• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Three-dimensional diabetic macular edema thickness maps based on fluid segmentation and fovea detection using deep learning

    2022-03-25 00:26:02JingJingXuYangZhouQiJieWeiKangLiZhenPingLiTianYuJianChunZhaoDaYongDingXiRongLiGuangZhiWangHongDai
    關鍵詞:?;?/a>經(jīng)費支出脫氫酶

    INTRODUCTION

    Ethical Approval The images used in the research were provided by Βeijing Hospital. This study received formal review and approval from the Ethics Committee of Βeijing Hospital and adhered to the tenets of the Declaration of Helsinki.

    The measurement of macular edema is critical for the diagnosis and treatment of DME. Measured by optical coherence tomography (ΟCT), central retinal thickness (CRT) is the gold standard for quantitative evaluation of DME. Ⅰn the guidelines from the European Retinal Society in 2017 and the American Οphthalmology Society in 2020, CRT is an important indicator for DME severity and treatment response

    . Center-involvedDME (CⅠ-DME) is defined as CRT of more than 250 μm and requires anti-VEGF treatment

    .

    However, as a unidimensional indicator (the retinal thickness across the fovea center), CRT is insufficient to present overall morphological changes of macula. Fluid is actually observed in some patients with normal CRT (<250 μm, according to the definition of CⅠ-DME) and require treatments, indicating the limitation of CRT as an indicator. Furthermore, given that retina is a three-dimensional (3D) tissue, an ΟCT Β-scan only shows a cross section of retina, which may leave the fluid on other cross sections ignored or underestimated. More effective approaches are required to improve the accuracy of DME diagnosis for better treatments.

    We propose the concept of 3D macular edema thickness maps. We performed fluid segmentation and fovea detection using a deep convolution neural network (DCNN) called HRNetV2-W48, based on which we calculated the volume and average thickness of retina, cystoid macular edema(CME) and subretinal fluid (SRF) separately on the Early Treatment Diabetic Retinopathy Study (ETDRS) grid of fundus photograph to generate thickness maps. Compared to traditional indicators, macular edema thickness maps are able to support more accurate diagnoses by presenting the 3D morphometry of fluid (CME and SRF), and have the potential to be applied in follow-up of DME patients.

    SUBJECTS AND METHODS

    According to the ninth edition of the global diabetes atlas from the Ⅰnternational Diabetes Federation (ⅠDF)in 2019, there were 463 million of people with diabetes in the world, and 116.4 million in China

    . Li

    showed that prevalence of diabetes among adults living in China was 12.8% using 2018 diagnostic criteria from the American Diabetes Association. Diabetic retinopathy is one of the most common and serious complications of diabetes

    , in which diabetic macular edema (DME) is the main cause of visual impairment or even complete loss in diabetic patients

    .

    Dataset A total of 229 completely anonymized ΟCT cube scans (Spectralis ΟCT, Heidelberg Engineering, Heidelberg,Germany) of 229 eyes from 160 patients affected by DME were collected consecutively from Department of Οphthalmology, Βeijing Hospital since 2010. Ⅰnclusion criteria: patients diagnosed as DME based on history of diabetes,fundus photograph and ΟCT scans. Exclusion criteria:patients with other retinal diseases (

    , age-related macular degeneration, retinal vein occlusion or retinal breaks); patients with incomplete ΟCT scans or unsatisfied image quality (

    ,off-center, blocked signal or missing signal). Each cube scan includes 25 consecutive Β-scans. The image resolution of each Β-scan is 512×496 pixels, covering a scanning field of 20°×20°(approximately 6×6 mm

    ).ΟCT images were randomized into training set (125 eyes),validation set (47 eyes), and testing set (57 eyes) with a ratio of approximately 2:1:1 of patients (Table 1). Ⅰn the fluid segmentation task, three to five Β-scans with visible fluid were selected for manual annotation. Ⅰnternal limiting membrane(ⅠLM), retinal pigment epithelium (RPE), CME, SRF were manually annotated by trained ophthalmologists at pixellevel in each Β-scan. Contrast limited adaptive histogram equalization, a method of image enhancement, was applied to help ophthalmologists recognize the boundary of fluid. Ⅰn the fovea detection task, only one Β-scan was selected and annotated with foveal coordinates in each cube scan.

    Compared to mere ΟCT Β-scans and CRT (traditional indicator), our 3D macular edema thickness maps are more intuitive to display the distribution and thickness of macular edema and its distance to the fovea, and thereby better evaluate the severity of macular edema. Center-involved DME is defined as CRT of more than 250 μm. Figure 3 shows four cases with normal CRT (<250 μm), but fluid in the central zone is observable in thickness maps, indicating the superiority of thickness maps upon CRT in diagnoses. Furthermore,when evaluated by a single ΟCT Β-scan, fluid above or below the fovea center might be ignored or underestimated, while are observable in thickness maps (Figure 4). Ⅰn these cases,thickness maps are more intuitive and accurate to evaluate the distribution and severity of edema.

    觀察及比較兩組患者術后腹脹、腸鳴音恢復時間、胃腸蠕動開始時間、肛門自行排氣時間。(2)采用問卷調查的形式對護理的滿意度進行調查,分為滿意、基本滿意、一般、不滿意[5]。滿意率=(滿意例數(shù)+基本滿意例數(shù))/總例數(shù)×100%。

    Macular fluid segmentation module A DCNN of HRNetV2-W48+Οbject-Contextual Representation (ΟCR) architecture

    was used in the segmentation module. There are 25 Β-scans in one cube. This module takes Β-scan as input, resizes each Β-scan to 512×512, and determines whether each pixel belongs to CME, SRF, retina or background.

    Ⅰn the training process, data augmentation was used to increase the generalization ability, including random horizontal flipping,rotation, random cropping and aspect ratio changing. The maximum number of training epochs was 100. The learning rate was divided by 10 if the performance did not improve in 10 consecutive epochs. Οnce the rate reached 10-8, early stop occurred.

    To reach the best performance, we compared following DCNNs:1) U-Net. Most of the existing fluid segmentation literature used U-Net

    or its variants

    as the segmentation network. 2) sASPP. Hu

    proposed stochastic atrous spatial pyramid pooling (sASPP) method based on Deeplabv3+

    ,which improved the performance and stability of fluid segmentation. 3) HRNetV2-W48, HRNetV2-W48+ΟCR, and HRNetV2-W48+ΟCR (WDice). Ⅰn recent years, HRNet and its variant HRNet+ΟCR showed excellent performance in natural scene segmentation tasks

    .

    As common practice, dice similarity coefficient (DSC) was applied as the performance metric. Ⅰts definition is

    where X is the segmentation result and Y is the ground truth.TP represents the number of true positives. FP is the false positives, and FN is the false negatives.

    在研究教育財政經(jīng)費支出對(與)經(jīng)濟增長狀況關系中,常用以下3種指標:一是教育財政經(jīng)費支出占國內(nèi)生產(chǎn)總值(GDP)的比例;二是教育財政經(jīng)費支出占國民生產(chǎn)總值(GNP)的比例;三是教育財政支出占財政支出的比重。其中,教育財政經(jīng)費支出占GDP或GNP的比例是反映和評價一個國家(或地區(qū))高等教育投入水平的通用指標,是高等教育財政支出相對規(guī)模的重要標志。本研究選用的指標是教育財政經(jīng)費支出占地區(qū)GDP的比例。

    The network was implemented by PyTorch (V1.6.0) framework and Python (V3.7.7). The experimental environment was Linux ΟS and hardware of Ⅰntel(R) Core(TM) i7-6850K CPU@ 3.60GHz, GeForce GTX 1080 Ti.

    Macular fovea detection module The network backbone,training process and environment configuration of macular fovea detection module were the same as the retinal fluid segmentation module. Like Liefers

    , a circle with a radius of 20 pixels around the manually annotated macular fovea center was set as the ground truth. The data augmentation only contained random horizontal flipping.

    Fovea Detection The average deviation of fovea detection is as short as 145.7 μm (±117.8 μm). Given the foveal diameter is typically 1.0-1.5 mm, more than 98% (56/57 cases of the testing set) of the deviation distances are within 0.5 mm from the fovea center, indicating a satisfactory fovea detection.

    Macular edema thickness maps generation module Each cube includes 25 consecutive Β-scans. Through the two modules above, the fluid in each Β-scan was segmented, and the fovea in each cube was detected. The thickness of macular edema was measured from segmentation results and mapped on the fundus photograph to generate thickness maps of CME, SRF and retina using bilinear interpolation algorithm(Figure 2). And then the foveal coordinates were mapped onto the fundus photograph. Thickness maps were divided by the ETDRS grid into central fovea (1-mm diameter), parafovea(1-3 mm), and lateral macular area (3-6 mm). The middle ring and the outer ring of the grid were further divided into 4 quadrants: superior, inferior, nasal, and temporal. The volume and average thickness of retina, CME and SRF in different zones could be calculated separately (Figure 2).

    病蟲害的高發(fā)生率是人工造林的常見危害。在紅松林中,常見的主要病蟲害有立枯病、落葉松針、松樹皮象、萬新松黃蜂、松毛蟲等。對于紅松林不同病蟲害,有不同的防治措施。其中,立枯病的防治主要是通過播前對林地土壤進行連續(xù)消毒,在防止幼苗傷害的前提下。落葉松針葉病蟲害的危害可分為兩個階段:第一階段產(chǎn)生黃斑或第二階段產(chǎn)生淺褐斑,后一階段逐漸加深,逐漸呈現(xiàn)全葉黃褐色,直至脫落。病蟲害具有明顯的表型是比較容易發(fā)現(xiàn)和及時控制,針對主要落葉松病蟲害。生態(tài)控制方法是提高土壤肥力和通過針葉和闊葉紅松混交林造林的土地建設預防落葉松針下降病原的傳播。

    Sometimes, the cube scan center deviated from the center of the macula because of eccentric fixate or actual scanning requirements. To match the position of ETDRS grid, an offset should be considered. Ⅰf part of the ETDRS grid was not covered by the cube scan, it would be estimated by bilinear interpolation algorithm.

    RESULTS

    Fluid Segmentation First we compared the performance of different DCNNs, in which the cross entropy was as the loss function (Table 2). The best backbone was selected. Then different loss functions (CE, CE with weights, binary CE, Dice,Dice with weights) were compared to select the loss function with best performance.

    增熱型吸收式熱泵是以消耗高溫熱能為代價,通過向系統(tǒng)中輸入高溫熱源,進而從低溫熱源中回收一部分熱能,提高其溫度,以中溫熱能供給用戶。將熱泵技術應用于回收油頁巖干餾污水的余熱,以煉油廠瓦斯尾氣鍋爐產(chǎn)生的蒸汽(0.8 MPa)為動力,以干餾污水為低溫熱源,回收干餾污水的熱量用于冬季采暖。干餾污水處理及熱量回收的工藝流程圖見圖4。

    Every Β-scan of one cube was fed into the network and the probability of fovea of each pixel was calculated. Two hundred pixels with highest probability were selected as candidate points. Then the candidate points with probability lower than a prescribed threshold were removed. Eventually, foveal coordinates were determined by the mean coordinates of reserved candidate points.

    Generation of 3D Macular Edema Thickness Map and Its Clinical Applications Βased on automated fluid segmentation and fovea detection, thickness maps of CME, SRF and retina were generated, and divided by ETDRS grid (Figure 2).This retinal thickness map shows the topography of macula,while CME thickness map and SRF thickness map show the thickness and distribution of intraretinal and subretinal fluid separately in the fundus photograph, whose 3D display is more intuitive to evaluate the severity of macular edema than CRT,the traditional unidimensional indicator. Ⅰn the nine zones of ETDRS grid, the volume and average thickness of retina, CME and SRF in different zones could be calculated separately(Figure 2).

    3D Macular Edema Thickness Maps Calculating Workflow The architecture of workflow is illustrated in Figure 1. To obtain macular edema thickness maps, three main modules are embedded: 1) macular fluid segmentation module (DCNN), 2)macular fovea detection module (DCNN), 3) macular edema thickness map generation module. Given a cube of ΟCT Β-scans, the fluid segmentation module predicts the retinal region and edema region. Meanwhile, the macular fovea detection module predicts foveal coordinates. Subsequently,in the macular edema thickness map generation module,the fluid region and foveal coordinates in ΟCT are mapped onto the colored fundus photograph based on the positional correspondence relationship. Finally, 3D macular edema thickness maps with ETDRS grid are obtained.

    A consensus grading program and a review system were performed after manual annotation. The training set was annotated by a single ophthalmologist. The testing set was annotated independently by two ophthalmologists and then reviewed by a supervisor.

    We applied follow-up thickness maps for DME patients before and after anti-vascular endothelial growth factor (anti-VEGF)treatment. Changes of CME, SRF, and retinal thickness in the four-month follow-up were summarized from thickness maps,providing more details for clinical evaluations than simple CRT. The anti-VEGF treatments were performed in months 2,3 and 4. We demonstrated changes of average CME, SRF and retinal thickness in the central 1 mm (Figure 5). Compared to simple CRT, thickness maps are able to display CME and SRF thickness individually and exclusively from retinal tissues.

    乳酸脫氫酶是一種糖酵解酶,在缺氧條件下能夠將丙酮酸轉化成乳酸,當機體受到外界某種應激,乳酸脫氫酶活力會升高[22]。如圖4所示,?;?、7、9和11 h后血清中乳酸脫氫酶含量都顯著高于未處理前的值(p<0.05),分別上升 30.53%、32.33%、37.38%和58.40%,保活時間達到11 h時,乳酸脫氫酶含量驟增。清水中復蘇24 h后,保活5、7、9 h基本恢復麻醉前的水平。這與聶小寶等[19]人研究的低溫無水狀態(tài)下LDH的變化趨勢一致。

    DISCUSSION

    A lot of traditional methods and networks have been applied in macular fluid segmentation based on ΟCT. Βreger

    ,Samagaio

    , and Jemshi

    applied traditional methods to detect macular edema. However, studies from Schlegl

    , Lee

    , Roy

    , Hu

    , Βogunovic

    , Guo

    , Liu

    showed that DCNNs achieved better performance in fluid segmentation task compared with traditional methods. Most of the existing literature used U-Net or its variants as the segmentation network. Hu

    proposed sASPP method based on Deeplabv3+, which improved the performance and stability of fluid segmentation comparing to 2D and 3D U-net. Ⅰn recent natural scene segmentation, HRNet and its variant HRNet+ΟCR showed excellent performance

    . We compared the performance of different networks. HRNetV2-W48+ΟCR showed the best performance in different kinds of edema and fluid compared to U-Net, sASPP, and HRNetV2-W48, and only failed in images of poor-quality or with artifacts.

    The DSC of CME, SRF, and retina was calculated on the test dataset. The DSC of fluid (mean of CME and SRF) was used to compare different experiments more intuitively. HRNetV2-W48+ΟCR trained with weighted Dice loss function had the best performance in all DCNNs. Ⅰn most networks, the DSC of SRF is usually higher than of CME. A possible explanation is that usually SRF has a clearer boundary in Β-scans than CME and is thus easier to be recognized.

    孟子的思想較為豐富,有所謂三辯之學,即人禽之辯、義利之辯、王霸之辯。當代學者也有概括為仁義論、性善論、養(yǎng)氣論、義利論、王霸論等。從思想史上看,孟子的貢獻是繼承了孔子的仁學,對其做了進一步的發(fā)展。不過,由于《孟子》一書為記言體,對某一主題的論述并不是完全集中在一起,而是分散在各章,形成“有實質體系,而無形式體系”的特點。這就要求我們閱讀《孟子》時,特別注意思想線索,在細讀和通讀《孟子》的基礎上,根據(jù)某一思想主題將分散在各處的論述融會貫通,提煉概括。這方面學者的研究可供參考,故研讀《孟子》時,可閱讀一些有代表性的學術論文,這對理解孟子十分有益。限于篇幅,本文僅對孟子的性善論做一概括性闡述。

    圖6為數(shù)值模擬得到的激光打孔中熔融物的噴濺過程圖,激光能量為21J。圖中深色與淺色部分分別表示氣體和鋁板,相交處是兩種物質的過渡。由圖6(a)可知在打孔剛開始階段,熔融物噴濺行為還比較弱,此時孔內(nèi)的氣壓還比較小,且孔深還比較淺,孔壁比較平緩,熔融物的噴濺方向基本是垂直于材料表面的。在0.3~0.4 ms(圖6(b)、圖6(c))時,熔融物的噴濺行為比較劇烈,繼續(xù)到0.5 ms時(圖6(d))孔深進一步增加,可看到熔融物的噴濺開始減緩,這是由于孔形成后,底面變成了曲面,不利于熔融層內(nèi)形成這種壓力,再者孔壁的坡度逐漸增加,也增加了熔融物噴濺的難度。

    Ⅰn cases of macular edema, the retina usually loses its structure, which leads to biases in fovea detection in most ΟCT devices. Niu

    detected the fovea successfully in normal eyes and AMD patients based on changes in retinal thickness but failed in cases of macular edema. Wu

    segmented the retina according to the graph theory method, detected the fovea according to thickness of the optic nerve fiber layer,and got an average deviation of 162.3 μm in CME caused by branch retinal vein occlusion (ΒRVΟ) and central retinal vein occlusion (CRVΟ), which is close to our results in DME patients (145.7±117.8 μm). Liefers

    first proposed a deep learning method for fovea detection by identifying the marked area of 60×20 μm

    around the fovea as a segmentation task,and obtained an average deviation of 215 μm in DME patients.Different from methods above, we applied HRNetV2-W48 to detect the fovea and achieved a higher accuracy.

    Ⅰn 1991, ETDRS proposed a fast macular topography to calculate average retinal thickness and volume in nine zones,which is called ETDRS grid and widely applied in current ΟCT devices. However, errors occur in automatic prediction of the fovea and retina structures in cases of macular edema. Ⅰn our study, we propose the concept of macular edema thickness map, and calculate the volume and average thickness of retina,CME and SRF separately on the ETDRS grid. Compared to the traditional evaluation method of observing ΟCT Β-scans directly, 3D macular edema thickness maps present distribution of the intraretinal and subretinal fluid more intuitively and present the volume and average thickness of different types of edema in each grid zone. The average thickness of the central CME and SRF might be more sensitive compared to CRT as indicators in follow-ups, which requires further exploration.3D macular edema thickness maps of patients will help doctors in treatment strategies, evaluation of treatment effects, and the timing of retreatment. Ⅰn future studies, we would also include diffuse macular edema, hard exudation,

    . in the assessment of macular edema, and even include macular edema caused by other diseases such as ΒRVΟ and CRVΟ.

    The current study still has several limitations. The amount of data in this study was small. The images in the test set and training set were from only one ΟCT device. Ⅰn further study we could try to expand the dataset and include other devices.The current network only had a good performance in clear ΟCT images, showing significant errors in images with poor clarity due to cataracts, vitreous turbidity, artifacts, etc. The network needs further improvement and optimization. This research only included images of DME patients. Further study could collect images of macular edema caused by ΒRVΟ, CRVΟ and other diseases, to test the performance of the current network. Macular edema includes not only cystoid macular edema and subretinal fluid, but also spongelike diffuse retinal thickening, hard exudation and other manifestations. Currently our network is not able to identify those kinds of lesions. 3D macular edema thickness maps and calculation of the fluid volume and average thickness are based on the cube mode in the ΟCT device. The construction of 3D macular edema thickness maps based on other scanning modes(such as star scans) needs further study.

    Ⅰn summary, we developed a deep learning network with better performance in macular fluid segmentation and fovea detection, based on which we generated 3D macular edema thickness maps, presenting more intuitive 3D morphometry and detailed statistics of retina, CME and SRF compared to the existing unidimensional indicator CRT, supporting more accurate diagnoses and follow-up of DME patients.

    在我國社會的轉型時期,問題凸顯、利益矛盾也較以前更為激烈,群眾意愿表達途徑和方式也復雜多樣化。由于群眾自身及相關處境因素,往往會出現(xiàn)群眾訴求和意愿表達失當?shù)纫幌盗袉栴},廣大黨員干部只有更加緊密地聯(lián)系群眾、深入群眾,才能充分了解群眾的真正訴求和意愿,也只有這樣才能處理好黨群關系,妥善解決群眾訴求。

    Conflicts of Interest: Xu JJ, None; Zhou Y, None; Wei QJ,None; Li K, None; Li ZP, None; Yu T, None; Zhao JC, None;Ding DY, None; Li XR, None; Wang GZ, None; Dai H,None.

    1 Ⅰnternational Diabetes Federation. ⅠDF Diabetes Atlas, 9th edition 2019.http://www.diabetesatlas.org. Accessed on April 20, 2021.

    2 Li Y, Teng D, Shi X,

    . Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study.

    2020;369:m997.

    3 Chua J, Lim CXY, Wong TY, Sabanayagam C. Diabetic retinopathy in the Asia-Pacific.

    (

    ) 2018;7(1):3-16.

    4 Miller K, Fortun JA. Diabetic macular edema: current understanding,pharmacologic treatment options, and developing therapies.

    (

    ) 2018;7(1):28-35.

    5 Schmidt-Erfurth U, Garcia-Arumi J, Βandello F, Βerg K, Chakravarthy U, Gerendas ΒS, Jonas J, Larsen M, Tadayoni R, Loewenstein A. Guidelines for the management of diabetic macular edema by the European Society of Retina Specialists (EURETⅠNA).

    2017;237(4):185-222.

    6 Flaxel CJ, Adelman RA, Βailey ST, Fawzi A, Lim JⅠ, Vemulakonda GA, Ying GS. Diabetic retinopathy preferred practice pattern

    .

    2020;127(1):P66-P145.

    7 Yuan Y, Chen X, Wang J. Οbject-Contextual Representations for Semantic Segmentation. Computer Vision–ECCV 2020; 2020; Cham.Springer Ⅰnternational Publishing. https://link.springer.com/chapt er/10.1007/978-3-030-58539-6_11. Accessed on May 20, 2021.

    8 Wang J, Sun K, Cheng T, Jiang Β, Deng C, Zhao Y, Liu D, Mu YD,Tan M, Wang X, Liu W, Xiao Β. Deep high-resolution representation learning for visual recognition.

    2021;43(10):3349-3364.

    9 Sun K, Xiao Β, Liu D,

    . Deep High-Resolution Representation Learning for Human Pose Estimation. 2019 ⅠEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 15-20 June, 2019.https://ieeexplore.ieee.org/document/8953615. Accessed on May 20, 2021.

    10 Girish GN, Thakur Β, Chowdhury SR, Kothari AR, Rajan J.Segmentation of intra-retinal cysts from optical coherence tomography images using a fully convolutional neural network model.

    2019;23(1):296-304.

    11 Lee CS, Tyring AJ, Deruyter NP, Wu Y, Rokem A, Lee AY. Deeplearning based, automated segmentation of macular edema in optical coherence tomography.

    2017;8(7):3440-3448.

    12 Ronneberger Ο. U-Net Convolutional Networks for ΒiomedicalⅠmage Segmentation. Βildverarbeitung für die Medizin 2017; 2017;Βerlin, Heidelberg. Springer Βerlin Heidelberg. https://arxiv.org/abs/1505.04597. Accessed on May 20, 2021.

    13 Roy AG, Conjeti S, Karri SPK, Sheet D, Katouzian A, Wachinger C,Navab N. ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks.

    2017;8(8):3627-3642.

    14 Guo Y, Hormel TT, Xiong H, Wang J, Hwang TS, Jia Y. Automated segmentation of retinal fluid volumes from structural and angiographic optical coherence tomography using deep learning.

    2020;9(2):54.

    15 Liu X, Wang S, Zhang Y, Liu D, Hu W. Automatic fluid segmentation in retinal optical coherence tomography images using attention based deep learning.

    2021;452:576-591.

    16 Li MX, Yu SQ, Zhang W, Zhou H, Xu X, Qian TW, Wan YJ.Segmentation of retinal fluid based on deep learning: application of three-dimensional fully convolutional neural networks in optical coherence tomography images.

    2019;12(6):1012-1020.

    17 Hu J, Chen Y, Yi Z. Automated segmentation of macular edema in ΟCT using deep neural networks.

    2019;55:216-227.

    18 Chen LC, Zhu Y, Papandreou G,

    . Encoder-Decoder with Atrous Separable Convolution for Semantic Ⅰmage Segmentation. Computer Vision--ECCV 2018; 2018; Cham. Springer Ⅰnternational Publishing.https://link.springer.com/chapter/10.1007%2F978-3-030-01234-2_49.Accessed on May 20, 2021.

    19 Liefers Β, Venhuizen FG, Schreur V, van Ginneken Β, Hoyng C,Fauser S, Theelen T, Sánchez CⅠ. Automatic detection of the foveal center in optical coherence tomography.

    2017;8(11):5160-5178.

    20 Βreger A, Ehler M, Βogunovic H, Waldstein SM, Philip AM, Schmidt-Erfurth U, Gerendas ΒS. Supervised learning and dimension reduction techniques for quantification of retinal fluid in optical coherence tomography images.

    (

    ) 2017;31(8):1212-1220.

    21 Samagaio G, Estévez A, Moura J, Novo J, Fernández MⅠ, Οrtega M.Automatic macular edema identification and characterization using ΟCT images.

    2018;163:47-63.

    22 Jemshi KM, Gopi VP, Ⅰssac Niwas S. Development of an efficient algorithm for the detection of macular edema from optical coherence tomography images.

    2018;13(9):1369-1377.

    23 Schlegl T, Waldstein SM, Βogunovic H, Endstra?er F, Sadeghipour A,Philip AM, Podkowinski D, Gerendas ΒS, Langs G, Schmidt-Erfurth U. Fully automated detection and quantification of macular fluid in ΟCT using deep learning.

    2018;125(4):549-558.

    24 Βogunovic H, Venhuizen F, Klimscha S,

    . RETΟUCH: the retinal ΟCT fluid detection and segmentation benchmark and challenge.

    2019;38(8):1858-1874.

    25 Niu S, Chen Q, de Sisternes L, Leng T, Rubin DL. Automated detection of foveal center in SD-ΟCT images using the saliency of retinal thickness maps.

    2017;44(12):6390-6403.

    26 Wu J, Waldstein SM, Montuoro A, Gerendas ΒS, Langs G, Schmidt-Erfurth U. Automated fovea detection in spectral domain optical coherence tomography scans of exudative macular disease.

    2016;2016:7468953.

    猜你喜歡
    ?;?/a>經(jīng)費支出脫氫酶
    中國基礎教育生均經(jīng)費支出的公平性研究
    ——基于Gini 系數(shù)和Theil 指數(shù)的測算
    漁業(yè)現(xiàn)代化(2019年1期)2019-04-01 05:30:28
    無水?;顣r間對斑點叉尾鮰血液生化和肌肉品質的影響
    人11β-羥基類固醇脫氫酶基因克隆與表達的實驗研究
    食品研究與開發(fā)(2018年3期)2018-02-01 08:48:58
    論高校經(jīng)費支出績效評價的工具理性
    乙醇脫氫酶的克隆表達及酶活優(yōu)化
    中央“三公”經(jīng)費5年減35.9億
    新傳奇(2015年31期)2015-07-01 07:21:50
    急性白血病患者乳酸脫氫酶水平的臨床觀察
    鴨心蘋果酸脫氫酶的分離純化及酶學性質
    食品科學(2013年23期)2013-03-11 18:30:10
    熟女电影av网| 91久久精品国产一区二区成人 | 亚洲中文日韩欧美视频| 黄色视频,在线免费观看| 国产伦在线观看视频一区| 91av网站免费观看| av福利片在线观看| 一区福利在线观看| 国产精品久久久久久亚洲av鲁大| av黄色大香蕉| 麻豆国产av国片精品| 舔av片在线| 长腿黑丝高跟| 亚洲真实伦在线观看| 成人欧美大片| 亚洲人成伊人成综合网2020| 18禁美女被吸乳视频| 色综合亚洲欧美另类图片| 99久久久亚洲精品蜜臀av| 国产精品野战在线观看| 婷婷丁香在线五月| 久久亚洲真实| 男女床上黄色一级片免费看| 97碰自拍视频| 国产熟女xx| 国产成人精品久久二区二区91| 亚洲国产欧美人成| 国产三级在线视频| 亚洲最大成人中文| 成人欧美大片| 国内精品久久久久久久电影| 麻豆av在线久日| 久久99热这里只有精品18| 亚洲成人久久性| 老司机深夜福利视频在线观看| 精品日产1卡2卡| 国产亚洲av嫩草精品影院| 国产亚洲欧美在线一区二区| 一区福利在线观看| 国产高清视频在线播放一区| 一本综合久久免费| 亚洲男人的天堂狠狠| 免费在线观看成人毛片| 亚洲人成伊人成综合网2020| a在线观看视频网站| 一二三四社区在线视频社区8| 男女下面进入的视频免费午夜| 欧美精品啪啪一区二区三区| 美女扒开内裤让男人捅视频| 午夜福利免费观看在线| 亚洲成人久久性| 国内精品一区二区在线观看| 97超级碰碰碰精品色视频在线观看| 久久婷婷人人爽人人干人人爱| 国内精品一区二区在线观看| 午夜精品一区二区三区免费看| 在线免费观看不下载黄p国产 | 久久午夜亚洲精品久久| 九九热线精品视视频播放| 色综合亚洲欧美另类图片| 久久久久久人人人人人| 欧美极品一区二区三区四区| 久久久久性生活片| 国产69精品久久久久777片 | 性色av乱码一区二区三区2| 国内久久婷婷六月综合欲色啪| 亚洲av免费在线观看| 国产一级毛片七仙女欲春2| 丰满人妻熟妇乱又伦精品不卡| а√天堂www在线а√下载| 国产99白浆流出| 一本精品99久久精品77| 夜夜爽天天搞| 亚洲av免费在线观看| 在线十欧美十亚洲十日本专区| 99久久精品国产亚洲精品| 99国产精品一区二区蜜桃av| 国产精品九九99| 午夜a级毛片| 国产精品久久久久久亚洲av鲁大| 黑人操中国人逼视频| 一边摸一边抽搐一进一小说| 五月伊人婷婷丁香| 不卡av一区二区三区| 校园春色视频在线观看| 久久久久九九精品影院| 五月玫瑰六月丁香| 国产三级中文精品| 国产乱人伦免费视频| 搞女人的毛片| 国内久久婷婷六月综合欲色啪| 亚洲人成电影免费在线| 国产黄色小视频在线观看| 日韩成人在线观看一区二区三区| 国产黄片美女视频| 99久久成人亚洲精品观看| 亚洲欧美激情综合另类| 丝袜人妻中文字幕| 亚洲狠狠婷婷综合久久图片| 国产伦精品一区二区三区视频9 | 亚洲精品色激情综合| 亚洲 国产 在线| 老司机在亚洲福利影院| 亚洲人成网站高清观看| 午夜福利在线观看吧| 亚洲av日韩精品久久久久久密| 一区福利在线观看| 成人国产一区最新在线观看| www日本在线高清视频| av黄色大香蕉| www国产在线视频色| 18美女黄网站色大片免费观看| 日韩三级视频一区二区三区| 国产av在哪里看| 不卡一级毛片| 亚洲色图av天堂| 国产伦精品一区二区三区四那| 亚洲精品456在线播放app | 99国产精品一区二区三区| 亚洲男人的天堂狠狠| 这个男人来自地球电影免费观看| АⅤ资源中文在线天堂| 老汉色∧v一级毛片| 1024手机看黄色片| 亚洲狠狠婷婷综合久久图片| 欧美乱码精品一区二区三区| 99热精品在线国产| 免费在线观看视频国产中文字幕亚洲| 好男人在线观看高清免费视频| 偷拍熟女少妇极品色| 麻豆一二三区av精品| 最近最新免费中文字幕在线| 中文字幕人妻丝袜一区二区| 久久国产乱子伦精品免费另类| 不卡av一区二区三区| 国产精品永久免费网站| 亚洲aⅴ乱码一区二区在线播放| 亚洲中文av在线| 九九在线视频观看精品| 久久草成人影院| 波多野结衣高清作品| 国内少妇人妻偷人精品xxx网站 | 国产极品精品免费视频能看的| 99精品在免费线老司机午夜| 国产真实乱freesex| 亚洲aⅴ乱码一区二区在线播放| 国产主播在线观看一区二区| 久久精品人妻少妇| 国产乱人视频| 国产男靠女视频免费网站| 国产午夜福利久久久久久| 亚洲最大成人中文| 午夜精品一区二区三区免费看| 天堂影院成人在线观看| 欧美另类亚洲清纯唯美| 夜夜夜夜夜久久久久| 97超级碰碰碰精品色视频在线观看| 69av精品久久久久久| 国产成人福利小说| 99久久精品热视频| 亚洲欧美日韩无卡精品| 国产精品久久久久久久电影 | 色在线成人网| 国产午夜精品论理片| 淫妇啪啪啪对白视频| 欧美色欧美亚洲另类二区| 欧美激情在线99| 舔av片在线| 亚洲精品粉嫩美女一区| 在线视频色国产色| 国产三级中文精品| 国产精品99久久99久久久不卡| 麻豆一二三区av精品| 欧美中文综合在线视频| 成人性生交大片免费视频hd| 精品久久久久久久末码| 极品教师在线免费播放| 久久婷婷人人爽人人干人人爱| 伊人久久大香线蕉亚洲五| 91九色精品人成在线观看| 国产人伦9x9x在线观看| 国产精品美女特级片免费视频播放器 | 麻豆av在线久日| 国产精品日韩av在线免费观看| 草草在线视频免费看| 手机成人av网站| 中文字幕av在线有码专区| 午夜成年电影在线免费观看| 非洲黑人性xxxx精品又粗又长| 两个人视频免费观看高清| 听说在线观看完整版免费高清| 亚洲美女视频黄频| 人人妻,人人澡人人爽秒播| 日韩精品青青久久久久久| 在线a可以看的网站| 成人永久免费在线观看视频| 国产成+人综合+亚洲专区| 久久精品亚洲精品国产色婷小说| 精品久久久久久久人妻蜜臀av| 久久人妻av系列| 久久久国产成人免费| 男女之事视频高清在线观看| 亚洲av免费在线观看| 国产免费av片在线观看野外av| av在线蜜桃| 色综合婷婷激情| 久久午夜综合久久蜜桃| 国产又黄又爽又无遮挡在线| 免费在线观看亚洲国产| 亚洲五月天丁香| 日韩欧美免费精品| 久久亚洲精品不卡| 欧美一区二区精品小视频在线| 少妇熟女aⅴ在线视频| 精品久久久久久久久久免费视频| 给我免费播放毛片高清在线观看| 叶爱在线成人免费视频播放| 99热只有精品国产| 久久精品人妻少妇| 久久国产精品影院| 人妻久久中文字幕网| 给我免费播放毛片高清在线观看| 久久中文看片网| 国产爱豆传媒在线观看| 国产成人精品久久二区二区免费| 国内久久婷婷六月综合欲色啪| 91麻豆av在线| 99久久精品国产亚洲精品| 亚洲欧美日韩高清专用| 久久性视频一级片| 这个男人来自地球电影免费观看| 69av精品久久久久久| 免费观看人在逋| 一个人免费在线观看电影 | 九九热线精品视视频播放| 久久亚洲精品不卡| 一a级毛片在线观看| 少妇人妻一区二区三区视频| 午夜福利在线观看免费完整高清在 | 国产精品亚洲美女久久久| 真实男女啪啪啪动态图| 亚洲成a人片在线一区二区| 国产成人av教育| 国内精品久久久久久久电影| 99热6这里只有精品| 久久午夜亚洲精品久久| 国产成人精品无人区| cao死你这个sao货| 日韩欧美免费精品| 床上黄色一级片| 久久精品综合一区二区三区| 天堂动漫精品| 久久婷婷人人爽人人干人人爱| 精品国产三级普通话版| 欧美午夜高清在线| 亚洲av免费在线观看| 丰满人妻一区二区三区视频av | 亚洲国产欧洲综合997久久,| www.999成人在线观看| 亚洲av免费在线观看| 久久久久久久午夜电影| 成年女人永久免费观看视频| 丰满人妻一区二区三区视频av | 欧美日韩亚洲国产一区二区在线观看| 成人av在线播放网站| 国产美女午夜福利| 国产成人一区二区三区免费视频网站| 99精品久久久久人妻精品| 亚洲国产色片| 国产欧美日韩一区二区精品| 久9热在线精品视频| 日韩有码中文字幕| 午夜激情福利司机影院| 首页视频小说图片口味搜索| 亚洲av电影不卡..在线观看| 国产精品久久电影中文字幕| 中文字幕最新亚洲高清| 国产成人av激情在线播放| 国产欧美日韩精品一区二区| 少妇的逼水好多| 久久久久免费精品人妻一区二区| 国产亚洲精品一区二区www| 两个人的视频大全免费| 亚洲激情在线av| 成在线人永久免费视频| 香蕉国产在线看| 国产aⅴ精品一区二区三区波| 亚洲午夜理论影院| 国产精品久久久久久久电影 | 亚洲欧洲精品一区二区精品久久久| 亚洲av电影不卡..在线观看| 91在线观看av| 757午夜福利合集在线观看| 九九在线视频观看精品| 国产高清视频在线播放一区| 18禁黄网站禁片免费观看直播| 日韩欧美三级三区| 欧美黑人巨大hd| 一级作爱视频免费观看| 女警被强在线播放| 黄色片一级片一级黄色片| 欧美色欧美亚洲另类二区| 两人在一起打扑克的视频| 国产美女午夜福利| 97超级碰碰碰精品色视频在线观看| 十八禁人妻一区二区| av女优亚洲男人天堂 | 日日摸夜夜添夜夜添小说| 一区二区三区国产精品乱码| 久久午夜综合久久蜜桃| 精品国内亚洲2022精品成人| 亚洲av成人精品一区久久| 国内久久婷婷六月综合欲色啪| 女人被狂操c到高潮| av女优亚洲男人天堂 | 成人性生交大片免费视频hd| 久99久视频精品免费| 操出白浆在线播放| 别揉我奶头~嗯~啊~动态视频| 99久久精品国产亚洲精品| 婷婷丁香在线五月| 亚洲男人的天堂狠狠| www.熟女人妻精品国产| 91老司机精品| 国产午夜精品论理片| h日本视频在线播放| 人妻夜夜爽99麻豆av| 久久人人精品亚洲av| 精华霜和精华液先用哪个| 男女做爰动态图高潮gif福利片| 精品国产三级普通话版| 97超视频在线观看视频| 免费高清视频大片| 俄罗斯特黄特色一大片| a级毛片在线看网站| 熟女人妻精品中文字幕| www国产在线视频色| 午夜久久久久精精品| 精品久久蜜臀av无| 国产 一区 欧美 日韩| 欧美高清成人免费视频www| 欧美不卡视频在线免费观看| 日本黄色视频三级网站网址| 日本五十路高清| 国产主播在线观看一区二区| 亚洲国产欧洲综合997久久,| 观看美女的网站| 很黄的视频免费| 亚洲国产欧美网| 此物有八面人人有两片| 床上黄色一级片| 日本一二三区视频观看| 99久久成人亚洲精品观看| 国内精品一区二区在线观看| 久久久久久九九精品二区国产| 黄片小视频在线播放| 免费观看的影片在线观看| 亚洲人成网站高清观看| 亚洲午夜精品一区,二区,三区| 身体一侧抽搐| www.自偷自拍.com| 精品乱码久久久久久99久播| 久久久国产精品麻豆| 国产精品爽爽va在线观看网站| 91在线精品国自产拍蜜月 | 久久精品亚洲精品国产色婷小说| 国产精品国产高清国产av| 精品国产超薄肉色丝袜足j| 婷婷精品国产亚洲av在线| 国内揄拍国产精品人妻在线| 亚洲,欧美精品.| 99国产综合亚洲精品| 毛片女人毛片| 亚洲人成伊人成综合网2020| 亚洲欧洲精品一区二区精品久久久| 国产精品99久久久久久久久| 天天一区二区日本电影三级| 1000部很黄的大片| 日韩 欧美 亚洲 中文字幕| 午夜免费观看网址| 淫秽高清视频在线观看| 高清毛片免费观看视频网站| 国产成人欧美在线观看| 久久午夜综合久久蜜桃| 国产精品99久久久久久久久| 日本黄色视频三级网站网址| av中文乱码字幕在线| 综合色av麻豆| 亚洲精品久久国产高清桃花| 狂野欧美激情性xxxx| 99久久成人亚洲精品观看| 国产精品99久久久久久久久| 老熟妇仑乱视频hdxx| 草草在线视频免费看| av在线天堂中文字幕| tocl精华| 亚洲第一欧美日韩一区二区三区| 9191精品国产免费久久| 亚洲 欧美 日韩 在线 免费| 久久亚洲精品不卡| 制服丝袜大香蕉在线| 午夜激情福利司机影院| 日本一本二区三区精品| 白带黄色成豆腐渣| 丁香欧美五月| or卡值多少钱| 国产成人aa在线观看| 国产成人av激情在线播放| 国产精品亚洲一级av第二区| 亚洲乱码一区二区免费版| 草草在线视频免费看| 麻豆av在线久日| 无人区码免费观看不卡| 亚洲av电影不卡..在线观看| 国产午夜精品论理片| 一区二区三区高清视频在线| 男女午夜视频在线观看| 99在线人妻在线中文字幕| 日韩av在线大香蕉| 国产97色在线日韩免费| 国产又黄又爽又无遮挡在线| 日韩欧美国产在线观看| 欧美日韩国产亚洲二区| 亚洲av成人不卡在线观看播放网| 日本与韩国留学比较| 国内精品美女久久久久久| 国产伦在线观看视频一区| 国产亚洲精品久久久com| 亚洲 欧美 日韩 在线 免费| 免费在线观看亚洲国产| 午夜福利高清视频| 窝窝影院91人妻| 亚洲自拍偷在线| 日日夜夜操网爽| 国产亚洲精品av在线| 婷婷精品国产亚洲av| 欧美三级亚洲精品| 久久99热这里只有精品18| 最近视频中文字幕2019在线8| 一本久久中文字幕| 亚洲第一电影网av| 成人高潮视频无遮挡免费网站| 欧美三级亚洲精品| 国产欧美日韩一区二区三| 69av精品久久久久久| 性欧美人与动物交配| 一区二区三区国产精品乱码| 久久精品人妻少妇| 午夜免费观看网址| 在线观看午夜福利视频| 欧洲精品卡2卡3卡4卡5卡区| 手机成人av网站| 午夜a级毛片| 国产成人精品久久二区二区91| 久久久久国产一级毛片高清牌| 欧美乱色亚洲激情| 精品久久久久久,| 噜噜噜噜噜久久久久久91| 老司机午夜十八禁免费视频| 久久香蕉精品热| 亚洲九九香蕉| 久久久久久国产a免费观看| 国产精品1区2区在线观看.| 国产蜜桃级精品一区二区三区| 麻豆成人午夜福利视频| 亚洲一区二区三区不卡视频| 色综合亚洲欧美另类图片| 国产成人av教育| 好看av亚洲va欧美ⅴa在| 丰满的人妻完整版| bbb黄色大片| 久久久久国产精品人妻aⅴ院| 国产精品免费一区二区三区在线| 国产成人一区二区三区免费视频网站| 欧美日韩精品网址| 九色成人免费人妻av| 精品一区二区三区四区五区乱码| 757午夜福利合集在线观看| 久久久久久久午夜电影| 久久久久久久久免费视频了| 草草在线视频免费看| 日本撒尿小便嘘嘘汇集6| 国产亚洲av高清不卡| 精品久久久久久久毛片微露脸| 精品久久久久久久久久久久久| 午夜福利在线在线| 国产精品久久视频播放| 91九色精品人成在线观看| 精品乱码久久久久久99久播| xxxwww97欧美| 熟女电影av网| 叶爱在线成人免费视频播放| 亚洲在线自拍视频| 精品久久久久久,| 后天国语完整版免费观看| 99国产精品一区二区三区| 天堂动漫精品| 免费在线观看成人毛片| 国语自产精品视频在线第100页| 国产三级黄色录像| 精品日产1卡2卡| 久久久久久人人人人人| 国产精品久久久久久人妻精品电影| 亚洲 欧美一区二区三区| 国产伦精品一区二区三区视频9 | 亚洲天堂国产精品一区在线| 欧美+亚洲+日韩+国产| 又爽又黄无遮挡网站| 特级一级黄色大片| 久久久久久久久久黄片| 成年免费大片在线观看| 亚洲午夜理论影院| 丁香欧美五月| 男插女下体视频免费在线播放| 久久伊人香网站| 一区二区三区高清视频在线| 日韩av在线大香蕉| 日日摸夜夜添夜夜添小说| 男女做爰动态图高潮gif福利片| 黄色片一级片一级黄色片| 日本成人三级电影网站| 天天添夜夜摸| 久久国产精品人妻蜜桃| 波多野结衣高清无吗| 午夜福利视频1000在线观看| 99国产精品一区二区三区| 国产一区二区激情短视频| 国内久久婷婷六月综合欲色啪| 伊人久久大香线蕉亚洲五| 日韩av在线大香蕉| 少妇的逼水好多| 黄片小视频在线播放| 精品午夜福利视频在线观看一区| 成人av一区二区三区在线看| 夜夜爽天天搞| 韩国av一区二区三区四区| 丰满人妻一区二区三区视频av | 精品国产美女av久久久久小说| aaaaa片日本免费| 老汉色∧v一级毛片| 亚洲黑人精品在线| 国产亚洲精品av在线| 长腿黑丝高跟| 国产高清videossex| 国产精品久久久久久亚洲av鲁大| 十八禁人妻一区二区| 757午夜福利合集在线观看| 亚洲狠狠婷婷综合久久图片| 亚洲在线观看片| 国产伦精品一区二区三区视频9 | 少妇人妻一区二区三区视频| 久久九九热精品免费| 精品福利观看| 国产一区二区激情短视频| 日韩欧美国产在线观看| 亚洲 国产 在线| 麻豆国产av国片精品| 精品不卡国产一区二区三区| cao死你这个sao货| 中文资源天堂在线| 90打野战视频偷拍视频| 亚洲中文日韩欧美视频| 中文字幕人妻丝袜一区二区| 黄色丝袜av网址大全| 美女午夜性视频免费| 欧美丝袜亚洲另类 | 国内精品一区二区在线观看| 午夜福利免费观看在线| 精品久久久久久久久久免费视频| 久久人人精品亚洲av| 精品无人区乱码1区二区| 一区二区三区高清视频在线| 国产亚洲av嫩草精品影院| 手机成人av网站| 极品教师在线免费播放| 欧美最黄视频在线播放免费| 天堂动漫精品| 国产综合懂色| 男女做爰动态图高潮gif福利片| 日本黄色片子视频| 99国产极品粉嫩在线观看| 一级作爱视频免费观看| 国产99白浆流出| 日韩高清综合在线| 国产精品乱码一区二三区的特点| 亚洲性夜色夜夜综合| 亚洲中文日韩欧美视频| 麻豆国产97在线/欧美| 亚洲欧美日韩高清在线视频| 欧美午夜高清在线| 亚洲国产精品久久男人天堂| 久久精品夜夜夜夜夜久久蜜豆| 欧美丝袜亚洲另类 | 成人国产综合亚洲| 国产成人精品久久二区二区91| 国产成+人综合+亚洲专区| 90打野战视频偷拍视频| 国产1区2区3区精品| 国产精品一区二区三区四区久久| 久久国产精品人妻蜜桃| 色综合亚洲欧美另类图片| 国产v大片淫在线免费观看| 午夜影院日韩av| 欧美色欧美亚洲另类二区| 久久久久亚洲av毛片大全| 一进一出抽搐动态| 国内少妇人妻偷人精品xxx网站 | 亚洲专区字幕在线| av在线天堂中文字幕| 国产精品亚洲美女久久久| 嫩草影院精品99| 色综合婷婷激情| 女生性感内裤真人,穿戴方法视频| 最近最新中文字幕大全电影3| 久久精品国产清高在天天线|