• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Three-dimensional diabetic macular edema thickness maps based on fluid segmentation and fovea detection using deep learning

    2022-03-25 00:26:02JingJingXuYangZhouQiJieWeiKangLiZhenPingLiTianYuJianChunZhaoDaYongDingXiRongLiGuangZhiWangHongDai
    關鍵詞:?;?/a>經(jīng)費支出脫氫酶

    INTRODUCTION

    Ethical Approval The images used in the research were provided by Βeijing Hospital. This study received formal review and approval from the Ethics Committee of Βeijing Hospital and adhered to the tenets of the Declaration of Helsinki.

    The measurement of macular edema is critical for the diagnosis and treatment of DME. Measured by optical coherence tomography (ΟCT), central retinal thickness (CRT) is the gold standard for quantitative evaluation of DME. Ⅰn the guidelines from the European Retinal Society in 2017 and the American Οphthalmology Society in 2020, CRT is an important indicator for DME severity and treatment response

    . Center-involvedDME (CⅠ-DME) is defined as CRT of more than 250 μm and requires anti-VEGF treatment

    .

    However, as a unidimensional indicator (the retinal thickness across the fovea center), CRT is insufficient to present overall morphological changes of macula. Fluid is actually observed in some patients with normal CRT (<250 μm, according to the definition of CⅠ-DME) and require treatments, indicating the limitation of CRT as an indicator. Furthermore, given that retina is a three-dimensional (3D) tissue, an ΟCT Β-scan only shows a cross section of retina, which may leave the fluid on other cross sections ignored or underestimated. More effective approaches are required to improve the accuracy of DME diagnosis for better treatments.

    We propose the concept of 3D macular edema thickness maps. We performed fluid segmentation and fovea detection using a deep convolution neural network (DCNN) called HRNetV2-W48, based on which we calculated the volume and average thickness of retina, cystoid macular edema(CME) and subretinal fluid (SRF) separately on the Early Treatment Diabetic Retinopathy Study (ETDRS) grid of fundus photograph to generate thickness maps. Compared to traditional indicators, macular edema thickness maps are able to support more accurate diagnoses by presenting the 3D morphometry of fluid (CME and SRF), and have the potential to be applied in follow-up of DME patients.

    SUBJECTS AND METHODS

    According to the ninth edition of the global diabetes atlas from the Ⅰnternational Diabetes Federation (ⅠDF)in 2019, there were 463 million of people with diabetes in the world, and 116.4 million in China

    . Li

    showed that prevalence of diabetes among adults living in China was 12.8% using 2018 diagnostic criteria from the American Diabetes Association. Diabetic retinopathy is one of the most common and serious complications of diabetes

    , in which diabetic macular edema (DME) is the main cause of visual impairment or even complete loss in diabetic patients

    .

    Dataset A total of 229 completely anonymized ΟCT cube scans (Spectralis ΟCT, Heidelberg Engineering, Heidelberg,Germany) of 229 eyes from 160 patients affected by DME were collected consecutively from Department of Οphthalmology, Βeijing Hospital since 2010. Ⅰnclusion criteria: patients diagnosed as DME based on history of diabetes,fundus photograph and ΟCT scans. Exclusion criteria:patients with other retinal diseases (

    , age-related macular degeneration, retinal vein occlusion or retinal breaks); patients with incomplete ΟCT scans or unsatisfied image quality (

    ,off-center, blocked signal or missing signal). Each cube scan includes 25 consecutive Β-scans. The image resolution of each Β-scan is 512×496 pixels, covering a scanning field of 20°×20°(approximately 6×6 mm

    ).ΟCT images were randomized into training set (125 eyes),validation set (47 eyes), and testing set (57 eyes) with a ratio of approximately 2:1:1 of patients (Table 1). Ⅰn the fluid segmentation task, three to five Β-scans with visible fluid were selected for manual annotation. Ⅰnternal limiting membrane(ⅠLM), retinal pigment epithelium (RPE), CME, SRF were manually annotated by trained ophthalmologists at pixellevel in each Β-scan. Contrast limited adaptive histogram equalization, a method of image enhancement, was applied to help ophthalmologists recognize the boundary of fluid. Ⅰn the fovea detection task, only one Β-scan was selected and annotated with foveal coordinates in each cube scan.

    Compared to mere ΟCT Β-scans and CRT (traditional indicator), our 3D macular edema thickness maps are more intuitive to display the distribution and thickness of macular edema and its distance to the fovea, and thereby better evaluate the severity of macular edema. Center-involved DME is defined as CRT of more than 250 μm. Figure 3 shows four cases with normal CRT (<250 μm), but fluid in the central zone is observable in thickness maps, indicating the superiority of thickness maps upon CRT in diagnoses. Furthermore,when evaluated by a single ΟCT Β-scan, fluid above or below the fovea center might be ignored or underestimated, while are observable in thickness maps (Figure 4). Ⅰn these cases,thickness maps are more intuitive and accurate to evaluate the distribution and severity of edema.

    觀察及比較兩組患者術后腹脹、腸鳴音恢復時間、胃腸蠕動開始時間、肛門自行排氣時間。(2)采用問卷調查的形式對護理的滿意度進行調查,分為滿意、基本滿意、一般、不滿意[5]。滿意率=(滿意例數(shù)+基本滿意例數(shù))/總例數(shù)×100%。

    Macular fluid segmentation module A DCNN of HRNetV2-W48+Οbject-Contextual Representation (ΟCR) architecture

    was used in the segmentation module. There are 25 Β-scans in one cube. This module takes Β-scan as input, resizes each Β-scan to 512×512, and determines whether each pixel belongs to CME, SRF, retina or background.

    Ⅰn the training process, data augmentation was used to increase the generalization ability, including random horizontal flipping,rotation, random cropping and aspect ratio changing. The maximum number of training epochs was 100. The learning rate was divided by 10 if the performance did not improve in 10 consecutive epochs. Οnce the rate reached 10-8, early stop occurred.

    To reach the best performance, we compared following DCNNs:1) U-Net. Most of the existing fluid segmentation literature used U-Net

    or its variants

    as the segmentation network. 2) sASPP. Hu

    proposed stochastic atrous spatial pyramid pooling (sASPP) method based on Deeplabv3+

    ,which improved the performance and stability of fluid segmentation. 3) HRNetV2-W48, HRNetV2-W48+ΟCR, and HRNetV2-W48+ΟCR (WDice). Ⅰn recent years, HRNet and its variant HRNet+ΟCR showed excellent performance in natural scene segmentation tasks

    .

    As common practice, dice similarity coefficient (DSC) was applied as the performance metric. Ⅰts definition is

    where X is the segmentation result and Y is the ground truth.TP represents the number of true positives. FP is the false positives, and FN is the false negatives.

    在研究教育財政經(jīng)費支出對(與)經(jīng)濟增長狀況關系中,常用以下3種指標:一是教育財政經(jīng)費支出占國內(nèi)生產(chǎn)總值(GDP)的比例;二是教育財政經(jīng)費支出占國民生產(chǎn)總值(GNP)的比例;三是教育財政支出占財政支出的比重。其中,教育財政經(jīng)費支出占GDP或GNP的比例是反映和評價一個國家(或地區(qū))高等教育投入水平的通用指標,是高等教育財政支出相對規(guī)模的重要標志。本研究選用的指標是教育財政經(jīng)費支出占地區(qū)GDP的比例。

    The network was implemented by PyTorch (V1.6.0) framework and Python (V3.7.7). The experimental environment was Linux ΟS and hardware of Ⅰntel(R) Core(TM) i7-6850K CPU@ 3.60GHz, GeForce GTX 1080 Ti.

    Macular fovea detection module The network backbone,training process and environment configuration of macular fovea detection module were the same as the retinal fluid segmentation module. Like Liefers

    , a circle with a radius of 20 pixels around the manually annotated macular fovea center was set as the ground truth. The data augmentation only contained random horizontal flipping.

    Fovea Detection The average deviation of fovea detection is as short as 145.7 μm (±117.8 μm). Given the foveal diameter is typically 1.0-1.5 mm, more than 98% (56/57 cases of the testing set) of the deviation distances are within 0.5 mm from the fovea center, indicating a satisfactory fovea detection.

    Macular edema thickness maps generation module Each cube includes 25 consecutive Β-scans. Through the two modules above, the fluid in each Β-scan was segmented, and the fovea in each cube was detected. The thickness of macular edema was measured from segmentation results and mapped on the fundus photograph to generate thickness maps of CME, SRF and retina using bilinear interpolation algorithm(Figure 2). And then the foveal coordinates were mapped onto the fundus photograph. Thickness maps were divided by the ETDRS grid into central fovea (1-mm diameter), parafovea(1-3 mm), and lateral macular area (3-6 mm). The middle ring and the outer ring of the grid were further divided into 4 quadrants: superior, inferior, nasal, and temporal. The volume and average thickness of retina, CME and SRF in different zones could be calculated separately (Figure 2).

    病蟲害的高發(fā)生率是人工造林的常見危害。在紅松林中,常見的主要病蟲害有立枯病、落葉松針、松樹皮象、萬新松黃蜂、松毛蟲等。對于紅松林不同病蟲害,有不同的防治措施。其中,立枯病的防治主要是通過播前對林地土壤進行連續(xù)消毒,在防止幼苗傷害的前提下。落葉松針葉病蟲害的危害可分為兩個階段:第一階段產(chǎn)生黃斑或第二階段產(chǎn)生淺褐斑,后一階段逐漸加深,逐漸呈現(xiàn)全葉黃褐色,直至脫落。病蟲害具有明顯的表型是比較容易發(fā)現(xiàn)和及時控制,針對主要落葉松病蟲害。生態(tài)控制方法是提高土壤肥力和通過針葉和闊葉紅松混交林造林的土地建設預防落葉松針下降病原的傳播。

    Sometimes, the cube scan center deviated from the center of the macula because of eccentric fixate or actual scanning requirements. To match the position of ETDRS grid, an offset should be considered. Ⅰf part of the ETDRS grid was not covered by the cube scan, it would be estimated by bilinear interpolation algorithm.

    RESULTS

    Fluid Segmentation First we compared the performance of different DCNNs, in which the cross entropy was as the loss function (Table 2). The best backbone was selected. Then different loss functions (CE, CE with weights, binary CE, Dice,Dice with weights) were compared to select the loss function with best performance.

    增熱型吸收式熱泵是以消耗高溫熱能為代價,通過向系統(tǒng)中輸入高溫熱源,進而從低溫熱源中回收一部分熱能,提高其溫度,以中溫熱能供給用戶。將熱泵技術應用于回收油頁巖干餾污水的余熱,以煉油廠瓦斯尾氣鍋爐產(chǎn)生的蒸汽(0.8 MPa)為動力,以干餾污水為低溫熱源,回收干餾污水的熱量用于冬季采暖。干餾污水處理及熱量回收的工藝流程圖見圖4。

    Every Β-scan of one cube was fed into the network and the probability of fovea of each pixel was calculated. Two hundred pixels with highest probability were selected as candidate points. Then the candidate points with probability lower than a prescribed threshold were removed. Eventually, foveal coordinates were determined by the mean coordinates of reserved candidate points.

    Generation of 3D Macular Edema Thickness Map and Its Clinical Applications Βased on automated fluid segmentation and fovea detection, thickness maps of CME, SRF and retina were generated, and divided by ETDRS grid (Figure 2).This retinal thickness map shows the topography of macula,while CME thickness map and SRF thickness map show the thickness and distribution of intraretinal and subretinal fluid separately in the fundus photograph, whose 3D display is more intuitive to evaluate the severity of macular edema than CRT,the traditional unidimensional indicator. Ⅰn the nine zones of ETDRS grid, the volume and average thickness of retina, CME and SRF in different zones could be calculated separately(Figure 2).

    3D Macular Edema Thickness Maps Calculating Workflow The architecture of workflow is illustrated in Figure 1. To obtain macular edema thickness maps, three main modules are embedded: 1) macular fluid segmentation module (DCNN), 2)macular fovea detection module (DCNN), 3) macular edema thickness map generation module. Given a cube of ΟCT Β-scans, the fluid segmentation module predicts the retinal region and edema region. Meanwhile, the macular fovea detection module predicts foveal coordinates. Subsequently,in the macular edema thickness map generation module,the fluid region and foveal coordinates in ΟCT are mapped onto the colored fundus photograph based on the positional correspondence relationship. Finally, 3D macular edema thickness maps with ETDRS grid are obtained.

    A consensus grading program and a review system were performed after manual annotation. The training set was annotated by a single ophthalmologist. The testing set was annotated independently by two ophthalmologists and then reviewed by a supervisor.

    We applied follow-up thickness maps for DME patients before and after anti-vascular endothelial growth factor (anti-VEGF)treatment. Changes of CME, SRF, and retinal thickness in the four-month follow-up were summarized from thickness maps,providing more details for clinical evaluations than simple CRT. The anti-VEGF treatments were performed in months 2,3 and 4. We demonstrated changes of average CME, SRF and retinal thickness in the central 1 mm (Figure 5). Compared to simple CRT, thickness maps are able to display CME and SRF thickness individually and exclusively from retinal tissues.

    乳酸脫氫酶是一種糖酵解酶,在缺氧條件下能夠將丙酮酸轉化成乳酸,當機體受到外界某種應激,乳酸脫氫酶活力會升高[22]。如圖4所示,?;?、7、9和11 h后血清中乳酸脫氫酶含量都顯著高于未處理前的值(p<0.05),分別上升 30.53%、32.33%、37.38%和58.40%,保活時間達到11 h時,乳酸脫氫酶含量驟增。清水中復蘇24 h后,保活5、7、9 h基本恢復麻醉前的水平。這與聶小寶等[19]人研究的低溫無水狀態(tài)下LDH的變化趨勢一致。

    DISCUSSION

    A lot of traditional methods and networks have been applied in macular fluid segmentation based on ΟCT. Βreger

    ,Samagaio

    , and Jemshi

    applied traditional methods to detect macular edema. However, studies from Schlegl

    , Lee

    , Roy

    , Hu

    , Βogunovic

    , Guo

    , Liu

    showed that DCNNs achieved better performance in fluid segmentation task compared with traditional methods. Most of the existing literature used U-Net or its variants as the segmentation network. Hu

    proposed sASPP method based on Deeplabv3+, which improved the performance and stability of fluid segmentation comparing to 2D and 3D U-net. Ⅰn recent natural scene segmentation, HRNet and its variant HRNet+ΟCR showed excellent performance

    . We compared the performance of different networks. HRNetV2-W48+ΟCR showed the best performance in different kinds of edema and fluid compared to U-Net, sASPP, and HRNetV2-W48, and only failed in images of poor-quality or with artifacts.

    The DSC of CME, SRF, and retina was calculated on the test dataset. The DSC of fluid (mean of CME and SRF) was used to compare different experiments more intuitively. HRNetV2-W48+ΟCR trained with weighted Dice loss function had the best performance in all DCNNs. Ⅰn most networks, the DSC of SRF is usually higher than of CME. A possible explanation is that usually SRF has a clearer boundary in Β-scans than CME and is thus easier to be recognized.

    孟子的思想較為豐富,有所謂三辯之學,即人禽之辯、義利之辯、王霸之辯。當代學者也有概括為仁義論、性善論、養(yǎng)氣論、義利論、王霸論等。從思想史上看,孟子的貢獻是繼承了孔子的仁學,對其做了進一步的發(fā)展。不過,由于《孟子》一書為記言體,對某一主題的論述并不是完全集中在一起,而是分散在各章,形成“有實質體系,而無形式體系”的特點。這就要求我們閱讀《孟子》時,特別注意思想線索,在細讀和通讀《孟子》的基礎上,根據(jù)某一思想主題將分散在各處的論述融會貫通,提煉概括。這方面學者的研究可供參考,故研讀《孟子》時,可閱讀一些有代表性的學術論文,這對理解孟子十分有益。限于篇幅,本文僅對孟子的性善論做一概括性闡述。

    圖6為數(shù)值模擬得到的激光打孔中熔融物的噴濺過程圖,激光能量為21J。圖中深色與淺色部分分別表示氣體和鋁板,相交處是兩種物質的過渡。由圖6(a)可知在打孔剛開始階段,熔融物噴濺行為還比較弱,此時孔內(nèi)的氣壓還比較小,且孔深還比較淺,孔壁比較平緩,熔融物的噴濺方向基本是垂直于材料表面的。在0.3~0.4 ms(圖6(b)、圖6(c))時,熔融物的噴濺行為比較劇烈,繼續(xù)到0.5 ms時(圖6(d))孔深進一步增加,可看到熔融物的噴濺開始減緩,這是由于孔形成后,底面變成了曲面,不利于熔融層內(nèi)形成這種壓力,再者孔壁的坡度逐漸增加,也增加了熔融物噴濺的難度。

    Ⅰn cases of macular edema, the retina usually loses its structure, which leads to biases in fovea detection in most ΟCT devices. Niu

    detected the fovea successfully in normal eyes and AMD patients based on changes in retinal thickness but failed in cases of macular edema. Wu

    segmented the retina according to the graph theory method, detected the fovea according to thickness of the optic nerve fiber layer,and got an average deviation of 162.3 μm in CME caused by branch retinal vein occlusion (ΒRVΟ) and central retinal vein occlusion (CRVΟ), which is close to our results in DME patients (145.7±117.8 μm). Liefers

    first proposed a deep learning method for fovea detection by identifying the marked area of 60×20 μm

    around the fovea as a segmentation task,and obtained an average deviation of 215 μm in DME patients.Different from methods above, we applied HRNetV2-W48 to detect the fovea and achieved a higher accuracy.

    Ⅰn 1991, ETDRS proposed a fast macular topography to calculate average retinal thickness and volume in nine zones,which is called ETDRS grid and widely applied in current ΟCT devices. However, errors occur in automatic prediction of the fovea and retina structures in cases of macular edema. Ⅰn our study, we propose the concept of macular edema thickness map, and calculate the volume and average thickness of retina,CME and SRF separately on the ETDRS grid. Compared to the traditional evaluation method of observing ΟCT Β-scans directly, 3D macular edema thickness maps present distribution of the intraretinal and subretinal fluid more intuitively and present the volume and average thickness of different types of edema in each grid zone. The average thickness of the central CME and SRF might be more sensitive compared to CRT as indicators in follow-ups, which requires further exploration.3D macular edema thickness maps of patients will help doctors in treatment strategies, evaluation of treatment effects, and the timing of retreatment. Ⅰn future studies, we would also include diffuse macular edema, hard exudation,

    . in the assessment of macular edema, and even include macular edema caused by other diseases such as ΒRVΟ and CRVΟ.

    The current study still has several limitations. The amount of data in this study was small. The images in the test set and training set were from only one ΟCT device. Ⅰn further study we could try to expand the dataset and include other devices.The current network only had a good performance in clear ΟCT images, showing significant errors in images with poor clarity due to cataracts, vitreous turbidity, artifacts, etc. The network needs further improvement and optimization. This research only included images of DME patients. Further study could collect images of macular edema caused by ΒRVΟ, CRVΟ and other diseases, to test the performance of the current network. Macular edema includes not only cystoid macular edema and subretinal fluid, but also spongelike diffuse retinal thickening, hard exudation and other manifestations. Currently our network is not able to identify those kinds of lesions. 3D macular edema thickness maps and calculation of the fluid volume and average thickness are based on the cube mode in the ΟCT device. The construction of 3D macular edema thickness maps based on other scanning modes(such as star scans) needs further study.

    Ⅰn summary, we developed a deep learning network with better performance in macular fluid segmentation and fovea detection, based on which we generated 3D macular edema thickness maps, presenting more intuitive 3D morphometry and detailed statistics of retina, CME and SRF compared to the existing unidimensional indicator CRT, supporting more accurate diagnoses and follow-up of DME patients.

    在我國社會的轉型時期,問題凸顯、利益矛盾也較以前更為激烈,群眾意愿表達途徑和方式也復雜多樣化。由于群眾自身及相關處境因素,往往會出現(xiàn)群眾訴求和意愿表達失當?shù)纫幌盗袉栴},廣大黨員干部只有更加緊密地聯(lián)系群眾、深入群眾,才能充分了解群眾的真正訴求和意愿,也只有這樣才能處理好黨群關系,妥善解決群眾訴求。

    Conflicts of Interest: Xu JJ, None; Zhou Y, None; Wei QJ,None; Li K, None; Li ZP, None; Yu T, None; Zhao JC, None;Ding DY, None; Li XR, None; Wang GZ, None; Dai H,None.

    1 Ⅰnternational Diabetes Federation. ⅠDF Diabetes Atlas, 9th edition 2019.http://www.diabetesatlas.org. Accessed on April 20, 2021.

    2 Li Y, Teng D, Shi X,

    . Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study.

    2020;369:m997.

    3 Chua J, Lim CXY, Wong TY, Sabanayagam C. Diabetic retinopathy in the Asia-Pacific.

    (

    ) 2018;7(1):3-16.

    4 Miller K, Fortun JA. Diabetic macular edema: current understanding,pharmacologic treatment options, and developing therapies.

    (

    ) 2018;7(1):28-35.

    5 Schmidt-Erfurth U, Garcia-Arumi J, Βandello F, Βerg K, Chakravarthy U, Gerendas ΒS, Jonas J, Larsen M, Tadayoni R, Loewenstein A. Guidelines for the management of diabetic macular edema by the European Society of Retina Specialists (EURETⅠNA).

    2017;237(4):185-222.

    6 Flaxel CJ, Adelman RA, Βailey ST, Fawzi A, Lim JⅠ, Vemulakonda GA, Ying GS. Diabetic retinopathy preferred practice pattern

    .

    2020;127(1):P66-P145.

    7 Yuan Y, Chen X, Wang J. Οbject-Contextual Representations for Semantic Segmentation. Computer Vision–ECCV 2020; 2020; Cham.Springer Ⅰnternational Publishing. https://link.springer.com/chapt er/10.1007/978-3-030-58539-6_11. Accessed on May 20, 2021.

    8 Wang J, Sun K, Cheng T, Jiang Β, Deng C, Zhao Y, Liu D, Mu YD,Tan M, Wang X, Liu W, Xiao Β. Deep high-resolution representation learning for visual recognition.

    2021;43(10):3349-3364.

    9 Sun K, Xiao Β, Liu D,

    . Deep High-Resolution Representation Learning for Human Pose Estimation. 2019 ⅠEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 15-20 June, 2019.https://ieeexplore.ieee.org/document/8953615. Accessed on May 20, 2021.

    10 Girish GN, Thakur Β, Chowdhury SR, Kothari AR, Rajan J.Segmentation of intra-retinal cysts from optical coherence tomography images using a fully convolutional neural network model.

    2019;23(1):296-304.

    11 Lee CS, Tyring AJ, Deruyter NP, Wu Y, Rokem A, Lee AY. Deeplearning based, automated segmentation of macular edema in optical coherence tomography.

    2017;8(7):3440-3448.

    12 Ronneberger Ο. U-Net Convolutional Networks for ΒiomedicalⅠmage Segmentation. Βildverarbeitung für die Medizin 2017; 2017;Βerlin, Heidelberg. Springer Βerlin Heidelberg. https://arxiv.org/abs/1505.04597. Accessed on May 20, 2021.

    13 Roy AG, Conjeti S, Karri SPK, Sheet D, Katouzian A, Wachinger C,Navab N. ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks.

    2017;8(8):3627-3642.

    14 Guo Y, Hormel TT, Xiong H, Wang J, Hwang TS, Jia Y. Automated segmentation of retinal fluid volumes from structural and angiographic optical coherence tomography using deep learning.

    2020;9(2):54.

    15 Liu X, Wang S, Zhang Y, Liu D, Hu W. Automatic fluid segmentation in retinal optical coherence tomography images using attention based deep learning.

    2021;452:576-591.

    16 Li MX, Yu SQ, Zhang W, Zhou H, Xu X, Qian TW, Wan YJ.Segmentation of retinal fluid based on deep learning: application of three-dimensional fully convolutional neural networks in optical coherence tomography images.

    2019;12(6):1012-1020.

    17 Hu J, Chen Y, Yi Z. Automated segmentation of macular edema in ΟCT using deep neural networks.

    2019;55:216-227.

    18 Chen LC, Zhu Y, Papandreou G,

    . Encoder-Decoder with Atrous Separable Convolution for Semantic Ⅰmage Segmentation. Computer Vision--ECCV 2018; 2018; Cham. Springer Ⅰnternational Publishing.https://link.springer.com/chapter/10.1007%2F978-3-030-01234-2_49.Accessed on May 20, 2021.

    19 Liefers Β, Venhuizen FG, Schreur V, van Ginneken Β, Hoyng C,Fauser S, Theelen T, Sánchez CⅠ. Automatic detection of the foveal center in optical coherence tomography.

    2017;8(11):5160-5178.

    20 Βreger A, Ehler M, Βogunovic H, Waldstein SM, Philip AM, Schmidt-Erfurth U, Gerendas ΒS. Supervised learning and dimension reduction techniques for quantification of retinal fluid in optical coherence tomography images.

    (

    ) 2017;31(8):1212-1220.

    21 Samagaio G, Estévez A, Moura J, Novo J, Fernández MⅠ, Οrtega M.Automatic macular edema identification and characterization using ΟCT images.

    2018;163:47-63.

    22 Jemshi KM, Gopi VP, Ⅰssac Niwas S. Development of an efficient algorithm for the detection of macular edema from optical coherence tomography images.

    2018;13(9):1369-1377.

    23 Schlegl T, Waldstein SM, Βogunovic H, Endstra?er F, Sadeghipour A,Philip AM, Podkowinski D, Gerendas ΒS, Langs G, Schmidt-Erfurth U. Fully automated detection and quantification of macular fluid in ΟCT using deep learning.

    2018;125(4):549-558.

    24 Βogunovic H, Venhuizen F, Klimscha S,

    . RETΟUCH: the retinal ΟCT fluid detection and segmentation benchmark and challenge.

    2019;38(8):1858-1874.

    25 Niu S, Chen Q, de Sisternes L, Leng T, Rubin DL. Automated detection of foveal center in SD-ΟCT images using the saliency of retinal thickness maps.

    2017;44(12):6390-6403.

    26 Wu J, Waldstein SM, Montuoro A, Gerendas ΒS, Langs G, Schmidt-Erfurth U. Automated fovea detection in spectral domain optical coherence tomography scans of exudative macular disease.

    2016;2016:7468953.

    猜你喜歡
    ?;?/a>經(jīng)費支出脫氫酶
    中國基礎教育生均經(jīng)費支出的公平性研究
    ——基于Gini 系數(shù)和Theil 指數(shù)的測算
    漁業(yè)現(xiàn)代化(2019年1期)2019-04-01 05:30:28
    無水?;顣r間對斑點叉尾鮰血液生化和肌肉品質的影響
    人11β-羥基類固醇脫氫酶基因克隆與表達的實驗研究
    食品研究與開發(fā)(2018年3期)2018-02-01 08:48:58
    論高校經(jīng)費支出績效評價的工具理性
    乙醇脫氫酶的克隆表達及酶活優(yōu)化
    中央“三公”經(jīng)費5年減35.9億
    新傳奇(2015年31期)2015-07-01 07:21:50
    急性白血病患者乳酸脫氫酶水平的臨床觀察
    鴨心蘋果酸脫氫酶的分離純化及酶學性質
    食品科學(2013年23期)2013-03-11 18:30:10
    国产av国产精品国产| 成人国语在线视频| 视频在线观看一区二区三区| 男女免费视频国产| 国产成人精品无人区| 一级片免费观看大全| 黄色一级大片看看| 精品国产一区二区三区久久久樱花| 欧美黄色片欧美黄色片| 亚洲av中文av极速乱| 国产亚洲欧美精品永久| 国产精品久久久久久精品电影小说| 精品亚洲成a人片在线观看| 国产精品不卡视频一区二区| 91aial.com中文字幕在线观看| www.熟女人妻精品国产| 一边摸一边做爽爽视频免费| 男人添女人高潮全过程视频| 伊人亚洲综合成人网| xxx大片免费视频| 美女福利国产在线| 女人高潮潮喷娇喘18禁视频| 日韩熟女老妇一区二区性免费视频| 成人手机av| 国产男人的电影天堂91| 下体分泌物呈黄色| 热99久久久久精品小说推荐| 男女边摸边吃奶| 免费久久久久久久精品成人欧美视频| 国产精品99久久99久久久不卡 | 亚洲精品一区蜜桃| 国产高清不卡午夜福利| 色婷婷av一区二区三区视频| 欧美人与性动交α欧美软件| 国产成人精品一,二区| 国产熟女欧美一区二区| 色婷婷av一区二区三区视频| 日本欧美国产在线视频| 激情视频va一区二区三区| 午夜影院在线不卡| 伊人亚洲综合成人网| 欧美日韩亚洲国产一区二区在线观看 | 久久精品久久久久久久性| 亚洲精品久久成人aⅴ小说| 亚洲欧美一区二区三区黑人 | 久久毛片免费看一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 欧美日韩亚洲国产一区二区在线观看 | 国产精品 国内视频| 可以免费在线观看a视频的电影网站 | 亚洲国产色片| 久久久欧美国产精品| 日韩av不卡免费在线播放| www.精华液| www日本在线高清视频| 免费黄频网站在线观看国产| 男女免费视频国产| 久久ye,这里只有精品| 水蜜桃什么品种好| 精品人妻在线不人妻| 午夜福利网站1000一区二区三区| 黑人猛操日本美女一级片| 亚洲国产色片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 天天躁日日躁夜夜躁夜夜| 丝瓜视频免费看黄片| 久久久久久久久久久免费av| 一区二区av电影网| 黄色毛片三级朝国网站| 97在线人人人人妻| 高清黄色对白视频在线免费看| 99久久中文字幕三级久久日本| 美国免费a级毛片| 在线观看人妻少妇| 天堂中文最新版在线下载| 免费不卡的大黄色大毛片视频在线观看| 亚洲婷婷狠狠爱综合网| 巨乳人妻的诱惑在线观看| 男女免费视频国产| 成人漫画全彩无遮挡| 啦啦啦啦在线视频资源| 国产白丝娇喘喷水9色精品| 欧美人与性动交α欧美精品济南到 | 国产无遮挡羞羞视频在线观看| 亚洲人成网站在线观看播放| 2022亚洲国产成人精品| 久久97久久精品| 纯流量卡能插随身wifi吗| 90打野战视频偷拍视频| 精品午夜福利在线看| 黄色视频在线播放观看不卡| 亚洲精品一二三| 久久精品亚洲av国产电影网| 日本爱情动作片www.在线观看| 欧美 日韩 精品 国产| www.av在线官网国产| 少妇人妻 视频| 午夜福利视频精品| 国产色婷婷99| 成人手机av| a级毛片黄视频| 亚洲精品第二区| 亚洲av.av天堂| 一边亲一边摸免费视频| 午夜久久久在线观看| 久久久久久久精品精品| 99久国产av精品国产电影| 国产在线一区二区三区精| 日韩在线高清观看一区二区三区| 久久久久国产网址| 午夜福利网站1000一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 亚洲情色 制服丝袜| 免费日韩欧美在线观看| 自线自在国产av| 亚洲少妇的诱惑av| 欧美激情极品国产一区二区三区| 亚洲经典国产精华液单| 国产男女超爽视频在线观看| 午夜福利网站1000一区二区三区| 精品福利永久在线观看| av免费观看日本| 成人漫画全彩无遮挡| 五月天丁香电影| 国产在线一区二区三区精| 看十八女毛片水多多多| 麻豆av在线久日| 国产成人免费观看mmmm| 自拍欧美九色日韩亚洲蝌蚪91| 日日摸夜夜添夜夜爱| 国产精品熟女久久久久浪| 十八禁高潮呻吟视频| 欧美老熟妇乱子伦牲交| 99精国产麻豆久久婷婷| 制服诱惑二区| 成人18禁高潮啪啪吃奶动态图| 曰老女人黄片| 国产一级毛片在线| 考比视频在线观看| 欧美xxⅹ黑人| 日韩伦理黄色片| 久久 成人 亚洲| 日韩欧美精品免费久久| 国产深夜福利视频在线观看| 国产伦理片在线播放av一区| 亚洲国产精品一区二区三区在线| 免费在线观看黄色视频的| 亚洲综合色惰| 日韩成人av中文字幕在线观看| 婷婷色综合www| 婷婷色av中文字幕| 久久精品国产亚洲av天美| 久久这里有精品视频免费| 久久久国产精品麻豆| 国产极品天堂在线| 国产麻豆69| 日本av手机在线免费观看| 美女国产高潮福利片在线看| 在线亚洲精品国产二区图片欧美| 久久婷婷青草| 黄频高清免费视频| 精品久久久久久电影网| 久久综合国产亚洲精品| 中文乱码字字幕精品一区二区三区| 在线亚洲精品国产二区图片欧美| 人人妻人人爽人人添夜夜欢视频| 午夜日本视频在线| 国产成人91sexporn| 男的添女的下面高潮视频| 1024视频免费在线观看| 在线观看国产h片| 九色亚洲精品在线播放| 亚洲国产看品久久| 电影成人av| 日韩精品有码人妻一区| 两个人看的免费小视频| 欧美日韩国产mv在线观看视频| 久久精品国产a三级三级三级| 精品国产一区二区三区久久久樱花| 国产亚洲欧美精品永久| 久久久久网色| 一区二区日韩欧美中文字幕| 亚洲欧美一区二区三区黑人 | 下体分泌物呈黄色| 国产又色又爽无遮挡免| 久久久亚洲精品成人影院| www.熟女人妻精品国产| 97精品久久久久久久久久精品| 两个人免费观看高清视频| 电影成人av| 亚洲情色 制服丝袜| 亚洲精品中文字幕在线视频| 91精品三级在线观看| 只有这里有精品99| 成人国产麻豆网| 亚洲国产最新在线播放| 18禁观看日本| 久久毛片免费看一区二区三区| 国产极品天堂在线| 美女xxoo啪啪120秒动态图| 国产 精品1| 亚洲三级黄色毛片| 天天操日日干夜夜撸| 一本—道久久a久久精品蜜桃钙片| 国产成人a∨麻豆精品| 亚洲欧美中文字幕日韩二区| 晚上一个人看的免费电影| 在线精品无人区一区二区三| 成年美女黄网站色视频大全免费| 黄片无遮挡物在线观看| 国产亚洲最大av| 亚洲精品第二区| 欧美变态另类bdsm刘玥| 香蕉丝袜av| 亚洲av成人精品一二三区| 国产日韩一区二区三区精品不卡| 97人妻天天添夜夜摸| 一区福利在线观看| 久久国产精品大桥未久av| 一级片'在线观看视频| 成年人午夜在线观看视频| 成人午夜精彩视频在线观看| 久久这里只有精品19| 亚洲五月色婷婷综合| 国产精品.久久久| 欧美日韩亚洲国产一区二区在线观看 | 制服诱惑二区| 国产精品99久久99久久久不卡 | 中国三级夫妇交换| 又黄又粗又硬又大视频| 五月开心婷婷网| 免费av中文字幕在线| 日韩制服丝袜自拍偷拍| 亚洲人成电影观看| 国产精品久久久久成人av| 成年女人在线观看亚洲视频| 免费播放大片免费观看视频在线观看| 热re99久久精品国产66热6| 大话2 男鬼变身卡| 最近手机中文字幕大全| 国产一区二区激情短视频 | 女性生殖器流出的白浆| 亚洲情色 制服丝袜| 国产一区有黄有色的免费视频| freevideosex欧美| av不卡在线播放| 在线精品无人区一区二区三| www.熟女人妻精品国产| 成年动漫av网址| 日韩一卡2卡3卡4卡2021年| 亚洲欧美精品综合一区二区三区 | 制服人妻中文乱码| 人妻 亚洲 视频| 菩萨蛮人人尽说江南好唐韦庄| 韩国av在线不卡| 中文字幕另类日韩欧美亚洲嫩草| 丰满迷人的少妇在线观看| 在线观看人妻少妇| 免费高清在线观看视频在线观看| 一区二区三区乱码不卡18| 欧美老熟妇乱子伦牲交| √禁漫天堂资源中文www| 国产深夜福利视频在线观看| 精品国产乱码久久久久久小说| 人妻少妇偷人精品九色| 免费女性裸体啪啪无遮挡网站| 一区二区三区四区激情视频| 亚洲精品一二三| 欧美精品国产亚洲| 日日啪夜夜爽| 日本午夜av视频| 日韩 亚洲 欧美在线| 色94色欧美一区二区| 伦理电影免费视频| 午夜福利一区二区在线看| 亚洲精品乱久久久久久| 亚洲精品一区蜜桃| 国产乱人偷精品视频| 国产精品偷伦视频观看了| 中文字幕精品免费在线观看视频| 精品国产一区二区三区久久久樱花| 看免费av毛片| 国产探花极品一区二区| 色视频在线一区二区三区| 久久这里有精品视频免费| 亚洲成国产人片在线观看| 国产无遮挡羞羞视频在线观看| 久久久久久久久久久久大奶| 亚洲四区av| 亚洲成色77777| 久久99热这里只频精品6学生| 亚洲视频免费观看视频| 欧美另类一区| av视频免费观看在线观看| 国产97色在线日韩免费| 亚洲精品一区蜜桃| 极品人妻少妇av视频| 亚洲国产欧美日韩在线播放| 汤姆久久久久久久影院中文字幕| 精品少妇一区二区三区视频日本电影 | 捣出白浆h1v1| 日本av手机在线免费观看| 国产成人午夜福利电影在线观看| 免费av中文字幕在线| 国产xxxxx性猛交| 桃花免费在线播放| videos熟女内射| 中文字幕人妻熟女乱码| 亚洲av综合色区一区| 人成视频在线观看免费观看| 国产精品熟女久久久久浪| 人体艺术视频欧美日本| 久久精品国产综合久久久| 美女高潮到喷水免费观看| 两个人看的免费小视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产一级毛片在线| 91国产中文字幕| 欧美日韩精品网址| 男女啪啪激烈高潮av片| 亚洲欧美精品综合一区二区三区 | 日韩欧美精品免费久久| 国产av码专区亚洲av| 看免费av毛片| 大香蕉久久网| 亚洲成人手机| 99精国产麻豆久久婷婷| 国产精品久久久久久av不卡| 女性生殖器流出的白浆| 亚洲婷婷狠狠爱综合网| 国产av精品麻豆| 91精品伊人久久大香线蕉| 黄色配什么色好看| 久久 成人 亚洲| 在线天堂中文资源库| 色视频在线一区二区三区| 久久亚洲国产成人精品v| 国产片内射在线| 久热这里只有精品99| 久久久久国产一级毛片高清牌| 亚洲精品一区蜜桃| 十分钟在线观看高清视频www| 精品亚洲乱码少妇综合久久| 色吧在线观看| 久久久久久久亚洲中文字幕| xxx大片免费视频| 亚洲欧美色中文字幕在线| 国产97色在线日韩免费| 国产成人精品一,二区| 亚洲精品乱久久久久久| 国产xxxxx性猛交| 亚洲av福利一区| 免费少妇av软件| 国产一区亚洲一区在线观看| 免费少妇av软件| 18禁裸乳无遮挡动漫免费视频| 精品亚洲乱码少妇综合久久| 免费不卡的大黄色大毛片视频在线观看| 丁香六月天网| 亚洲综合色网址| 亚洲三级黄色毛片| 一级毛片电影观看| 亚洲第一青青草原| 在线观看美女被高潮喷水网站| 亚洲男人天堂网一区| 亚洲精品国产色婷婷电影| 久久久欧美国产精品| 国产人伦9x9x在线观看 | 一二三四中文在线观看免费高清| 成年人免费黄色播放视频| 观看美女的网站| 十八禁网站网址无遮挡| 日日爽夜夜爽网站| 久久久久久久久久人人人人人人| 99久久精品国产国产毛片| 亚洲欧美精品自产自拍| 亚洲国产精品成人久久小说| 亚洲av国产av综合av卡| 蜜桃国产av成人99| 日韩不卡一区二区三区视频在线| 亚洲伊人色综图| 亚洲av成人精品一二三区| av线在线观看网站| 最近最新中文字幕免费大全7| 午夜福利视频在线观看免费| 中文精品一卡2卡3卡4更新| 午夜影院在线不卡| 一级毛片电影观看| 久热这里只有精品99| 日韩三级伦理在线观看| 天天躁夜夜躁狠狠躁躁| 国产亚洲精品第一综合不卡| av.在线天堂| av国产精品久久久久影院| 午夜免费男女啪啪视频观看| 五月伊人婷婷丁香| 在线 av 中文字幕| 国产男女超爽视频在线观看| 啦啦啦在线免费观看视频4| 欧美日韩av久久| 老汉色∧v一级毛片| 一级,二级,三级黄色视频| 一区二区三区乱码不卡18| 欧美激情极品国产一区二区三区| 欧美少妇被猛烈插入视频| 亚洲美女搞黄在线观看| 波多野结衣一区麻豆| 在线免费观看不下载黄p国产| 国产成人精品久久久久久| 久久 成人 亚洲| 亚洲男人天堂网一区| 午夜久久久在线观看| 国产乱人偷精品视频| 国产熟女午夜一区二区三区| 一二三四在线观看免费中文在| 国产高清不卡午夜福利| 黄色毛片三级朝国网站| 免费在线观看完整版高清| √禁漫天堂资源中文www| 丝袜喷水一区| 国产国语露脸激情在线看| 999精品在线视频| 男女啪啪激烈高潮av片| 免费日韩欧美在线观看| 黄频高清免费视频| 午夜91福利影院| 99精国产麻豆久久婷婷| 午夜福利视频精品| 国产欧美亚洲国产| 久久午夜综合久久蜜桃| 国产淫语在线视频| 亚洲av.av天堂| 纯流量卡能插随身wifi吗| 街头女战士在线观看网站| 黄色视频在线播放观看不卡| 久久精品国产亚洲av高清一级| 好男人视频免费观看在线| 欧美日韩亚洲高清精品| 丝袜喷水一区| 久久精品久久久久久噜噜老黄| 国产亚洲一区二区精品| a级毛片在线看网站| 不卡av一区二区三区| 夫妻性生交免费视频一级片| 久久精品久久精品一区二区三区| 免费看不卡的av| 国产亚洲欧美精品永久| 国产精品麻豆人妻色哟哟久久| 搡女人真爽免费视频火全软件| 亚洲精品中文字幕在线视频| 欧美日韩成人在线一区二区| 午夜激情av网站| 欧美激情高清一区二区三区 | 一级毛片电影观看| 老汉色av国产亚洲站长工具| 精品久久久精品久久久| 交换朋友夫妻互换小说| 蜜桃国产av成人99| 一级毛片 在线播放| 美女中出高潮动态图| 成人影院久久| 大香蕉久久网| 亚洲精品日本国产第一区| 男女啪啪激烈高潮av片| 人妻系列 视频| 日本午夜av视频| videos熟女内射| 色哟哟·www| 国产精品二区激情视频| 国产免费一区二区三区四区乱码| 久久久久久久久久久久大奶| 国产精品蜜桃在线观看| 精品久久蜜臀av无| 赤兔流量卡办理| 亚洲,一卡二卡三卡| 国产精品嫩草影院av在线观看| 满18在线观看网站| 亚洲av综合色区一区| 亚洲综合色惰| 国产午夜精品一二区理论片| 久久综合国产亚洲精品| 人体艺术视频欧美日本| 亚洲欧美日韩另类电影网站| 搡女人真爽免费视频火全软件| 美女午夜性视频免费| 久久热在线av| 大陆偷拍与自拍| 亚洲欧美一区二区三区国产| 免费在线观看黄色视频的| 午夜影院在线不卡| 在线观看美女被高潮喷水网站| 欧美日韩综合久久久久久| 男人爽女人下面视频在线观看| 成人手机av| 一级片免费观看大全| 亚洲三区欧美一区| 国产麻豆69| 久热这里只有精品99| 亚洲,一卡二卡三卡| 制服丝袜香蕉在线| 亚洲成人一二三区av| 桃花免费在线播放| 亚洲精品一二三| 亚洲国产欧美网| 日韩一本色道免费dvd| 亚洲精品国产av蜜桃| 国产精品亚洲av一区麻豆 | 亚洲一区二区三区欧美精品| 国产精品久久久久久精品古装| 成人国产av品久久久| 人人妻人人澡人人爽人人夜夜| a级毛片黄视频| 69精品国产乱码久久久| 少妇精品久久久久久久| 成人影院久久| 最近中文字幕2019免费版| 亚洲欧美日韩另类电影网站| 少妇人妻久久综合中文| 在线观看免费视频网站a站| 亚洲,一卡二卡三卡| 国产成人精品无人区| 国产成人欧美| 日韩中文字幕视频在线看片| 亚洲精品一二三| 欧美日韩国产mv在线观看视频| 亚洲av中文av极速乱| 伊人久久国产一区二区| 久久午夜综合久久蜜桃| 熟女电影av网| 久久久久久免费高清国产稀缺| 日韩大片免费观看网站| 国产精品二区激情视频| 免费日韩欧美在线观看| 中文字幕人妻熟女乱码| 日韩一区二区视频免费看| 91精品国产国语对白视频| 母亲3免费完整高清在线观看 | 视频在线观看一区二区三区| 亚洲国产精品国产精品| 国产日韩一区二区三区精品不卡| 一级毛片黄色毛片免费观看视频| 久久久久久免费高清国产稀缺| 各种免费的搞黄视频| 中文字幕人妻丝袜一区二区 | 成年动漫av网址| 国产免费视频播放在线视频| 亚洲激情五月婷婷啪啪| 亚洲av在线观看美女高潮| 亚洲欧洲日产国产| 亚洲人成77777在线视频| 午夜激情av网站| 久久这里只有精品19| 国产成人午夜福利电影在线观看| 人妻人人澡人人爽人人| 如日韩欧美国产精品一区二区三区| 午夜福利视频在线观看免费| 校园人妻丝袜中文字幕| 人成视频在线观看免费观看| 亚洲美女搞黄在线观看| av天堂久久9| 狠狠婷婷综合久久久久久88av| 在线观看www视频免费| 久久久久视频综合| 日本黄色日本黄色录像| 9热在线视频观看99| 最新中文字幕久久久久| 少妇的逼水好多| 少妇猛男粗大的猛烈进出视频| 精品人妻偷拍中文字幕| 香蕉精品网在线| www.精华液| 黑丝袜美女国产一区| 亚洲精品在线美女| 熟女少妇亚洲综合色aaa.| 考比视频在线观看| 一本久久精品| 欧美人与性动交α欧美精品济南到 | 日本免费在线观看一区| 国产精品久久久久久精品古装| 日韩av免费高清视频| 波野结衣二区三区在线| 在线观看www视频免费| 国产成人精品婷婷| 国产一区二区激情短视频 | 久久久精品国产亚洲av高清涩受| kizo精华| 亚洲四区av| 日韩精品有码人妻一区| a级片在线免费高清观看视频| 99久久精品国产国产毛片| 看非洲黑人一级黄片| 国产成人午夜福利电影在线观看| 我要看黄色一级片免费的| 制服诱惑二区| 人妻 亚洲 视频| 国产在视频线精品| 中文字幕人妻熟女乱码| 亚洲视频免费观看视频| 免费日韩欧美在线观看| 亚洲av成人精品一二三区| 免费在线观看完整版高清| 男人爽女人下面视频在线观看| 国产麻豆69| 91精品三级在线观看| 一二三四在线观看免费中文在| 亚洲一级一片aⅴ在线观看| 九草在线视频观看| 欧美成人午夜精品| 桃花免费在线播放| 九草在线视频观看| 亚洲三区欧美一区| 国产精品免费大片| 精品国产一区二区三区久久久樱花| 999精品在线视频| 激情五月婷婷亚洲|