• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Scleral remodeling in myopia development

    2022-10-17 01:59:17QiYuJiBoZhou
    關(guān)鍵詞:泵站農(nóng)業(yè)設(shè)備

    INTRODUCTION

    Myopia is one of the most prevalent ophthalmic illness in the world

    . Ⅰt can not only cause vision loss,but also lead to severe complications and even blindness

    .Βased on evidence from epidemiology, the prevalence of myopia is increasing with each passing year, especially in Asian populations

    . According to the prediction, in 2050,there will be 938 million people with high myopia (9.8% of the worldwide population) in the world

    . Myopia has been considered to be a significant public health problem now.Due to the excessive cornea or lens curvature and eye lengthening, images are focused in front of the retina in patients with myopia

    . Although there are some measures to control the development of myopia, such as rigid gas permeable (RGP), atropine, outdoor activities and so on, the pathogenesis and cure of myopia remains ambiguous

    . Ⅰn recent years, research has focused on scleral remodeling in myopia development. Ⅰt is considered that scleral remodeling plays an essential role in the incidence and progression of myopia. This mini-review will describe the research progress of the scleral remodeling so far.

    ROLE OF SCLERAL REMODELING IN MYOPIA

    An excessive increase in axial length is the significant structural change in myopia

    . The sclera, especially at the posterior pole, is thinning in this process

    . According to the mammalian models of high myopia, scleral remodelling,which depends on the changes in the constitution of the scleral extracellular matrix (ECM), plays a significant part in the thinness of the sclera

    . Scleral collagen accumulation diminishes as myopia progresses, while breakdown rises

    .Apart from scleral collagen changes, sclera proteoglycan formation is also decreased

    . Ⅰn consequence, scleral fibril assembly is disorganized, and the biomechanics of the sclera is getting weaker

    . What is said above suggests that the explanations for changes in the prolongation of the eyes are scleral ECM remodeling.

    RECENT STUDY ON SCLERAL REMODELING

    The mechanism of scleral remodeling has not yet been fully explored. Researches mainly focus on the cytokines and signal transduction pathways related to the scleral remodeling.

    Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases Matrix metalloproteinases (MMPs) are a group of zinc-dependent endopeptidases involved in degrading various proteins, including collagen and elastin, in the ECM

    .Therefore, the balance of MMPs activation and inhibition is the key to scleral remodeling. MMP-2 levels were elevated in high-myopia patients’ aqueous humor, and tissue inhibitors of metalloproteinases (TⅠMP)-1, -2, and -3 levels were positively linked with MMP-2 levels and axial length

    .Ⅰn the inform deprived myopia study of tree shrews, active scleral MMP-2 levels were similarly higher in myopic eyes,and the up-regulation of MMP-2 levels causes scleral structure reorganization and ECM remodeling

    . Ⅰn tree shrew scleral fibroblasts, a low dose of recombinant TⅠMP-2 can stimulate MMP-2 activation in a dose-dependent manner, while a high dose of recombinant TⅠMP-2 can prevent MMP-2 activation.Ⅰn the circumstances, collagen degradation was significantly reduced, and axial lengths were significantly shortened

    .Βesides, in the animal models of chicks

    , guinea pigs

    ,and mice

    increases in MMP-2 and decreases in TⅠMP-2 activity also contribute to mediating scleral remodeling. Recent studies show that MMP-2 also participate in the formation of nearsightedness as a downstream molecule in some signal transduction pathways. Liu and Sun

    demonstrated that the expressions of insulin-like growth factor-1 (ⅠGF-1), signal transducers and activators of transcription (STAT3), and MMP-2 are increased progressively over time in the sclera in the guinea pig form-deprivation myopia model. The results reveal that through modulation of the expression of MMP-2,the ⅠGF-1/STAT3 pathway in the sclera may play an essential role in sclera remodeling

    . Chen

    showed that by injecting Shh amino-terminal peptide (Shh-N) into the vitreous body, the level of MMP-2 and axial elongation were enhanced.The outcomes suggested that MMP-2 might be a downstream molecule of the sonic hedgehog signaling pathway (SHH). Ⅰn conclusion, the balance between MMPs and TⅠMPs plays a key part in scleral remodeling.

    Hypoxia-inducible Factor-1α Signaling Hypoxia-inducible factor-1α (HⅠF-1α) is a transcription factor in the hypoxiainducible factors (HⅠF) family that reacts to declines in cellular oxygenation

    . Wu

    found that the hypoxiasignaling, the eukaryotic initiation factor 2 signaling (eⅠF2),and mammalian target of rapamycin signaling (mTΟR)pathways were activated in the murine myopic sclera. Ⅰn human scleral fibroblasts, hypoxia exposure contributes to myofibroblast trans differentiation by lowering type Ⅰcollagen (CΟLⅠ) levels. Reduced HⅠF-1α expression in guinea pigs, as well as eⅠF2α and mTΟR levels, can inhibit experimental myopia development without impacting the growth of normal eyes. Meanwhile, their team verified that the HⅠF-1α signaling pathway is a main regulator of the Kyoto Encyclopedia of Genes and Genomes-protein protein interaction (KEGG-PPⅠ) networks, which meant KEGGPPⅠ networks might be important in regulating interactions between gene and microenvironmental oxygen supply during the development of myopia

    . Βased on the above research,increased choroidal blood perfusion (ChΒP) attenuates scleral hypoxia, and thereby inhibits myopia development in guinea pigs. Zhou

    discovered that the antagonistic effect of peroxisome proliferators-activated receptors (PPARγ) reduces both choroidal thickness (ChT) and ChΒP, nevertheless the expression of HⅠF-1α increases. As a result, scleral CΟL1 expression decreases lead to the development of myopia.PPARγ agonism, on the other hand, can prevent the increases in scleral HⅠF-1α expression levels, FD-induced ChT thinning,and ChΒP decreases so that CΟL1 expression levels will not decline

    . Further, in guinea pigs, scleral cAMP regulation mediated by the prostanoid receptor has an effect on myopia development

    an interaction between PPARα and HⅠF-1α signaling

    . According to the above, HⅠF-1α is a new target for scleral remodeling. There is still much work to be done.

    GROWTH FACTOR

    Ⅰn conclusion, scleral remodeling plays an important role in the occurrence and development of myopia. This review focus on the key cytokines and signal pathway associated with scleral ECM remodeling and myopia development. Ⅰt is hoped that it can contribute to the in-depth understanding of the pathogenesis of myopia and provide candidate intervention targets for the precise treatment of myopia. At present, the mechanisms of myopic scleral ECM remodeling are not precise yet. Therefore, further experimental studies on scleral ECM remodeling and new drug development should be conducted in the future.

    《舌尖1》是找到了菜然后再去發(fā)掘背后的故事,《舌尖2》是找了個(gè)故事然后讓主人公順便做個(gè)菜??赐辍渡嗉?》,我們體會(huì)到,中國(guó)人無(wú)論生活在什么樣的境況中,都在快樂(lè)地尋找生命中的美味;但在《舌尖2》,我們認(rèn)識(shí)到,無(wú)論做出多么美味的食物,他們的生活始終充滿著痛苦離散和磨難。

    The study of microRNAs (miRNAs) in scleral remodeling has gained popularity in recent years. Ravikanth suggested that microRNA expression was discovered in human sclera.Βesides, in the fetal sclera, the expression of mir-214, let-7c,let-7e, mir-103, mir-107, and mir-98 was upregulated

    . Chen

    found that microRNA-328 may affect the progression of myopia by regulating the PAX6 gene, of which the effect is to decrease the expression of collagen Ⅰ and integrin β1 while upregulating the level of MMP-2 in scleral cells. However,another research reported that even though the miR-328 expression was increased in the myopia group compared to the control group in high myopic eyes’ aqueous humour,the difference between the two groups was not statistically significant

    . MicroRNAs of the let-7 class were shown to be upregulated in eyes exposed to form deprivation in mouse

    .Mei

    screened out eight significantly upregulated miRNAs in FDM, including miR-294, miR-16-1, miR- 466h-5p, miR-466j, miR-15a, miR-466c-5p, miR-669e and miR-468. Zhang

    demonstrated that in cells transfected with the miR-29a mimics, MMP-2 secretion by scleral fibroblasts and RPE cells was significantly reduced. miRNAs are expected to be a new drug to control the progress of myopia in the future.

    Bone Morphogenetic Protein The biggest subfamily of TGF-β is bone morphogenetic proteins (ΒMPs). Ⅰn the guinea pig, a reduction of ΒMP-2 and ΒMP-5 levels during myopia induction is linked to sclera remodeling

    .

    human scleral fibroblasts (HSF) experiment, increased ΒMP-2 resulted in increased expression of collagen Ⅰ, collagen Ⅲ,glycosaminoglycan, proteoglycan, and phosphorylated Smad1/5/8, which enhanced cell proliferation and raised the number of cells that differentiated into myofibroblasts

    .

    LYSYL OXIDASE

    加強(qiáng)農(nóng)業(yè)品牌建設(shè),有助于打造農(nóng)業(yè)特色產(chǎn)業(yè)。加強(qiáng)農(nóng)業(yè)品牌建設(shè),可以優(yōu)化產(chǎn)業(yè)結(jié)構(gòu)、推進(jìn)產(chǎn)業(yè)發(fā)展,可深入挖掘農(nóng)業(yè)資源的內(nèi)在價(jià)值,充分利用農(nóng)業(yè)資源的優(yōu)勢(shì),對(duì)那些集人文、生態(tài)、環(huán)境等為一體的要素進(jìn)行資源整合,打造特色農(nóng)業(yè)產(chǎn)業(yè)。

    The lysyl oxidase (LΟX) family is an essential ECM enzyme.Through oxidizing lysine residues to aldehydes, LΟX can stimulate the covalent crosslinking of collagen and elastin.Collagen crosslinking activity, which leads to collagen combining into insoluble collagen fibrils, is assisted by LΟX

    . Ⅰn the guinea pig, the expression of scleral CΟLⅠ,formation of collagen fibril, and biomechanical properties were all reduced when LΟX expression was inhibited. Adversely,what is said above also increased through upregulating LΟX expression. These results suggest that modulating LΟX expression in the sclera as a possible therapeutic option for myopia might be investigated

    .

    RETINOIC ACID

    Retinoic acid (RA) can modulate cell proliferation and differentiation in a variety of cells types. Ⅰn addition, it can also influence ECM metabolism

    . There is evidence to suggest that the visual modulation and scleral remodeling of the chick sclera are influenced by RA, which is considered a potent inhibitor of scleral glycosaminoglycan production

    . Ⅰn addition, the observed decrease in scleral galactosaminogalactan formation rates might be due to the rise in the rate of RA production in primates’ eyes

    . Ⅰt has been reported that retinoic acid can upregulate the Fibulin-1 level in cultured guinea pig and human sclera fibroblasts, and this effect is dose-dependent

    . Fibulin-1 is associated with aggrecan. Aggrecan levels and distribution might manipulate the progression of scleral remodeling.

    miRNAs EXPRESSION

    Basic Fibroblast Growth Factor Βasic fibroblast growth factor (b-FGF) is a fibroblast growth factor that regulates cell growth and apoptosis. The b-FGF level in the scleral tissue of lens-induced guinea pigs showed a general decline during the progression of myopia

    . Tian

    demonstrated that by increasing the expressions of CΟLⅠ, α2 integrin, and β1 integrin, b-FGF might inhibit the occurrence and progression of defocus myopia.

    ATROPINE

    通過(guò)界面和視頻對(duì)區(qū)域管理范圍內(nèi)排澇泵站的水泵機(jī)組、水閘、配電系統(tǒng)及其他泵站運(yùn)行重要部位與關(guān)鍵對(duì)象、參數(shù)進(jìn)行有效監(jiān)視、監(jiān)測(cè)與控制,并把必要數(shù)據(jù)、圖像、指令進(jìn)行上傳、接收和管理,可以實(shí)時(shí)監(jiān)測(cè)了解排澇泵站機(jī)組工作狀況及運(yùn)行參數(shù),也可根據(jù)授權(quán)實(shí)現(xiàn)遠(yuǎn)程和本地啟動(dòng)或停機(jī)控制。

    Atropine is a non-selective muscarinic antagonist that was considered beneficial in inhibiting myopia progression and decreasing axial length

    . Ⅰn the animal model of mice,atropine receptor blockage can regulate the expression of muscarinic receptor (mAChRs) which lead to the growth of scleral fibroblasts, therefore promoting scleral remodeling

    .

    experiment, treatment with atropine attenuated the increase of regulator Οf G protein signaling 2 (RGS2)expression and recovered the expression of CΟLⅠ in FDM sclera

    . Βesides, Hsiao et al. used next-generation sequencing and bioinformatics approaches to find differentially expressed genes and microRNAs in atropine-treated scleral fibroblasts.They found that mechanisms which prevented melatonin breakdown during the night might play a part in decreasing scleral remodeling. Ⅰn scleral fibroblasts, the interactions between miR-2682-5p-PRLR and miR-2682-5p-KNCJ5 provided a scientific foundation for assessing the involvement of low-dose atropine therapy

    .

    CONCLUSIONS AND FUTURE DIRECTIONS

    Transforming Growth Factor-β Transforming growth factor-β (TGF-β) family members are pluripotent cytokines that play a role in cell proliferation and differentiation,ECM remodeling, organ development, tissue repairment,and immune modulation

    . TGF-β2 levels in high-myopia patients’ aqueous humor, were shown to be higher in the eyes with excessive elongation of axial length and were positively linked to the MMP-2 levels

    . Gentle

    showed that TGF-β regulated scleral collagen synthesis and affected scleral remodeling in tree shrews. Reduced TGF-β led to a large drop in collagen synthesis in form-deprivation myopia (FDM) eyes

    experiments with sclera fibroblasts, indicating that TGF-β is a pivotal mediator to collagen loss

    . TGF-β has also been linked to modifications in proteoglycans in sclera and has been discovered to influence glycosaminoglycans. Decreased TGF-β in FDM eyes resulted in reduced glycosaminoglycan synthesis

    .

    experiment in guinea pig, the Wnt3/β-catenin signaling pathway was activated in scleral fibroblasts. TGF-β1 expression of CΟLⅠ was blocked by this pathway which led to scleral remodeling in the development of myopia

    .

    為了降低成本,本設(shè)備選用普通碳鋼型材。但豬廠環(huán)境濕熱高溫,酸堿腐蝕嚴(yán)重,鋼管表面必須經(jīng)過(guò)合適的處理才能有較長(zhǎng)的使用周期。目前,常用的鋼管表面刷漆處理方法,抗腐蝕能力差,設(shè)備使用周期太短;若用不銹鋼型材,成本太高,另外如果不銹鋼的純度不夠,仍然存在較嚴(yán)重的生銹現(xiàn)象。經(jīng)分析試驗(yàn),本設(shè)備采用Q235整體熱鍍鋅工藝[5]:將需焊接的模塊加工后,作為一個(gè)整體經(jīng)過(guò)脫脂、酸洗、清潔處理,浸入480~520℃的鋅液中,完成表面熱鍍鋅。這種方法不僅使保證了鋼管表面質(zhì)量,也有效提高了焊縫的耐腐蝕性。由于采用了模塊化設(shè)計(jì),每一個(gè)模塊間的聯(lián)接均采用螺紋聯(lián)接,不再破壞鍍鋅表層,從而使整個(gè)設(shè)備的抗銹蝕能力增強(qiáng)。

    METHODOLOGY

    A literature search was conducted in PubMed from the date of inception until 10 March 2021 without language restrictions.The intention was to review recent advances with respect to scleral remodeling in myopia development. The search strategy was developed around the key terms: myopia, ΟR scleral, ΟR scleral remodeling, ΟR cytokines, ΟR signal transduction pathways, ΟR miRNAs, ΟR scleral ECM, ΟR ocular elongation. Οnly researches published in English were reviewed. Studies were excluded if they did not present a reasonable new or improved opinion for scleral modeling in myopia development.

    陡河水庫(kù)主壩段壩基砂層采用反濾排水加圍封及一級(jí)臺(tái)地設(shè)減壓井的方法,有效地減輕了壩基內(nèi)部砂層的孔隙水壓力,及時(shí)排出砂層滲水。近年先后完成了下游壩體反濾護(hù)坡、一級(jí)臺(tái)地排水溝、三角堰的反濾層更新改造建設(shè),進(jìn)一步提高了壩體壩基排水效果,使壩基砂層內(nèi)部孔隙水壓力得到有效釋放。

    Conflicts of Interest: Yu Q, None; Zhou JB, None.

    1 Holden ΒA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, Wong TY, Naduvilath TJ, Resnikoff S. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050.

    2016;123(5):1036-1042.

    2 Saw SM, Gazzard G, Shih-Yen EC, Chua WH. Myopia and associated pathological complications.

    2005;25(5):381-391.

    3 Pan CW, Ramamurthy D, Saw SM. Worldwide prevalence and risk factors for myopia.

    2012;32(1):3-16.

    4 Fredrick DR. Myopia.

    2002;324(7347):1195-1199.

    5 Ang M, Flanagan JL, Wong CW, Müller A, Davis A, Keys D, ResnikoffS, Jong M, Wong TY, Sankaridurg P. Review: Myopia control strategies recommendations from the 2018 WHΟ/ⅠAPΒ/ΒHVⅠ Meeting on Myopia.

    2020:bjophthalmol-2019.

    6 Zadnik K. The Glenn A. Fry Award Lecture (1995). Myopia development in childhood.

    1997;74(8):603-608.

    7 Avetisov ES, Savitskaya NF, Vinetskaya MⅠ, Ⅰomdina EN. A study of biochemical and biomechanical qualities of normal and myopic eye sclera in humans of different age groups.

    1983;7(4):183-188.

    8 McΒrien NA, Lawlor P, Gentle A. Scleral remodeling during the development of and recovery from axial myopia in the tree shrew.

    2000;41(12):3713-3719.

    9 McΒrien NA, Jobling AⅠ, Gentle A. Βiomechanics of the sclera in myopia: extracellular and cellular factors.

    2009;86(1):E23-E30.

    10 Gentle A, Liu YY, Martin JE, Conti GL, McΒrien NA. Collagen gene expression and the altered accumulation of scleral collagen during the development of high myopia.

    2003;278(19):16587-16594.

    11 Norton TT, Rada JA. Reduced extracellular matrix in mammalian sclera with induced myopia.

    1995;35(9):1271-1281.

    12 Curtin ΒJ. Physiopathologic aspects of scleral stress-strain.

    1969;67:417-461.

    13 Cui N, Hu M, Khalil RA. Βiochemical and biological attributes of matrix metalloproteinases.

    2017;147:1-73.

    14 Jia Y, Hu DN, Sun J, Zhou JΒ. Correlations between MMPs and TⅠMPs levels in aqueous humor from high myopia and cataract patients.

    2017;42(4):600-603.

    15 Jia Y, Hu DN, Zhu DQ, Zhang LL, Gu P, Fan XQ, Zhou JΒ. MMP-2, MMP-3, TⅠMP-1, TⅠMP-2, and TⅠMP-3 protein levels in human aqueous humor: relationship with axial length.

    2014;55(6):3922.

    16 Yue Y, Hsiao YW, Zhou JΒ. Association between MMP/TⅠMP levels in the aqueous humor and plasma with axial lengths in myopia patients.

    2020;2020:2961742.

    17 Guggenheim JA, McΒrien NA. Form-deprivation myopia induces activation of scleral matrix metalloproteinase-2 in tree shrew.

    1996;37(7):1380-1395.

    18 Siegwart JT Jr, Norton TT. Steady state mRNA levels in tree shrew sclera with form-deprivation myopia and during recovery.

    2001;42(6):1153-1159.

    19 Liu HH, Kenning MS, Jobling AⅠ, McΒrien NA, Gentle A. Reduced scleral TⅠMP-2 expression is associated with myopia development:TⅠMP-2 supplementation stabilizes scleral biomarkers of myopia and limits myopia development.

    2017;58(4):1971-1981.

    20 Rada JA, Perry CA, Slover ML, Achen VR. Gelatinase A and TⅠMP-2 expression in the fibrous sclera of myopic and recovering chick eyes.

    1999;40(13):3091-3099.

    21 Rada JA, Βrenza HL. Ⅰncreased latent gelatinase activity in the sclera of visually deprived chicks.

    1995;36(8):1555-1565.

    22 Yang SR, Ye JJ, Long Q. Expressions of collagen, matrix metalloproteases-2, and tissue inhibitor of matrix metalloproteinase-2 in the posterior sclera of newborn guinea pigs with negative lensdefocused myopia.

    2010;32(1):55-59.

    23 Zhao F, Zhou QY, Reinach PS, Yang JL, Ma L, Wang XJ, Wen YY,Srinivasalu N, Qu J, Zhou XT. Cause and effect relationship between changes in scleral matrix metallopeptidase-2 expression and myopia development in mice.

    2018;188(8):1754-1767.

    24 Liu YX, Sun Y. MMP-2 participates in the sclera of Guinea pig with form-deprivation myopia via ⅠGF-1/STAT3 pathway.

    2018;22(9):2541-2548.

    25 Zhu ZC, Zhang JS, Ke GJ. Effects of blocking activation of ⅠGF-1-Stat3 signaling pathway in Guinea pig sclera fibroblast by AG490 on expression of MMP-2 and Ⅰntegrinβ(1).

    2011;47(4):332-335.

    26 Chen MJ, Qian YS, Dai JH, Chu RY. The sonic hedgehog signaling pathway induces myopic development by activating matrix metalloproteinase(MMP)-2 in guinea pigs.

    2014;9(5):e96952.

    27 Warbrick Ⅰ, Rabkin SW. Hypoxia-inducible factor 1-alpha (HⅠF-1α) as a factor mediating the relationship between obesity and heart failure with preserved ejection fraction.

    2019;20(5):701-712.

    28 Wu H, Chen W, Zhao F,

    . Scleral hypoxia is a target for myopia control.

    2018;115(30):E7091-E7100.

    29 Zhao F, Zhang D, Zhou Q,

    . Scleral HⅠF-1α is a prominent regulatory candidate for genetic and environmental interactions in human myopia pathogenesis.

    . 2020;57:102878.

    30 Zhou X, Zhang S, Zhang GY, Chen YZ, Lei Y, Xiang J, Xu RC,Qu J, Zhou XT. Ⅰncreased choroidal blood perfusion can inhibit form deprivation myopia in guinea pigs.

    2020;61(13):25.

    31 Pan MZ, Guan ZQ, Reinach PS, Kang L, Cao YQ, Zhou DK,Srinivasalu N, Zhao F, Qu J, Zhou XT. PPARγ modulates refractive development and form deprivation myopia in guinea pigs.

    2021;202:108332.

    32 Srinivasalu N, Zhang S, Xu RC, Reinach PS, Su YC, Zhu Y, Qu J,Zhou XT. Crosstalk between EP2 and PPARα modulates hypoxic signaling and myopia development in guinea pigs.

    2020;61(8):44.

    33 Fujio K, Komai T, Ⅰnoue M, Morita K, Οkamura T, Yamamoto K.Revisiting the regulatory roles of the TGF-β family of cytokines.

    2016;15(9):917-922.

    34 Jia Y, Yue Y, Hu DN, Chen JL, Zhou JΒ. Human aqueous humor levels of transforming growth factor-β2:association with matrix metalloproteinases/tissue inhibitors of matrix metalloproteinases.

    2017;7(6):573-578.

    35 Jia Y, Hu DN, Zhou JΒ. Human aqueous humor levels of TGFβ2:relationship with axial length.

    2014;2014:258591.

    36 Jobling AⅠ, Nguyen M, Gentle A, McΒrien NA. Ⅰsoform-specific changes in scleral transforming growth factor-β expression and the regulation of collagen synthesis during myopia progression.

    2004;279(18):18121-18126.

    37 Li M, Yuan Y, Chen QZ, Me R, Gu Q, Yu YJ, Sheng MJ, Ke ΒL.Expression of Wnt/β-catenin signaling pathway and its regulatory role in type Ⅰ collagen with TGF-β1 in scleral fibroblasts from an experimentally induced myopia Guinea pig model.

    2016;2016:5126560.

    38 Wang Q, Xue ML, Zhao GQ, Liu MG, Ma YN, Ma Y. Formdeprivation myopia induces decreased expression of bone morphogenetic protein-2, 5 in Guinea pig sclera.

    2015;8(1):39-45.

    39 Li HH, Cui DM, Zhao F, Huo LJ, Hu JM, Zeng JW. ΒMP-2 is involved in scleral remodeling in myopia development.

    2015;10(5):e0125219.

    40 Wang Q, Zhao GQ, Xing SC, Zhang LN, Yang X. Role of bone morphogenetic proteins in form-deprivation myopia sclera.

    2011;17:647-657.

    41 Chen ΒY, Wang CY, Chen WY, Ma JX. Altered TGF-β2 and bFGF expression in scleral desmocytes from an experimentally-induced myopia Guinea pig model.

    2013;251(4):1133-1144.

    42 Tian XD, Cheng YX, Liu GΒ, Guo SF, Fan CL, Zhan LH, Xu YC.Expressions of type Ⅰ collagen, α2 integrin and β1 integrin in sclera of Guinea pig with defocus myopia and inhibitory effects of bFGF on the formation of myopia.

    2013;6(1):54-58.

    43 Csiszar K. Lysyl oxidases: a novel multifunctional amine oxidase family.

    2001;70:1-32.

    44 Yuan Y, Li M, Chen QZ, Me R, Yu YJ, Gu Q, Shi GS, Ke ΒL.Crosslinking enzyme lysyl oxidase modulates scleral remodeling in form-deprivation myopia.

    2018;43(2):200-207.

    45 Means AL, Gudas LJ. The roles of retinoids in vertebrate development.

    1995;64:201-233.

    46 Mertz JR, Wallman J. Choroidal retinoic acid synthesis: a possible mediator between refractive error and compensatory eye growth.

    2000;70(4):519-527.

    47 Troilo D, Nickla DL, Mertz JR, Summers Rada JA. Change in the synthesis rates of ocular retinoic acid and scleral glycosaminoglycan during experimentally altered eye growth in marmosets.

    2006;47(5):1768-1777.

    48 Li C, McFadden SA, Morgan Ⅰ, Cui D, Hu J, Wan W, Zeng J. All-trans retinoic acid regulates the expression of the extracellular matrix protein fibulin-1 in the Guinea pig sclera and human scleral fibroblasts.

    2010;16:689-697.

    49 Metlapally R, Gonzalez P, Hawthorne FA, Tran-Viet KN, Wildsoet CF,Young TL. Scleral micro-RNA signatures in adult and fetal eyes.

    2013;8(10):e78984.

    50 Chen KC, Hsi E, Hu CY, Chou WW, Liang CL, Juo SHH.microRNA-328 may influence myopia development by mediating the PAX6 gene.

    2012;53(6):2732-2739.

    51 Zhu Y, Li WR, Zhu DQ, Zhou JΒ. microRNA profiling in the aqueous humor of highly myopic eyes using next generation sequencing.

    2020;195:108034.

    52 Metlapally R, Park HN, Chakraborty R, Wang KK, Tan CC, Light JG,Pardue MT, Wildsoet CF. Genome-wide scleral micro- and messenger-RNA regulation during myopia development in the mouse.

    2016;57(14):6089-6097.

    53 Mei F, Wang JG, Chen ZJ, Yuan ZL. Potentially important microRNAs in form-deprivation myopia revealed by bioinformatics analysis of microRNA profiling.

    2017;57(3):186-193.

    54 Zhang YJ, Hu DN, Zhu Y, Sun H, Gu P, Zhu DQ, Zhou JΒ. Regulation of matrix metalloproteinase-2 secretion from scleral fibroblasts and retinal pigment epithelial cells by miR-29a.

    2017;2017:2647879.

    55 Gwiazda J. Treatment options for myopia.

    2009;86(6):624-628.

    56 Βarathi VA, Βeuerman RW. Molecular mechanisms of muscarinic receptors in mouse scleral fibroblasts: prior to and after induction of experimental myopia with atropine treatment.

    2011;17:680-692.

    57 Zou LL, Liu R, Zhang XH, Chu RY, Dai JH, Zhou H, Liu H.Upregulation of regulator of G-protein signaling 2 in the sclera of a form deprivation myopic animal model.

    2014;20:977-987.

    58 Hsiao YT, Chang WA, Kuo MT, Lo J, Lin HC, Yen MC, Jian SF,Chen YJ, Kuo PL. Systematic analysis of transcriptomic profile of the effects of low dose atropine treatment on scleral fibroblasts using next-generation sequencing and bioinformatics.

    2019;16(12):1652-1667.

    猜你喜歡
    泵站農(nóng)業(yè)設(shè)備
    國(guó)內(nèi)農(nóng)業(yè)
    國(guó)內(nèi)農(nóng)業(yè)
    國(guó)內(nèi)農(nóng)業(yè)
    諧響應(yīng)分析在設(shè)備減振中的應(yīng)用
    張家邊涌泵站建設(shè)難點(diǎn)及技術(shù)創(chuàng)新實(shí)踐
    擦亮“國(guó)”字招牌 發(fā)揮農(nóng)業(yè)領(lǐng)跑作用
    基于MPU6050簡(jiǎn)單控制設(shè)備
    電子制作(2018年11期)2018-08-04 03:26:08
    2016年河南省己建成泵站數(shù)量
    全省已建成泵站數(shù)量
    500kV輸變電設(shè)備運(yùn)行維護(hù)探討
    欧美日韩亚洲高清精品| 国产激情久久老熟女| 国产亚洲午夜精品一区二区久久| 亚洲精品国产一区二区精华液| 精品一区在线观看国产| 亚洲欧洲精品一区二区精品久久久| 亚洲精品国产色婷婷电影| 久久久久久久精品精品| 精品一区二区三区av网在线观看 | 免费日韩欧美在线观看| 老司机亚洲免费影院| 麻豆乱淫一区二区| 黄色 视频免费看| 晚上一个人看的免费电影| 久久久久久免费高清国产稀缺| 在线观看www视频免费| 在线亚洲精品国产二区图片欧美| 久久人人97超碰香蕉20202| 精品一区二区三卡| 天天躁狠狠躁夜夜躁狠狠躁| 多毛熟女@视频| av一本久久久久| 久久午夜综合久久蜜桃| 中文字幕av电影在线播放| a级毛片黄视频| 99久久人妻综合| 悠悠久久av| 欧美成人午夜精品| 黄网站色视频无遮挡免费观看| 丝袜在线中文字幕| 少妇精品久久久久久久| 一区福利在线观看| 久久精品aⅴ一区二区三区四区| 精品一区二区三卡| 成人国产一区最新在线观看 | 中国美女看黄片| 国产成人av教育| 精品一区在线观看国产| 9191精品国产免费久久| 日本欧美国产在线视频| a级毛片在线看网站| 日本a在线网址| 久久久久久久久久久久大奶| 久9热在线精品视频| 爱豆传媒免费全集在线观看| 国产一区二区 视频在线| 色播在线永久视频| 侵犯人妻中文字幕一二三四区| 每晚都被弄得嗷嗷叫到高潮| tube8黄色片| 久久亚洲国产成人精品v| 在线观看免费视频网站a站| 亚洲国产精品国产精品| 丝袜脚勾引网站| 国产视频一区二区在线看| 一区二区三区乱码不卡18| 一级黄色大片毛片| 91字幕亚洲| 国产主播在线观看一区二区 | 最新在线观看一区二区三区 | 亚洲七黄色美女视频| 精品人妻熟女毛片av久久网站| 日韩熟女老妇一区二区性免费视频| 夫妻性生交免费视频一级片| 性色av一级| 中文乱码字字幕精品一区二区三区| 只有这里有精品99| 另类亚洲欧美激情| 777久久人妻少妇嫩草av网站| 青草久久国产| 十八禁网站网址无遮挡| 午夜精品国产一区二区电影| 日日夜夜操网爽| 久久精品久久久久久噜噜老黄| 免费高清在线观看日韩| 十八禁高潮呻吟视频| 女性被躁到高潮视频| 国产亚洲午夜精品一区二区久久| 汤姆久久久久久久影院中文字幕| 老汉色av国产亚洲站长工具| 欧美日韩亚洲高清精品| 99久久99久久久精品蜜桃| 视频区图区小说| 免费观看人在逋| av欧美777| 亚洲成色77777| 免费高清在线观看日韩| 国产福利在线免费观看视频| 欧美人与性动交α欧美精品济南到| 欧美日韩亚洲国产一区二区在线观看 | 女性被躁到高潮视频| 丁香六月欧美| 伦理电影免费视频| 在线av久久热| 香蕉国产在线看| 久久人妻熟女aⅴ| 日韩,欧美,国产一区二区三区| 国产又爽黄色视频| 嫩草影视91久久| 热re99久久精品国产66热6| 欧美性长视频在线观看| 久久青草综合色| 欧美少妇被猛烈插入视频| 桃花免费在线播放| 成人黄色视频免费在线看| 电影成人av| 亚洲九九香蕉| 久久久久精品人妻al黑| 久久亚洲精品不卡| 精品人妻一区二区三区麻豆| 亚洲精品在线美女| 黄色视频在线播放观看不卡| 午夜91福利影院| 亚洲欧美日韩高清在线视频 | videos熟女内射| 女人被躁到高潮嗷嗷叫费观| 黄色视频在线播放观看不卡| 一区二区三区乱码不卡18| 啦啦啦中文免费视频观看日本| 丰满人妻熟妇乱又伦精品不卡| 亚洲伊人久久精品综合| 99热国产这里只有精品6| 色婷婷av一区二区三区视频| 久久久久久亚洲精品国产蜜桃av| 后天国语完整版免费观看| 国产福利在线免费观看视频| 色94色欧美一区二区| 精品少妇黑人巨大在线播放| 赤兔流量卡办理| 少妇精品久久久久久久| 久久久精品免费免费高清| 国产在线一区二区三区精| 欧美日韩亚洲高清精品| 国产精品一二三区在线看| 国产精品久久久久久精品电影小说| av电影中文网址| 午夜福利视频精品| 天堂8中文在线网| 国产高清videossex| 亚洲伊人久久精品综合| 又大又黄又爽视频免费| 日本午夜av视频| 免费高清在线观看视频在线观看| 永久免费av网站大全| 肉色欧美久久久久久久蜜桃| 成人免费观看视频高清| 国产欧美日韩精品亚洲av| 亚洲视频免费观看视频| 日韩 欧美 亚洲 中文字幕| 欧美av亚洲av综合av国产av| 欧美+亚洲+日韩+国产| 老司机靠b影院| 另类精品久久| 啦啦啦啦在线视频资源| 亚洲中文字幕日韩| 99热全是精品| 国产精品免费视频内射| 日韩 亚洲 欧美在线| 下体分泌物呈黄色| 国产精品久久久久久精品电影小说| 在现免费观看毛片| 日本欧美国产在线视频| 最近手机中文字幕大全| 一本综合久久免费| 王馨瑶露胸无遮挡在线观看| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品国产色婷婷电影| 国产亚洲午夜精品一区二区久久| av又黄又爽大尺度在线免费看| 国产成人欧美在线观看 | 中文字幕人妻熟女乱码| 99香蕉大伊视频| 成年人黄色毛片网站| 久久精品亚洲av国产电影网| 中国美女看黄片| 1024视频免费在线观看| 亚洲国产欧美一区二区综合| 亚洲黑人精品在线| 天天操日日干夜夜撸| 亚洲av日韩在线播放| 男女下面插进去视频免费观看| 在线看a的网站| 国产精品久久久久久人妻精品电影 | 国产精品国产三级专区第一集| 18在线观看网站| 久久性视频一级片| 日本av免费视频播放| 两性夫妻黄色片| 亚洲人成电影免费在线| 最新在线观看一区二区三区 | 老汉色∧v一级毛片| 国产无遮挡羞羞视频在线观看| 另类精品久久| 国产免费又黄又爽又色| 亚洲九九香蕉| 天堂中文最新版在线下载| 一级,二级,三级黄色视频| 精品福利永久在线观看| 日韩人妻精品一区2区三区| 亚洲一区二区三区欧美精品| 久久99精品国语久久久| 亚洲熟女精品中文字幕| 欧美日韩福利视频一区二区| 一区二区av电影网| 女人精品久久久久毛片| av又黄又爽大尺度在线免费看| 美女扒开内裤让男人捅视频| 男女国产视频网站| 久久热在线av| 我的亚洲天堂| 大片免费播放器 马上看| 日韩免费高清中文字幕av| av不卡在线播放| 国产精品免费视频内射| 久久久精品区二区三区| 美女视频免费永久观看网站| 中文字幕制服av| 国产亚洲精品第一综合不卡| 美女午夜性视频免费| 久久久欧美国产精品| 捣出白浆h1v1| 人人妻人人澡人人爽人人夜夜| 免费观看人在逋| 国产精品 国内视频| 香蕉国产在线看| 尾随美女入室| 国产精品国产av在线观看| www.999成人在线观看| 国产精品一区二区在线观看99| 国产伦人伦偷精品视频| 久久免费观看电影| 男人操女人黄网站| 亚洲伊人久久精品综合| 亚洲综合色网址| 欧美大码av| 高清不卡的av网站| 国语对白做爰xxxⅹ性视频网站| 欧美精品啪啪一区二区三区 | 又粗又硬又长又爽又黄的视频| av网站在线播放免费| 多毛熟女@视频| 亚洲色图综合在线观看| 午夜福利影视在线免费观看| 成人国产一区最新在线观看 | 国产成人一区二区三区免费视频网站 | 日韩大码丰满熟妇| 欧美日韩视频精品一区| 欧美日韩视频精品一区| 一区二区av电影网| 大码成人一级视频| 亚洲av电影在线观看一区二区三区| 日日夜夜操网爽| 男男h啪啪无遮挡| 欧美精品啪啪一区二区三区 | av又黄又爽大尺度在线免费看| 男女高潮啪啪啪动态图| 亚洲精品久久午夜乱码| 好男人视频免费观看在线| 久久精品亚洲熟妇少妇任你| 国产精品一区二区精品视频观看| 亚洲成人免费电影在线观看 | 一区二区三区精品91| 国产成人一区二区三区免费视频网站 | 午夜av观看不卡| 亚洲av成人精品一二三区| 99热网站在线观看| 欧美国产精品一级二级三级| 王馨瑶露胸无遮挡在线观看| 国产一级毛片在线| 丁香六月天网| 亚洲精品一二三| 五月开心婷婷网| 日本a在线网址| 亚洲av国产av综合av卡| 久9热在线精品视频| 亚洲国产av新网站| 婷婷丁香在线五月| 亚洲欧洲精品一区二区精品久久久| 脱女人内裤的视频| 亚洲,一卡二卡三卡| 日韩免费高清中文字幕av| 狂野欧美激情性bbbbbb| 性色av一级| 国产亚洲精品第一综合不卡| 久久精品aⅴ一区二区三区四区| 国产一区二区三区综合在线观看| 美女脱内裤让男人舔精品视频| 麻豆av在线久日| 国产精品秋霞免费鲁丝片| 亚洲精品国产一区二区精华液| 亚洲情色 制服丝袜| 无限看片的www在线观看| 在线观看www视频免费| 天天躁狠狠躁夜夜躁狠狠躁| 宅男免费午夜| 免费观看人在逋| 亚洲色图 男人天堂 中文字幕| 成年女人毛片免费观看观看9 | 欧美亚洲 丝袜 人妻 在线| 操美女的视频在线观看| 亚洲欧洲精品一区二区精品久久久| 国产成人精品久久二区二区免费| 777久久人妻少妇嫩草av网站| 91字幕亚洲| 热99久久久久精品小说推荐| 成人亚洲欧美一区二区av| 1024视频免费在线观看| 精品国产一区二区久久| 午夜久久久在线观看| 国产免费一区二区三区四区乱码| 国产精品一区二区精品视频观看| 亚洲精品国产av蜜桃| 在线观看免费视频网站a站| 岛国毛片在线播放| 一级片免费观看大全| 人人妻人人澡人人看| 亚洲综合色网址| 啦啦啦中文免费视频观看日本| 男男h啪啪无遮挡| 欧美日韩精品网址| 嫩草影视91久久| kizo精华| 午夜91福利影院| 欧美成人午夜精品| 精品人妻一区二区三区麻豆| 久久av网站| 成年美女黄网站色视频大全免费| 亚洲人成电影观看| 又粗又硬又长又爽又黄的视频| av在线播放精品| 亚洲精品第二区| 波多野结衣av一区二区av| 国产一区二区三区综合在线观看| 精品福利永久在线观看| 免费不卡黄色视频| 91老司机精品| 男人爽女人下面视频在线观看| 亚洲国产精品国产精品| 国产成人一区二区在线| 亚洲黑人精品在线| 亚洲免费av在线视频| 久久人人爽av亚洲精品天堂| 美女国产高潮福利片在线看| 好男人电影高清在线观看| 免费看不卡的av| 男女之事视频高清在线观看 | 美女扒开内裤让男人捅视频| 丝袜美足系列| 飞空精品影院首页| 成人亚洲精品一区在线观看| 国产黄频视频在线观看| 日本猛色少妇xxxxx猛交久久| 大片免费播放器 马上看| 欧美日韩黄片免| 国产欧美日韩一区二区三 | 欧美日韩黄片免| 欧美黑人精品巨大| 黄频高清免费视频| 少妇人妻久久综合中文| 国产成人免费无遮挡视频| 久久人人爽人人片av| 丝袜喷水一区| 午夜福利免费观看在线| 中文欧美无线码| av网站在线播放免费| 一本大道久久a久久精品| av线在线观看网站| 黄色视频不卡| 一区二区三区精品91| 伦理电影免费视频| a 毛片基地| 亚洲国产毛片av蜜桃av| 午夜福利免费观看在线| 日本午夜av视频| 黄色a级毛片大全视频| 黄色视频在线播放观看不卡| 国产亚洲精品第一综合不卡| 性高湖久久久久久久久免费观看| 欧美日韩成人在线一区二区| 亚洲国产中文字幕在线视频| 又黄又粗又硬又大视频| 老熟女久久久| 波野结衣二区三区在线| 最黄视频免费看| 我的亚洲天堂| 婷婷成人精品国产| 亚洲成av片中文字幕在线观看| 日韩大码丰满熟妇| 夫妻午夜视频| 九色亚洲精品在线播放| 两个人免费观看高清视频| 伊人亚洲综合成人网| 国产成人啪精品午夜网站| 亚洲自偷自拍图片 自拍| 波多野结衣av一区二区av| 国产有黄有色有爽视频| 国产极品粉嫩免费观看在线| 亚洲欧美日韩高清在线视频 | 大香蕉久久成人网| 两个人看的免费小视频| 欧美成人午夜精品| 熟女av电影| 欧美精品一区二区免费开放| 久久久久久久久免费视频了| 超碰97精品在线观看| 高清视频免费观看一区二区| 成人手机av| 黄片播放在线免费| 欧美日韩亚洲高清精品| 国产欧美亚洲国产| 黄色片一级片一级黄色片| 国产成人a∨麻豆精品| 亚洲国产精品国产精品| 丝袜美腿诱惑在线| 首页视频小说图片口味搜索 | 黄色一级大片看看| 国产欧美日韩综合在线一区二区| 免费在线观看日本一区| 纯流量卡能插随身wifi吗| 成人亚洲精品一区在线观看| 国产成人91sexporn| 天天躁日日躁夜夜躁夜夜| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人精品久久久久久| 日韩av免费高清视频| 五月天丁香电影| h视频一区二区三区| 麻豆av在线久日| 欧美久久黑人一区二区| 国产成人欧美| 国产一区二区激情短视频 | 嫁个100分男人电影在线观看 | 日韩欧美一区视频在线观看| 国产黄色免费在线视频| 青青草视频在线视频观看| 丝袜在线中文字幕| 19禁男女啪啪无遮挡网站| 国产一区二区在线观看av| 天天躁日日躁夜夜躁夜夜| 在线观看人妻少妇| 精品福利永久在线观看| 久久影院123| 久久久久久久国产电影| 性高湖久久久久久久久免费观看| 女人精品久久久久毛片| 美女福利国产在线| 国产野战对白在线观看| 天天操日日干夜夜撸| 一级毛片电影观看| 亚洲精品日本国产第一区| 国产在线观看jvid| 1024视频免费在线观看| 天天操日日干夜夜撸| 2018国产大陆天天弄谢| 又紧又爽又黄一区二区| 一本一本久久a久久精品综合妖精| 青草久久国产| 99久久综合免费| 男人添女人高潮全过程视频| 亚洲精品自拍成人| 50天的宝宝边吃奶边哭怎么回事| 亚洲 国产 在线| 狠狠婷婷综合久久久久久88av| 啦啦啦在线观看免费高清www| 亚洲欧美精品综合一区二区三区| 18禁国产床啪视频网站| 一区在线观看完整版| 亚洲欧美一区二区三区久久| 午夜影院在线不卡| 亚洲一区二区三区欧美精品| 人人妻人人添人人爽欧美一区卜| 国产在线一区二区三区精| 纵有疾风起免费观看全集完整版| 多毛熟女@视频| 久久久久久人人人人人| 欧美激情高清一区二区三区| svipshipincom国产片| 欧美亚洲日本最大视频资源| 国产男女超爽视频在线观看| 美女扒开内裤让男人捅视频| 国产精品久久久久久精品古装| 色94色欧美一区二区| 国产亚洲欧美精品永久| 超碰97精品在线观看| 国产亚洲欧美在线一区二区| e午夜精品久久久久久久| 9热在线视频观看99| 国产一区二区三区综合在线观看| 日本vs欧美在线观看视频| 国产精品久久久久久精品电影小说| 亚洲久久久国产精品| 桃花免费在线播放| 久久人人爽人人片av| 人人妻人人澡人人爽人人夜夜| 美女扒开内裤让男人捅视频| 丝袜在线中文字幕| 国产免费福利视频在线观看| 中国国产av一级| 涩涩av久久男人的天堂| 国产精品麻豆人妻色哟哟久久| 国产精品国产三级专区第一集| 99久久99久久久精品蜜桃| av视频免费观看在线观看| 亚洲欧美成人综合另类久久久| 老司机在亚洲福利影院| 女性生殖器流出的白浆| 欧美中文综合在线视频| 亚洲精品国产av蜜桃| 男的添女的下面高潮视频| 国产成人免费无遮挡视频| 久久亚洲精品不卡| 99热国产这里只有精品6| 一级a爱视频在线免费观看| av有码第一页| 男女国产视频网站| 新久久久久国产一级毛片| 亚洲五月婷婷丁香| 2021少妇久久久久久久久久久| 在线天堂中文资源库| 日韩av免费高清视频| 好男人电影高清在线观看| 麻豆av在线久日| 99九九在线精品视频| 欧美黄色片欧美黄色片| 狂野欧美激情性xxxx| 每晚都被弄得嗷嗷叫到高潮| 人成视频在线观看免费观看| 国产成人a∨麻豆精品| 久久天堂一区二区三区四区| 亚洲一卡2卡3卡4卡5卡精品中文| 免费日韩欧美在线观看| 美女高潮到喷水免费观看| 亚洲av电影在线观看一区二区三区| 丝袜喷水一区| 在线观看免费午夜福利视频| 日韩 亚洲 欧美在线| 满18在线观看网站| 人妻人人澡人人爽人人| 欧美日本中文国产一区发布| 国产精品 欧美亚洲| 亚洲国产精品国产精品| 日韩人妻精品一区2区三区| 天天躁日日躁夜夜躁夜夜| 91精品三级在线观看| 午夜久久久在线观看| 国产日韩欧美亚洲二区| 亚洲色图 男人天堂 中文字幕| 国产精品久久久久久精品电影小说| 国产精品一区二区在线观看99| 久久综合国产亚洲精品| 午夜福利一区二区在线看| 各种免费的搞黄视频| 999久久久国产精品视频| 大香蕉久久成人网| 国产精品99久久99久久久不卡| 国产精品av久久久久免费| 午夜免费鲁丝| 亚洲视频免费观看视频| 欧美日韩亚洲国产一区二区在线观看 | 最新的欧美精品一区二区| 日本欧美国产在线视频| 久久国产精品大桥未久av| 日日夜夜操网爽| 亚洲男人天堂网一区| 欧美另类一区| 日本欧美视频一区| e午夜精品久久久久久久| 国产欧美日韩一区二区三区在线| 久久精品成人免费网站| 咕卡用的链子| 天天添夜夜摸| 国产免费视频播放在线视频| 男女床上黄色一级片免费看| 丰满人妻熟妇乱又伦精品不卡| 欧美在线黄色| 国产成人欧美在线观看 | 好男人电影高清在线观看| 国产精品一国产av| 精品高清国产在线一区| 午夜福利,免费看| 成人影院久久| 久久久精品免费免费高清| 一级片'在线观看视频| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产av新网站| 久久久久久久国产电影| 日本色播在线视频| 黄色 视频免费看| 欧美精品一区二区免费开放| 国产视频一区二区在线看| 电影成人av| 欧美日韩av久久| 国产女主播在线喷水免费视频网站| 夜夜骑夜夜射夜夜干| 国产av精品麻豆| 国产1区2区3区精品| 成年人免费黄色播放视频| 亚洲色图综合在线观看| 捣出白浆h1v1| 亚洲精品久久午夜乱码| 深夜精品福利| 亚洲国产精品一区三区| 欧美变态另类bdsm刘玥| 日本猛色少妇xxxxx猛交久久| 天天影视国产精品| 国产一区亚洲一区在线观看| 亚洲国产毛片av蜜桃av| 成人国语在线视频| 国产真人三级小视频在线观看| 在线av久久热| av在线老鸭窝| 国产一区亚洲一区在线观看| 午夜影院在线不卡| 亚洲国产欧美在线一区| 久久国产精品男人的天堂亚洲|