(fā)電流量約束、水量平衡約束、水庫水位約束、變量非負約束等。
NSGA-Ⅲ和NSGA-Ⅱ具有類似的框架,二者區(qū)別主要在于選擇機制的改變。 舉例來說:若非支配解集種群大小為N,非支配層為(F1、F2、…),依次將非支配層放入非支配解集內(nèi),當非支配解集大小等于N或超過N時,稱最后一層為l層,第l+1 層的解將被淘汰。 多數(shù)情況下,l層內(nèi)解只有部分被接受,如何選取這一部分解成為算法的關鍵,NSGA-Ⅱ主要依靠擁擠度進行排序選擇,而NSGA-Ⅲ通過引入廣泛分布參考點來選擇。 以下對NSGA-Ⅲ的參考點機制和歸一化進行介紹。
參考點可以結(jié)構(gòu)化的方式定義,其在一個(M-1)維超平面上,M為目標空間的維度,即優(yōu)化目標的個數(shù)。 如果將每個目標四等分,目標數(shù)量為3 個,則在二維超平面上將產(chǎn)生15 個參考點,如圖2 所示。
圖2 二維超平面參考點分布
NSGA-Ⅲ將每一個解和參考點相互關聯(lián)從而維持多樣性,參考點是均勻分布在目標空間中的,而每個解的各個目標函數(shù)值尺度不一樣導致解的偏向性不一樣,比如目標函數(shù)f1的范圍為[0,1],f2的范圍為[10,100],那么在關聯(lián)解和參考點時,f1和f2起的作用就存在不“公平”現(xiàn)象,為此需要進行歸一化處理。
以三目標模型計算為例,首先定義種群理想點坐標,即求解種群在每個目標上的最小值,構(gòu)造理想點為,通過理想點對目標函數(shù)進行轉(zhuǎn)化,;然后計算每個目標的極值點并構(gòu)建二維線性超平面,將極值點代入超平面方程中求出截距;最后采用理想點和截距進行歸一化計算。
步驟1,初始化算法參數(shù),包括種群規(guī)模、迭代次數(shù)、參考點等,對種群進行初始化;步驟2,對初始種群依次進行歸一化、關聯(lián)參考點、非支配排序等計算;步驟3,通過選擇、交叉、變異等遺傳算法基因操作,生成子代種群;步驟4,將父代和子代種群合并,再次進行歸一化、關聯(lián)參考點、非支配排序等;步驟5,修剪種群作為新的父代種群,重復迭代計算,直到滿足收斂條件;步驟6,輸出帕累托解集。 NSGA-Ⅲ算法流程見圖3。
圖3 NSGA-Ⅲ算法流程
考慮黃河上游水文調(diào)度年是7 月至次年6 月,同時本文重點分析水庫供水與發(fā)電目標,因此徑流數(shù)據(jù)選自1990 年7 月至1991 年6 月(枯水年),如圖4 所示。 其中龍羊峽水庫來水數(shù)據(jù)為唐乃亥水文站實測徑流數(shù)據(jù),龍羊峽—劉家峽區(qū)間(簡稱龍劉區(qū)間)流量數(shù)據(jù)通過小川水文站與唐乃亥水文站實測徑流數(shù)據(jù)計算得出,劉家峽—蘭州斷面區(qū)間(簡稱劉蘭區(qū)間)流量數(shù)據(jù)通過小川水文站與蘭州水文站實測徑流數(shù)據(jù)計算得出。
龍羊峽水庫和劉家峽水庫承擔著城市生活生產(chǎn)供水及農(nóng)業(yè)灌溉供水,可通過約束蘭州斷面下泄流量保證需水用戶的供水量,本文重點分析農(nóng)業(yè)供水任務,其需水過程如圖5 所示(以2010 年為現(xiàn)狀水平年,圖5還給出了防凌流量和河道內(nèi)生態(tài)基流)。
圖5 需水過程
4.2.1 算法計算性能分析
采用NSGA-Ⅲ算法進行梯級發(fā)電與供水多目標模型計算,為定性評估算法性能,同時選擇NSGA-Ⅱ算法計算結(jié)果為參照,兩算法參數(shù)設置:模型種群規(guī)模取100,進化代數(shù)取500,交叉概率取0.4,變異概率取0.03。 計算結(jié)果如圖6 所示。
圖6 發(fā)電與供水多目標帕累托曲線
由圖6 可知:①相比于NSGA-Ⅱ計算結(jié)果,NSGA-Ⅲ計算的帕累托曲線在空間分布更加均勻;②采用NSGA-Ⅱ計算的梯級發(fā)電量區(qū)間為[76.53,77.49],而NSGA-Ⅲ計算的梯級發(fā)電量區(qū)間為[78.55,81.30],梯級發(fā)電量明顯提高,表明NSGA-Ⅲ全局尋優(yōu)能力更強。 由此可見,NSGA-Ⅲ算法具有顯著的優(yōu)越性,適用于梯級水庫群多目標調(diào)度問題求解。
此外,以NSGA-Ⅲ優(yōu)化結(jié)果為例,基于帕累托解集計算得出梯級發(fā)電變化量為2.75 億kW·h,而供水目標缺水量變化量為16.1 億m3,可知一定程度的發(fā)電效益犧牲可以換取較大的供水效益,同時也反映出水庫調(diào)節(jié)在流域水資源分配中的重要性。
4.2.2 黃河上游水資源用水矛盾分析
為進一步分析黃河上游水資源年內(nèi)供需矛盾,從帕累托解集中選取發(fā)電量最大調(diào)度方案,其對應的龍羊峽水庫和劉家峽水庫水位變化過程如圖7 所示。
圖7 水庫水位變化過程
由圖7 可知:①龍羊峽水庫和劉家峽水庫月末水位過程均滿足水位約束條件,其中劉家峽水庫水位在汛期結(jié)束時達到了汛限水位;②兩水庫水位變化均呈現(xiàn)先升高后降低的規(guī)律,但是龍羊峽水庫水位整體偏高,而劉家峽水庫在11 月蓄滿后維持高水位運行,雖然此時段劉家峽水庫水位較高,但由于出庫流量受限(防凌期流量限制),因此發(fā)電目標受到影響;③龍羊峽水庫和劉家峽水庫在調(diào)度期末庫水位均下降至死水位,表明在枯水年份天然來水總量不足,需要兩庫向下游灌區(qū)額外供水,以降低灌溉缺水損失,由于向灌溉供水導致水庫水位快速下降,因此梯級發(fā)電量受到影響。
根據(jù)調(diào)度結(jié)果繪制年內(nèi)各時段梯級發(fā)電量與灌溉缺水量曲線,如圖8 所示。
圖8 水庫發(fā)電與灌溉目標對比
鑒于起調(diào)水位較低,為盡快提高發(fā)電水頭,7—9月龍羊峽水庫和劉家峽水庫出庫流量較小,導致該時段發(fā)電量較小且灌溉缺水嚴重。 在防凌期(11 月—次年3 月)劉家峽出庫流量較小,導致在11 月和3 月下游灌溉缺水。 由此可見,灌溉與發(fā)電任務在用水上主要矛盾集中于汛期,且防凌期開始和結(jié)束月份,也會影響灌溉用水。
進一步繪制灌溉缺水流量與生態(tài)流量曲線,如圖9 所示。
圖9 灌溉缺水流量與生態(tài)流量對比
由圖9 可知,全年河道內(nèi)生態(tài)流量均大于等于300 m3/s,生態(tài)目標得到滿足,但對應的灌溉缺水時段較多,集中在7—9 月、11 月和3 月,若將生態(tài)流量分配到灌溉任務上,則僅在7 月份發(fā)生灌溉缺水。 由此可見,生態(tài)與灌溉用水矛盾突出。
綜上所述,黃河上游梯級水庫發(fā)電與供水矛盾主要集中在汛期和防凌期,具體而言:枯水年全年來水偏少,為滿足后續(xù)枯水期供水要求,同時提高發(fā)電水頭,水庫在保證防洪安全的前提下盡可能將來水存蓄到庫中,導致汛期灌溉缺水嚴重;而在防凌期,雖然劉家峽水庫發(fā)電水頭較高,但受防凌流量限制,導致發(fā)電流量較小,梯級發(fā)電量損失較大,同時春灌期灌溉需水無法得到滿足。
本文針對黃河上游梯級水庫多目標調(diào)度問題,建立了多目標調(diào)度模型并采用NSGA-Ⅲ算法進行求解,主要得到以下結(jié)論:NSGA-Ⅲ算法可用于求解梯級水庫多目標調(diào)度模型,并且可以獲得分布更均勻、范圍更廣的帕累托解集;枯水年黃河上游天然來水較少,在考慮防洪、防凌、生態(tài)等控制目標下,發(fā)電與灌溉存在用水矛盾,且用水矛盾主要集中在汛期和防凌期,通過龍羊峽水庫和劉家峽水庫調(diào)節(jié),可以緩解兩目標的用水矛盾。
黃河上游水資源總量有限,雖然水庫在水量分配上可以發(fā)揮一定調(diào)節(jié)作用,但總水量不足的問題仍然無法解決,因此建議未來加快開展黃河流域農(nóng)業(yè)灌溉節(jié)水、高效輸水等工程建設,從源頭上減少耗水量,以緩解黃河上游多用戶用水矛盾。