• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Notch fatigue of Cu50Zr50 metallic glasses under cyclic loading:molecular dynamics simulations

    2021-07-06 05:04:08YongYangHairuiLiZailinYangJinLiuEvansKabuteyKateyeandJianweiZhao
    Communications in Theoretical Physics 2021年6期

    Yong Yang,Hairui Li,Zailin Yang,?,Jin Liu,Evans Kabutey Kateye and Jianwei Zhao

    1 College of Aerospace and Civil Engineering,Harbin Engineering University,Harbin 150001,China

    2 Key Laboratory of Advanced Material of Ship and Mechanics,Ministry of Industry and Information Technology,Harbin Engineering University,Harbin 150001,China

    3 College of Materials and Textile Engineering,Jiaxing University,Jiaxing 314000,China

    Abstract Molecular dynamics simulation is performed to simulate the tension–compression fatigue of notched metallic glasses(MGs),and the notch effect of MGs is explored.The notches will accelerate the accumulation of shear transition zones,leading to faster shear banding around the notches’root causing it to undergo severe plastic deformation.Furthermore,a qualitative investigation of the notched MGs demonstrates that fatigue life gradually becomes shorter with the increase in sharpness until it reaches a critical scale.The fatigue performance of blunt notches is stronger than that of sharp notches.Making the notches blunter can improve the fatigue life of MGs.

    Keywords:metallic glasses,notches,fatigue life,molecular dynamics simulations

    1.Introduction

    In the field of materials science,research in notches is always a hot topic.It is important for the safety and reliability design of precision structural components[1–3].Metallic glasses(MGs)are widely used in microelectronic systems due to their high strength,high hardness,and good forming ability[4,5].However,in the manufacture and application of engineering materials,mechanical damage,corrosion,and other factors can cause notches and cracks[6].Therefore,exploring the notch effect of MGs has become a top priority[7–9].Numerous experiments and simulations have been performed to analyze the ductility and notch insensitivity of MGs.For example,Jang et al reported separate and distinct critical sizes for maximum strength and the brittle-to-ductile transition,thereby demonstrating that strength and ability to carry plasticity are decoupled at the nanoscale[10].Qu et al found that the tensile strength of the studied bulk MGs(BMGs)is insensitive to notches and much better than that of conventional brittle materials.Moreover,it might be possible to toughen BMGs by introducing artificial defects[11].Sha et al considered that failure mode and strength in notched MGs critically depend on the notch depth and notch sharpness[12].Pan et al reported that the anomalous inverse notch effect is caused by a transition in the failure mechanism from shear banding at the notch tip to the cavitation and the void coalescence[13,14].

    At present,fruitful research results have been achieved in improving ductility.However,over 90 percent of failures are due to fatigue in practical applications[15].It is particularly important to study the fatigue properties of MGs.The failure of notched MGs is accompanied by the initiation,propagation,and arrest of the shear band(SB).The time scale and length involved in fatigue failure are small,and it is difficult to observe the deformation process in the experiment.For instance,the critical scale of the SB is about 10nm[16].Conversely,the research scope of molecular dynamics(MD)simulations can completely solve the scale problem,and can also characterize the microstructure and deformation mechanism of materials[17].

    In this work,the MD method is used to investigate the fatigue response of notchedCu50Zr50MGs under tensile–compression fatigue experiments.The fatigue failure mechanism of MGs at the atomic level is analyzed and the factors affecting fatigue life are summarized.The fatigue life of MGs has a quantitative relationship with the notch sharpness.According to the fatigue response and deformation process analysis of the notched MGs under cyclic loading,the aggregation rate of the shear transition zones(STZs)is the key to determining the fatigue performance.The sample of sharp notches has a large stress concentration,which increases the growth rate of STZs,accelerates the amplitude of atomic energy changes,and shortens the fatigue life.

    2.Atomistic simulations

    The Large-Scale Atomic/Molecular Massive Parallel Simulator(LAMMPS)is a commonly used method for MD simulation and is often used to describe multi-scale,largescale atomic structures and mechanical properties[18,19].A small cube containing 10,000 Cu atoms is established,and the corresponding number of Cu atoms is replaced with Zr atoms in combination with the random atomic replacement,forming the initial configuration ofCu50Zr50.The interaction between atoms is described by the embedded atom method potential function[20]:

    where F is called the embedding energy,which is a function of the electron density ρ,φ is a pair-potential interaction,α and β are the element types of atoms i and j.

    Periodic boundary conditions are applied in all directions of the initial configuration,reducing it from 2000 K to 50 K at a cooling rate of 1011K/s[21,22].A preliminary thin film sample with a size of28 ×56 ×5.6 nm3and containing 548,000 atoms is obtained by periodic replication in the X-,Y-,and Z-directions at the corresponding proportion.After annealing the sample at 800 K for 0.5 ns[23,24],the temperature is broughtback to 50 K at the same cooling rate,and then a second relaxation is performed to eliminate the effects of multiple replications and temperature fluctuations.After the sample is constructed,a strain rate of109s-1is applied to the Y-direction for loading.The boundary conditions are reset to free boundary conditions in the X-direction and periodic boundary conditions in the Y-and Z-directions.To quantify the plastic deformation of MGs and observe the change in the notches,the color of the atom is specified according to the atomic local shear strainηMises.

    whereηij(i,j=x,y,z)are the components of the Lagrangian strain matrix for the specific atoms[25,26].

    3.Results and discussion

    To explore the effect of notches on the fatigue performance of MGs,fatigue tests are performed on samples with different notch sharpness,and the relationship between notch sharpness,stress concentration,and fatigue life is analyzed.The constructed notched MGs sample is shown in figure 1(a).The notch radian θ is calculated as

    and the main features of the notched sample are the symmetrical notch radius R and notch depth D.To eliminate the impact of notch depth on the simulation results,a constant valueD=2 nm is set.Uniaxial tensile loading is carried out on the samples with different sharpness,and an applied strain of 5.4%is employed in the fatigue tests,where the maximum stress is 96% of the ultimate tensile strength(UTS).

    Tensile–compression cyclic loading is performed on samples with different sharpness.Figure 2 shows the stress versus cycle numbers curve of each sample(0 degrees,20 degrees,40 degrees,80 degrees).From each curve,it is found that after certain fatigue cycles the stress decreased obviously.After a few more cycles,the stress dropped to a stable value,i.e.at the blue arrow.The comparison results of the curves show that the stress drop position of the sample with small sharpness lags significantly.To elaborate on the curve changes,a series of snapshots of the deformation process of each sample is obtained by monitoring the atomic local shear strain during cyclic loading.The atomic local shear strain is characterized using the corresponding color[17,27].Figure 3 shows the process of the atomic structure of the unnotched sample.Shear banding is divided into four stages.A region with a large local atomic shear strain indicates a high density of STZs.In the SB initiation,the STZ density is relatively low.As the cycle numbers increase,the STZs gradually aggregate and reach a critical size.The STZs reaching the critical size inspire the SB,which propagates along the Y-direction at 45 degrees.After the SB crosses through the entire sample,it gradually thickens.The SB initiation stage of the notched sample gradually becomes shorter as the sharpness increases.Combining the stress curve change and deformation process,the stress drop corresponds to the rapid localization of plastic strain,while the SB formation corresponds to the failure of the sample.As in Sha’s simulation,the fatigue life of MGs is mostly concentrated in the SB initiation[28].

    Figure 1.(a)Structuralrepresentation of the Cu50Zr50 notched MGs sample,with notch depth D=2 nm,notch radius R,and notch radian θ.(b)The fatigue test with a 5.4% maximum strain corresponding to the 96% UTS.

    Figure 2.The stress versus cycle number plots for the fatigue tests with an applied strain of 5.4%,where the blue arrow corresponds to the cycle numbers of SB formation:(a)unnotched;(b)θ=20°;(c)θ=40°;(d)θ=80°.

    Figure 3.A series of snapshots are captured by monitoring the deformation process withηMises:(a)unnotched;(b)θ=20°;(c)θ=40°;(d)θ=8°0.

    Figure 4.The notch radian versus fatigue cycle number;the red dotted line is a fitting curve.

    A series of notched samples with different radians are simulated,the failure cycles are statistically analyzed,and the curve fitting is performed for the obtained data.Figure 4 shows the fatigue life versus notch radian curve;the fatigue life of the unnotched sample is 20 cycles,while the fatigue life is correspondingly shorter with the increase in radians.When the radian exceeds 40 degrees,the fatigue life is maintained at six cycles.By combining with the atomic structure snapshot of each notched sample during deformation,the phenomenon of fatigue life reduction can be clarified.The notches accelerate the aggregation rate of STZs and,as the notch sharpness increases,the faster the aggregation rate.According to Nakai’s experimental results[29,30],notches in the material will cause stress concentration,and the notch sharpness affects the degree of stress concentration.In the simulation process,the stress concentration at the root of the sharp notch is large,resulting in a faster STZ aggregation rate,and faster formation and propagation of the SB.The fatigue life gradually becomes shorter with the increase in sharpness until it reaches a critical scale.

    Figure 5.Atomic energy versus fatigue cycle number during fatigue tests:(a)unnotched;(b)θ=20°;(c)θ=40°;(d)θ=80°.

    Figure 6.(a)The proportion of STZs versus fatigue cycle numbers;(b)the STZ’s growth rate versus fatigue cycle numbers.

    Figure 5 is the atomic energy change in each notched MG sample.As the sharpness increases,the linear elastic phase gradually becomes shorter.When the radian exceeds 40 degrees,the linear elastic phase disappears.The large stress gradient causes STZs to accumulate faster,the SB forms faster to withstand plastic deformation and,at the same time,the energy storage capacity of the notched sample drops faster.There is also significant STZ activity in the thickening stage of the SB,which is mainly because the stress required to form the SB is much larger than that continuing to propagate the SB.It is manifested as the thickening of the SB and the energy circulation within a certain amplitude at this stage.

    From the analysis and summary of the fatigue mechanism of the notched MGs,it is believed that the fatigue life is related to the aggregation rate of STZs.The STZs are formed by the aggregation of atoms with the large local atomic shear strain(ηMises>0.2).Statistics and analysis of the changes in the proportion of these atoms will help one to understand the intrinsic mechanism of the MGs’failure behavior.The proportion of the large shear strain atoms under each cycle is recorded,and the STZs of each sample are shown in figure 6(a).The STZ’s growth rate is obtained by taking the first-order derivative of each curve,as shown in figure 6(b).

    From figure 6,it is believed that the change in the content of STZs is related to the stress concentration at the notch root.The STZs show an S-shaped growth trend,andthe differences among the samples are mainly concentrated in the SB initiation stage.From the growth rate curves of the STZs,the overall trend is growth first and then it declines.Before the peak,it is the SB initiation stage,and the sample with greater sharpness has a more obvious stress concentration,resulting in a faster STZ aggregation rate.After the peak,the SB is completely formed,the stress concentration at the notch root disappears,and the growth rate of STZs is almost the same and gradually decreases.The position of each peak point corresponds to the SB propagation stage,and the growth rate of STZs is the highest at this moment.Obvious stratification can be observed from the curve.The STZ fraction of the unnotched sample has the slowest growth rate.When the notch radian exceeds 40 degrees,this indicates that fatigue life has reached the critical value at this moment.The fatigue life of notched MGs can be predicted by the STZs’growth rate curves.

    4.Conclusions

    Using MD simulation,cyclic responses of notched MGs under tension–compression fatigue have been investigated,and the fatigue failure mechanism of the notched MGs has been explained.Considering the impact of the notch radian on fatigue performance,several important conclusions are as follows:

    (i)According to the fatigue response of the notch radian,as the notch radian gradually increases,the fatigue life becomes shorter.When the radian exceeds 40 degrees,the fatigue life of the notched sample is maintained at six cycles.From the comparison of multiple samples,the fatigue life of notched MGs can be predicted.

    (ii)The fatigue life of the blunt notched MGs is longer than that of the sharp notched MGs.The stress concentration at the root of the sharp notch is strong,which induces the faster aggregation of STZs,leads to the SB initiation,SB formation,and SB propagation,and reduces the fatigue life of MGs.Conversely,the SB formed by the blunt notch root is stable,the plastic zone of the sample is large,and the blunt notch enhances the fatigue resistance.

    (iii)With the effect of cyclic stress on the notch root,the SB is formed around it to undergo plastic deformation.The formation and propagation of the SB reduce the energy storage capacity of structures,and the energy storage capacity of sharp notch samples decreases faster.The SB propagation is inhibited at the later stage,which results in the thickening of the SB.

    Acknowledgments

    The work is supported by the Key Laboratory of Yarn Materials Forming and Composite Processing Technology,Zhejiang Province(No.MTC2019-01),the Fundamental Research Funds for the Central Universities(No.3072020CF0202)and the Program for Innovative Research Team in China Earthquake Administration.

    免费观看的影片在线观看| 欧美日本视频| 黄色日韩在线| 欧美bdsm另类| 色播亚洲综合网| 久久精品夜色国产| 欧美日本视频| 哪个播放器可以免费观看大片| 国国产精品蜜臀av免费| 成人性生交大片免费视频hd| 久久久a久久爽久久v久久| 国产探花极品一区二区| av国产免费在线观看| 听说在线观看完整版免费高清| 男人和女人高潮做爰伦理| 国模一区二区三区四区视频| 午夜日本视频在线| 人妻制服诱惑在线中文字幕| 免费看光身美女| 免费无遮挡裸体视频| 日日摸夜夜添夜夜添av毛片| 国产在线男女| 久久亚洲国产成人精品v| 国产毛片a区久久久久| 国产有黄有色有爽视频| 久久热精品热| 国产亚洲5aaaaa淫片| 久久精品久久久久久噜噜老黄| 亚洲欧美成人综合另类久久久| 色吧在线观看| 色吧在线观看| 综合色av麻豆| 色播亚洲综合网| 免费在线观看成人毛片| 麻豆成人av视频| 22中文网久久字幕| 精品久久国产蜜桃| 国产成人aa在线观看| 国产欧美日韩精品一区二区| 婷婷色麻豆天堂久久| 久久久久久久午夜电影| 亚洲成人一二三区av| 日韩在线高清观看一区二区三区| 亚洲成人中文字幕在线播放| 好男人视频免费观看在线| 成年av动漫网址| 欧美不卡视频在线免费观看| 99久久精品热视频| 亚洲av免费高清在线观看| 老师上课跳d突然被开到最大视频| 久久久久久久久久久免费av| 99久久精品热视频| 97热精品久久久久久| 99久久人妻综合| 成人亚洲欧美一区二区av| 九九久久精品国产亚洲av麻豆| 久久韩国三级中文字幕| 免费黄频网站在线观看国产| av.在线天堂| 日韩欧美三级三区| 少妇人妻精品综合一区二区| 国产探花极品一区二区| 国产成人免费观看mmmm| 人妻少妇偷人精品九色| 高清视频免费观看一区二区 | 免费av不卡在线播放| 国产视频内射| 久久久久性生活片| 精品亚洲乱码少妇综合久久| 中国美白少妇内射xxxbb| 国产永久视频网站| 丰满人妻一区二区三区视频av| 舔av片在线| 少妇熟女欧美另类| 高清在线视频一区二区三区| 国产一区二区三区综合在线观看 | 天美传媒精品一区二区| 在线 av 中文字幕| 又黄又爽又刺激的免费视频.| 久久鲁丝午夜福利片| 午夜福利高清视频| 五月玫瑰六月丁香| 一级二级三级毛片免费看| 禁无遮挡网站| 人妻少妇偷人精品九色| av在线老鸭窝| 九草在线视频观看| 欧美xxⅹ黑人| 日产精品乱码卡一卡2卡三| 亚洲美女视频黄频| 日韩av免费高清视频| 一个人免费在线观看电影| 亚洲国产最新在线播放| 国产乱来视频区| 老女人水多毛片| 国产伦一二天堂av在线观看| 一级毛片黄色毛片免费观看视频| 午夜日本视频在线| 亚洲综合色惰| 日本免费a在线| 成人性生交大片免费视频hd| 欧美激情国产日韩精品一区| 99热网站在线观看| 2021少妇久久久久久久久久久| 免费观看精品视频网站| av免费观看日本| 亚洲欧美日韩卡通动漫| 国产日韩欧美在线精品| 黄片无遮挡物在线观看| 亚洲精品国产av成人精品| 啦啦啦韩国在线观看视频| 久久精品人妻少妇| 女人十人毛片免费观看3o分钟| 99热这里只有精品一区| 午夜福利网站1000一区二区三区| 午夜亚洲福利在线播放| 午夜久久久久精精品| 国产免费福利视频在线观看| 精品一区在线观看国产| 高清毛片免费看| 国产av码专区亚洲av| 国产精品一区二区三区四区久久| 婷婷色av中文字幕| 久久久久久久久久久免费av| 色哟哟·www| 国产视频内射| 高清午夜精品一区二区三区| 嫩草影院精品99| 蜜桃亚洲精品一区二区三区| 亚洲国产高清在线一区二区三| 国产成人精品婷婷| 久久精品夜色国产| 欧美激情久久久久久爽电影| 一级片'在线观看视频| 亚洲精品成人av观看孕妇| 欧美人与善性xxx| 国产精品福利在线免费观看| 亚洲激情五月婷婷啪啪| 亚洲av成人精品一区久久| 日本熟妇午夜| 久久热精品热| 亚洲av成人av| 日本一二三区视频观看| 欧美成人午夜免费资源| 国产在线男女| 国产乱人视频| 亚洲自偷自拍三级| 精品久久久精品久久久| 久久久久久久久久久丰满| a级一级毛片免费在线观看| 国产有黄有色有爽视频| 欧美日韩在线观看h| 高清av免费在线| 在线 av 中文字幕| 看免费成人av毛片| 亚洲内射少妇av| 超碰97精品在线观看| av福利片在线观看| 欧美性猛交╳xxx乱大交人| 成年av动漫网址| 身体一侧抽搐| 一二三四中文在线观看免费高清| 国产成人精品一,二区| 日日啪夜夜撸| 最近视频中文字幕2019在线8| 国产精品久久久久久精品电影小说 | 亚洲性久久影院| 看非洲黑人一级黄片| 大香蕉97超碰在线| 欧美激情久久久久久爽电影| 一边亲一边摸免费视频| 狠狠精品人妻久久久久久综合| 欧美三级亚洲精品| 日本爱情动作片www.在线观看| 国产综合懂色| 深夜a级毛片| av国产久精品久网站免费入址| 大又大粗又爽又黄少妇毛片口| 自拍偷自拍亚洲精品老妇| 一区二区三区免费毛片| 国产午夜精品论理片| 亚洲欧美成人综合另类久久久| 五月天丁香电影| 亚洲性久久影院| 一级毛片 在线播放| 国产麻豆成人av免费视频| 免费看光身美女| 黑人高潮一二区| 青春草国产在线视频| 欧美最新免费一区二区三区| 乱人视频在线观看| 又黄又爽又刺激的免费视频.| 国产三级在线视频| 精品一区二区三区视频在线| 在线a可以看的网站| 国产精品三级大全| 国产在视频线在精品| 男女啪啪激烈高潮av片| 亚洲高清免费不卡视频| 特级一级黄色大片| 国产成人福利小说| 亚洲天堂国产精品一区在线| 少妇被粗大猛烈的视频| 久99久视频精品免费| 色综合色国产| 嫩草影院精品99| 午夜久久久久精精品| 久久99精品国语久久久| 成人无遮挡网站| 看黄色毛片网站| 日韩不卡一区二区三区视频在线| 天堂俺去俺来也www色官网 | 成人无遮挡网站| 亚洲婷婷狠狠爱综合网| a级一级毛片免费在线观看| 亚洲av成人精品一二三区| 乱系列少妇在线播放| 国产精品.久久久| 男女边吃奶边做爰视频| 狠狠精品人妻久久久久久综合| 久久久久久九九精品二区国产| 色播亚洲综合网| 波多野结衣巨乳人妻| 国产成人91sexporn| 三级国产精品片| 熟女电影av网| av卡一久久| 中文字幕av在线有码专区| 亚洲av成人精品一二三区| 国产中年淑女户外野战色| 国产老妇女一区| 一级毛片久久久久久久久女| 少妇的逼水好多| 亚洲伊人久久精品综合| 国产老妇伦熟女老妇高清| 久久鲁丝午夜福利片| 男女边吃奶边做爰视频| 天堂网av新在线| 国产不卡一卡二| 国产麻豆成人av免费视频| 大陆偷拍与自拍| 青青草视频在线视频观看| 国产成人精品一,二区| 91精品一卡2卡3卡4卡| av播播在线观看一区| 五月天丁香电影| 看十八女毛片水多多多| 一个人免费在线观看电影| 成年女人在线观看亚洲视频 | 欧美成人a在线观看| 18+在线观看网站| 亚洲一级一片aⅴ在线观看| 久热久热在线精品观看| 亚洲精品亚洲一区二区| 久久久久网色| 深爱激情五月婷婷| 欧美日韩在线观看h| 麻豆成人av视频| 秋霞伦理黄片| 亚洲图色成人| 夜夜爽夜夜爽视频| 色5月婷婷丁香| 免费大片黄手机在线观看| 91午夜精品亚洲一区二区三区| 国产色爽女视频免费观看| 国产伦精品一区二区三区四那| 亚洲欧美一区二区三区黑人 | av在线播放精品| 嫩草影院入口| 日韩一区二区三区影片| 亚洲精品一区蜜桃| 在线播放无遮挡| 日本与韩国留学比较| 成人无遮挡网站| 久久久欧美国产精品| 菩萨蛮人人尽说江南好唐韦庄| 非洲黑人性xxxx精品又粗又长| 人妻制服诱惑在线中文字幕| 我要看日韩黄色一级片| 可以在线观看毛片的网站| 精品国产三级普通话版| 日韩一区二区三区影片| 日韩av不卡免费在线播放| 天天躁日日操中文字幕| 不卡视频在线观看欧美| 亚洲最大成人av| 观看免费一级毛片| eeuss影院久久| 麻豆成人午夜福利视频| 欧美日韩一区二区视频在线观看视频在线 | 久久久久久久大尺度免费视频| 国产精品久久久久久久电影| 国产亚洲5aaaaa淫片| 十八禁国产超污无遮挡网站| av黄色大香蕉| 伦精品一区二区三区| 1000部很黄的大片| 国产成人精品婷婷| 亚洲综合精品二区| 免费看av在线观看网站| 日韩一区二区视频免费看| 日韩人妻高清精品专区| 精品午夜福利在线看| 日韩av在线大香蕉| 亚洲图色成人| 国产免费一级a男人的天堂| 精品午夜福利在线看| 男人爽女人下面视频在线观看| 中文字幕亚洲精品专区| 日韩 亚洲 欧美在线| 超碰97精品在线观看| 韩国高清视频一区二区三区| 午夜久久久久精精品| 青青草视频在线视频观看| 18禁在线无遮挡免费观看视频| 国产又色又爽无遮挡免| 国产精品三级大全| 中文字幕久久专区| 国产成年人精品一区二区| 久久久久久久国产电影| 日本色播在线视频| 欧美丝袜亚洲另类| 日韩av不卡免费在线播放| 亚洲四区av| 精品不卡国产一区二区三区| 天天躁日日操中文字幕| 人人妻人人澡人人爽人人夜夜 | 欧美极品一区二区三区四区| 91aial.com中文字幕在线观看| 乱系列少妇在线播放| 国产av码专区亚洲av| 日韩av在线大香蕉| 成年版毛片免费区| 亚洲aⅴ乱码一区二区在线播放| 久久亚洲国产成人精品v| 国产黄a三级三级三级人| 乱码一卡2卡4卡精品| 久久精品久久久久久噜噜老黄| 天堂俺去俺来也www色官网 | 在现免费观看毛片| 你懂的网址亚洲精品在线观看| 国产免费视频播放在线视频 | 欧美成人a在线观看| 亚洲,欧美,日韩| 97人妻精品一区二区三区麻豆| 男女下面进入的视频免费午夜| 日产精品乱码卡一卡2卡三| 久久精品综合一区二区三区| 国产综合精华液| 欧美成人午夜免费资源| 精品熟女少妇av免费看| 国产一区二区三区av在线| 最近视频中文字幕2019在线8| 免费看av在线观看网站| 日韩视频在线欧美| 国产亚洲精品av在线| 搞女人的毛片| 国产免费福利视频在线观看| 亚洲av免费在线观看| videossex国产| 老师上课跳d突然被开到最大视频| 人妻一区二区av| 国产国拍精品亚洲av在线观看| 最近最新中文字幕大全电影3| 久久这里只有精品中国| 别揉我奶头 嗯啊视频| 国产不卡一卡二| 免费看日本二区| 深夜a级毛片| 婷婷色av中文字幕| 国产真实伦视频高清在线观看| 秋霞在线观看毛片| 蜜臀久久99精品久久宅男| 亚洲欧美一区二区三区国产| 男女啪啪激烈高潮av片| 99热这里只有是精品在线观看| 蜜臀久久99精品久久宅男| 性插视频无遮挡在线免费观看| 国产一级毛片在线| 又黄又爽又刺激的免费视频.| 欧美高清成人免费视频www| 国产老妇女一区| 男女下面进入的视频免费午夜| 日韩欧美三级三区| 99九九线精品视频在线观看视频| 麻豆av噜噜一区二区三区| 国产一区二区三区综合在线观看 | 乱系列少妇在线播放| ponron亚洲| 国产黄色视频一区二区在线观看| 男女边摸边吃奶| 亚洲欧美一区二区三区国产| 国产亚洲5aaaaa淫片| 国产亚洲一区二区精品| 日韩欧美精品v在线| 日本黄色片子视频| 97人妻精品一区二区三区麻豆| 欧美 日韩 精品 国产| 亚洲成人中文字幕在线播放| 欧美极品一区二区三区四区| 久久久久久伊人网av| videos熟女内射| 菩萨蛮人人尽说江南好唐韦庄| 日韩欧美国产在线观看| 免费不卡的大黄色大毛片视频在线观看 | 亚洲av中文av极速乱| 亚洲欧美清纯卡通| 成年女人在线观看亚洲视频 | 亚洲电影在线观看av| 五月伊人婷婷丁香| 春色校园在线视频观看| av在线老鸭窝| 美女脱内裤让男人舔精品视频| 搡女人真爽免费视频火全软件| 亚洲av电影在线观看一区二区三区 | 乱人视频在线观看| 内地一区二区视频在线| 亚洲av中文av极速乱| 天堂俺去俺来也www色官网 | 亚洲欧美一区二区三区国产| 亚洲欧美精品专区久久| 成人亚洲精品av一区二区| 日韩不卡一区二区三区视频在线| 国产精品麻豆人妻色哟哟久久 | 亚洲无线观看免费| 一个人免费在线观看电影| 亚洲最大成人中文| 国产精品久久视频播放| 天堂中文最新版在线下载 | 国产单亲对白刺激| 久久久久精品久久久久真实原创| 真实男女啪啪啪动态图| 激情五月婷婷亚洲| 亚洲在久久综合| 天天躁日日操中文字幕| 精品一区二区三区人妻视频| 51国产日韩欧美| 国产av在哪里看| 亚洲国产成人一精品久久久| 亚洲一级一片aⅴ在线观看| 精品久久久噜噜| 国产 亚洲一区二区三区 | 国产中年淑女户外野战色| 九九爱精品视频在线观看| 亚洲在线自拍视频| 亚洲熟女精品中文字幕| 亚洲四区av| 黄色配什么色好看| 亚洲欧美成人综合另类久久久| 午夜精品在线福利| 内射极品少妇av片p| 亚洲一级一片aⅴ在线观看| 欧美成人精品欧美一级黄| 日本-黄色视频高清免费观看| 亚洲aⅴ乱码一区二区在线播放| 中文字幕av在线有码专区| 七月丁香在线播放| 午夜视频国产福利| 免费观看性生交大片5| h日本视频在线播放| 日本一二三区视频观看| 久久久午夜欧美精品| 国产一级毛片在线| 日韩欧美三级三区| 日韩在线高清观看一区二区三区| 国产中年淑女户外野战色| 久久国产乱子免费精品| 国产在线一区二区三区精| 亚洲av成人av| 欧美人与善性xxx| 少妇猛男粗大的猛烈进出视频 | 2022亚洲国产成人精品| 成人亚洲欧美一区二区av| 在线观看免费高清a一片| 国产午夜福利久久久久久| 午夜爱爱视频在线播放| 国产精品无大码| 内地一区二区视频在线| 2018国产大陆天天弄谢| 国产成人一区二区在线| 天天躁日日操中文字幕| av网站免费在线观看视频 | 精品一区二区三区人妻视频| 麻豆av噜噜一区二区三区| 国产伦精品一区二区三区视频9| 日本一本二区三区精品| 噜噜噜噜噜久久久久久91| 成人高潮视频无遮挡免费网站| 欧美日韩国产mv在线观看视频 | 国产av码专区亚洲av| 最近2019中文字幕mv第一页| 亚洲成人中文字幕在线播放| 亚洲在线观看片| 18禁在线播放成人免费| 成人亚洲精品一区在线观看 | 亚洲欧洲日产国产| 国产精品一区二区三区四区免费观看| 国产亚洲精品久久久com| 免费高清在线观看视频在线观看| 亚洲久久久久久中文字幕| 国产成人精品婷婷| 少妇熟女aⅴ在线视频| 久久国内精品自在自线图片| 2022亚洲国产成人精品| 尤物成人国产欧美一区二区三区| 国产视频首页在线观看| 欧美最新免费一区二区三区| 国产麻豆成人av免费视频| 精华霜和精华液先用哪个| 国产 一区 欧美 日韩| 丰满乱子伦码专区| 成年版毛片免费区| 国产美女午夜福利| 国产精品av视频在线免费观看| av专区在线播放| 女人十人毛片免费观看3o分钟| 人妻夜夜爽99麻豆av| 欧美丝袜亚洲另类| 国产精品一及| 国产伦理片在线播放av一区| 国产在视频线精品| av女优亚洲男人天堂| 国产精品无大码| 欧美成人午夜免费资源| 一级毛片 在线播放| 中文在线观看免费www的网站| 七月丁香在线播放| 丝瓜视频免费看黄片| 欧美bdsm另类| 中文字幕亚洲精品专区| 精品国产三级普通话版| 精品亚洲乱码少妇综合久久| 婷婷六月久久综合丁香| 九九爱精品视频在线观看| 亚洲熟女精品中文字幕| 99热6这里只有精品| 免费观看在线日韩| 91久久精品国产一区二区成人| 亚洲在久久综合| 久久97久久精品| 亚洲国产日韩欧美精品在线观看| 激情五月婷婷亚洲| 精品一区二区三卡| 色吧在线观看| 中文字幕人妻熟人妻熟丝袜美| 国内揄拍国产精品人妻在线| 麻豆乱淫一区二区| 久久99蜜桃精品久久| av在线老鸭窝| 日本av手机在线免费观看| 三级国产精品欧美在线观看| 午夜精品国产一区二区电影 | 乱人视频在线观看| 免费观看在线日韩| 晚上一个人看的免费电影| 777米奇影视久久| 免费大片黄手机在线观看| 久99久视频精品免费| 最新中文字幕久久久久| 人人妻人人看人人澡| 18禁在线无遮挡免费观看视频| 2022亚洲国产成人精品| 十八禁国产超污无遮挡网站| 国产黄片视频在线免费观看| 精品一区二区三区人妻视频| 久久久久久久国产电影| 日韩强制内射视频| 最近中文字幕2019免费版| 麻豆精品久久久久久蜜桃| 亚洲av男天堂| 国产午夜精品论理片| 精品欧美国产一区二区三| 男人舔女人下体高潮全视频| 久久久久久久久中文| 97热精品久久久久久| 国产亚洲5aaaaa淫片| 成人美女网站在线观看视频| 69人妻影院| 成人毛片a级毛片在线播放| 99久久人妻综合| 久久久精品欧美日韩精品| 成年女人看的毛片在线观看| 国产单亲对白刺激| 色哟哟·www| 最近中文字幕2019免费版| 亚洲精品中文字幕在线视频 | 一级爰片在线观看| 日韩av在线大香蕉| 日产精品乱码卡一卡2卡三| 一级爰片在线观看| 少妇猛男粗大的猛烈进出视频 | 一个人免费在线观看电影| 中文天堂在线官网| 国产在视频线在精品| 成人漫画全彩无遮挡| 1000部很黄的大片| 久久久久久久久久久丰满| 综合色丁香网| 久久热精品热| 丝袜喷水一区| 少妇猛男粗大的猛烈进出视频 | 一个人免费在线观看电影| 午夜福利高清视频| 亚洲国产成人一精品久久久| 综合色av麻豆| 国产成人精品久久久久久| 九九爱精品视频在线观看| 偷拍熟女少妇极品色| av网站免费在线观看视频 | 久久精品久久久久久噜噜老黄| 日韩在线高清观看一区二区三区| 在现免费观看毛片| 国产伦精品一区二区三区视频9| 伦精品一区二区三区| 最近2019中文字幕mv第一页|