• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of net carriers at the interconnection layer in tandem organic solar cells

    2022-03-12 07:44:54LiJiaChen陳麗佳GuoXiNiu牛國璽LianBinNiu牛連斌andQunLiangSong宋群梁
    Chinese Physics B 2022年3期

    Li-Jia Chen(陳麗佳) Guo-Xi Niu(牛國璽) Lian-Bin Niu(牛連斌) and Qun-Liang Song(宋群梁)

    1College of Physics and Electronic Engineering,Chongqing Normal University,Chongqing 401331,China

    2Institute for Clean Energy&Advanced Materials,School of Materials and Energy,Southwest University,Chongqing 400715,China

    Keywords: tandem organic solar cells,interconnection layer,carrier balance,carrier-exciton interaction

    1. Introduction

    Solar energy is one of the best available alternatives to reduce the usage of and finally replace fossil fuels.[1,2]Though the efficiency and lifetime are still low, in the past decade,organic solar cells (OPVs) and perovskite solar cells (PSCs)have emerged and are promising alternatives to inorganic solar cells because of their low processing cost, ease of processibility,roll-to-roll processiblity for large area devices and mechanical flexibility.[3-7]Various strategies have been applied to enhance the efficiency of OPVs including controlling morphology,[8]utilizing low band gap materials,[9]and designing novel structures.[10]One reason for the low efficiency is the narrow absorption spectrum of OPVs,[11,12]and another reason is the relative thin organic layer used in OPVs due to the short exciton diffusion length.[2,13]Tandem structure can resolve these problems by using different organic materials to cover a broader absorption spectrum and thicker active layer to absorb more light in the cells.[12,14,15]

    Besides the more light absorption,carrier balance and efficient carrier recombination at the interconnection are also very important for high performance tandem OPVs.[16]Unless the carrier balance is met, net carriers would appear at the interconnection to reduce the serial voltage output or even to quench excitons generated by light absorption.[17]Similar voltage loss and exciton quenching would occur if the recombination at the interconnection is not efficient even if the carrier balance is meet.[14,18]Efforts have been devoted to achieve the carrier balance through material choosing[16]and thickness optimization,[14,19]to realize efficient recombination by using nano-metal cluster,[20,21]a p-n junction,[14,16]or a doped functional material as interconnection layer.[22,23]Recently, we found that the free carrier can be generated through interfacial exciton recombination[24]or electron-exciton interaction.[25]Since carrier balance and efficient recombination at the interconnection layer are not always met in tandem devices, it is necessary to study effect of net carriers at the interconnection layer.

    In this work, a serial tandem device with structure of indium tin oxide (ITO)/molybdenum oxide (MoO3)/fullerene(C60)/copper phthalocyanine (CuPc)/C60/tris-8-hydroxyquinolinato aluminum (Alq3)/Al was fabricated to study the effect of net carriers at the first C60-CuPc interface. It is found that carrier balance is more important than efficient carrier recombination at the interconnection layer when the photocurrent is small. The net carriers piled up at the interconnection layer of a tandem cell would reduce the voltage and photocurrent output. Due to these net carriers, both enhancement and reduction of external quantum efficiency(EQE)are found in the same device under light bias.

    2.Experimental details

    The structure of the tandem cells studied is depicted in the inset of Fig.2. ITO coated glass having a sheet resistance about 15 Ω/square was cleaned by detergent Decon 90 before film deposition. The tandem OPV was fabricated in a high vacuum chamber with a base pressure of 5.0×10-6Pa. The deposition rate of organic materials was kept at~0.04 nm/s and monitored by a calibrated quartz oscillator. A 100 nm thick Al electrode was deposited on top of the organic active layers through a shadow mask that defines an active area of 9 mm2. The device was characterized in a nitrogen-purged glove box, which is connected to the device fabrication system.The EQE was calculated from theIscmeasured by SR830(Stanford Research Systems Inc.) lock-in amplifier. The white light bias is produced from a halogen tungsten lamp. The current density-voltage(J-V)characteristics were conducted by Keithley 2400(Keithley Instruments Inc.) under air mass 1.5 global(AM 1.5G)illumination of 100 mW/cm2(Newport solar simulator model 94043A).

    3. Results and discussion

    The structure of organic solar cells (OSCs) is shown in Fig. 1. The structures for subcells A and B are ITO/MoO3(5 nm)/C60 (40 nm)/Alq3(5 nm)/Al (100 nm), ITO/CuPc(25 nm)/C60 (50 nm)/Alq3(5 nm)/Al(100 nm), respectively. The structures of tandem devices C and D are ITO/MoO3(5 nm)/C60 (40 nm)/Alq3(2 nm)/Al (1 nm)/Ag(1 nm)/MoO3(3 nm)/CuPc (20 nm)/C60 (50 nm)/Alq3(5 nm)/Al and ITO/MoO3(5 nm)/C60 (40 nm)/CuPc(25 nm)/C60(50 nm)/Alq3(5 nm)/Al(100 nm),respectively.

    Fig.1. The structures of the four devices.

    Figure 1 shows theJ-Vcurves of the best four devices,in which devices A and B are the subcells used in tandem devices C and D.The open circuit voltage(Voc)and short circuit current (Isc) are 1.01 V, 1.33 mA/cm2and 0.45 V, 3.75 mA/cm2for devices A and B,respectively,consistent with the reported values.[26,27]A statistical analysis was performed on 10 OPVs for each device,and the corresponding results are summarized in Fig. 3. It reacts the same trend as suggested by the comparison of best devices. The best performance of four devices can be read out from Table 1 that theVocandIscare 1.05 V,0.58 mA/cm2and 1.15 V,0.56 mA/cm2,respectively,for tandem devices C and D.The performance difference between the two tandem devices is quite small and the only difference between C and D is the recombination interlayer(Alq3(2 nm)/Al(1 nm)/Ag (1 nm)/MoO3(3 nm)) used in device C. The possible reason is the small photocurrent obtained in these two devices and thus high efficient recombination interconnection layer is not necessary.

    Fig.2. The J-V characterization of devices A,B,C,and D.

    Fig. 3. Statistical analysis of the photovoltaic performance from 10 OPVs for devices A,B,C,and D.

    Fig.4. EQE spectrum and the integrated current density for devices C and D.

    The optical distribution and light absorption in devices C and D are quite similar. The external quantum efficiency(EQE)spectrum and its corresponding integral current density(JEQE) for devices C and D are observed in Fig. 4. The integral currents are 0.60 mA/cm2(device C) and 0.58 mA/cm2(device D),which are consistent with theJscresults extracted from theJ-Vcharacteristics as Table 1.

    Table 1. Best parameters of devices A,B,C and D.

    The optical calculation is subject to Bruggeman’s effective medium approximation.The calculation program from the website (numpy.scipy.org) is an open source program which is based on Python language. The optical constant and thickness of materials are compiled into the document,which is recognized by the software as the input document of the model.The material and thickness of each layer were input the corresponding documents to complete the data establishment of the device model, by using the refractive indexnand extinction coefficientkof substrate ITO from Ref. [28], of MoO3from Ref.[29],of CuPc from Ref.[30],of C60 from Ref.[31]and Alq3from Ref.[32]. Optical calculation by transfer matrix[33]shows that the small photocurrent is caused by the unbalanced carriers from the subcells. As shown in Fig. 5, the light with wavelength shorter than 550 nm is mainly absorbed by C60 while light with wavelength longer than 550 nm is mainly absorbed by CuPc.[34]The much larger number of photons absorbed by the back cell (indeed, theIscof device B is much larger than that of device A)indicates that net carriers(holes)might exist at the interconnection of the two subcells. The voltage reduction(~0.4 V)caused by these holes at the interconnection is the reason for the smaller voltage compared to the sum of the two subcells(~1.5 V).

    Figure 6 shows the EQE of devices C and D with and without light bias. Both EQEs and their corresponding phases measurements (as shown in Figs. 6(c) and 6(d)) are similar.The tandem cells show photoresponse in the whole wavelength range of 300-800 nm,which means both C60 and CuPc contribute to the photocurrent. However, the contribution from CuPc (550-800 nm) decreases under light bias, and the stronger the light bias is, the more decrease can be observed.Interestingly, the response in the UV range which can be assigned to the response of C60 is enhanced under light bias.The integration of EQE under 100% light bias by AM1.5G spectrum is equal to theIscmeasured. The large phase shift under light bias is an indicator of displacement current in the 550-800 nm range.[22]Thus,it can be concluded that the photocurrent mainly comes from the contribution of C60. The analysis of the physical processes happened in the tandem devices is much helpful for understanding the phenomena we observed. Due to the special structure chosen in this study,the photons absorbed by the back cell are much more than those absorbed by the front device, as shown in Fig. 5. Most excitons produced in the front cell are separated at the MoO3-C60 interface and most excitons generated in the back cell are dissociated at the second CuPc-C60 interface,which are similar to the subcells A and B,respectively.Electrons left in the front cell would recombine with holes coming from the back cell to make the tandem cell work properly. The recombination occurs at the interconnection(the first C60-CuPc interface,inset of Fig.1)between the front cell and the back cell, where excitons can also be dissociated,especially for device D without recombination layer. Holes and electrons would be collected by ITO and Al electrodes, respectively, as theJ-Vmeasurements show, and thus exciton dissociation at the first C60-CuPc interface would cause reverse flowing of carriers and generating displacement current as observed in Fig. 6. Both electrons left in the first C60 layer and holes generated from exciton dissociation at the second CuPc-C60 interface pile up at the first C60-CuPc interface with the help of built-in electric field in the device. The large energy barriers encountered by these carriers boost their recombination and at the same time these holes and electrons quench excitons in CuPc and in the first C60 layer,respectively. As shown in Fig.5,the back cells absorb more illumination than the subcells,which results to the more exciton at the back cells. At the free carriers at CuPc-C60 interface is more than at the MoO3-C60 interface,and the left carriers were combination. However,the left carriers can not be balanced. The net carriers would appear at the interconnection to reduce the serial voltage output or even to quench excitons generated by light absorption. The fourth but not last process happens at the first C60-CuPc interface is the carrier-exciton interaction to help the carriers to overcome the energy barrier.[25]In brief, four processes coexist at the interconnection between the front and back cells: exciton dissociation,carrier recombination,exciton quench,and carrier-exciton interaction. Unless the exciton-exciton interaction is considered, the exciton dissociation will not be affected by light bias, which is also the case for subcells. But other three processes can be modulated by light bias,resulting in the modulation of apparent EQE.Indeed light bias changes the apparent EQE of tandem device (as shown in Fig. 6) but has no effect on subcells(not shown here).

    Fig.6. The EQE of devices(a)C and(b)D with and without white light bias. The intensity of the light bias is changed by neutral density filter and its value is shown in the inset. The phase information of the EQE measurements of devices C and D is shown in(c)and(d),respectively.

    To further understand the effect of net carriers at the interconnection,C60 and CuPc are selectively excited by using 450 nm and 620 nm band pass filter,as shown in Fig.7(a).Figure 7(b)shows the EQE measurements under light bias compared with the one without light bias. Similar to the white light bias, both blue and red light biases modulate the apparent EQE with increase and decrease in range of 300-400 nm and 500-800 nm,respectively.The modulation is more prominent by selective exciting CuPc with red light bias. Red light bias selectively excites CuPc to produce excitons for dissociation at the second CuPc-C60 interface. Electrons are collected by the Al electrode while net holes are piled up at the first CuPc-C60 interface. These holes are waiting there to quench the excitons in CuPc produced by chopped monochromatic light(500-800 nm),decreasing the apparent EQE in this range. When the chopped monochromatic light(300-400 nm)excites C60, these holes would accelerate the recombination with the electrons coming from the first C60, increasing the apparent EQE accordingly. When changed to blue light bias which is stronger than red light bias for our study,it selectively excites both C60 layers to produce excitons for dissociation at MoO3-C60 and the second CuPc-C60 interfaces. The number of excitons in the second C60 layer is larger than that in the first C60 layer, as shown in Fig. 5. Thus most of holes(net carrier)in CuPc would recombine with the electrons(net carrier)from the first C60 layer. Similar processes would happen like red light bias since the left holes are piled up at the first CuPc-C60 interface. Due to the fewer holes(net carrier)at the first CuPc-C60 interface,the apparent EQE decrease in 500-800 nm and increase in 300-400 nm are less prominent than the case of red light bias.

    Fig. 7. (a) The absorption spectra of CuPc and C60; the transmission of blue and red band pass filters. The blue and red light biases used in this study are realized by put a band pass filter before a white light. (b)Apparent EQE modulation by light biases.

    4. Conclusion

    By intentionally choosing the device configuration, the carrier balance is broken to accumulate net carriers at the interconnection layer of a tandem cell. By carefully studying the effect of these net carriers by using light bias, the importance of carrier balance in tandem OPVs is identified. Exciton dissociation, carrier recombination, exciton quenching,and carrier-exciton interaction coexist at the interconnection of a tandem device. By using light bias technique, these processes are modulated,reflecting in the apparent EQE variation.

    Acknowledgement

    This work was supported by the National Natural Science Foundation of China (Grant Nos. 11774293, 1207432,and 61874016).

    给我免费播放毛片高清在线观看| 亚洲图色成人| 少妇的逼好多水| 国产亚洲精品久久久久久毛片| 国产高清三级在线| 国产大屁股一区二区在线视频| 麻豆乱淫一区二区| 久久久国产成人免费| 波多野结衣高清作品| 精华霜和精华液先用哪个| 人人妻人人澡人人爽人人夜夜 | 午夜免费激情av| 高清午夜精品一区二区三区 | 一个人看的www免费观看视频| 国产探花在线观看一区二区| 成人二区视频| 一区二区三区免费毛片| 床上黄色一级片| 国产一区二区在线观看日韩| 亚洲欧美精品专区久久| 美女脱内裤让男人舔精品视频 | 小蜜桃在线观看免费完整版高清| 三级毛片av免费| 校园人妻丝袜中文字幕| 黄片wwwwww| 人体艺术视频欧美日本| 免费观看精品视频网站| 国产美女午夜福利| 久久综合国产亚洲精品| 久久精品夜夜夜夜夜久久蜜豆| 中国国产av一级| 国产午夜精品久久久久久一区二区三区| av福利片在线观看| 久久久久免费精品人妻一区二区| 国产成人a区在线观看| 久久精品久久久久久久性| 亚洲va在线va天堂va国产| 少妇裸体淫交视频免费看高清| 中文精品一卡2卡3卡4更新| 久久精品久久久久久噜噜老黄 | 91狼人影院| 真实男女啪啪啪动态图| 国产麻豆成人av免费视频| 成人无遮挡网站| 一级毛片电影观看 | 久久久久久久久中文| 亚洲精品乱码久久久v下载方式| 亚洲最大成人手机在线| 欧美一区二区亚洲| 久久精品影院6| 成人国产麻豆网| 欧美精品一区二区大全| 黄色一级大片看看| 成人永久免费在线观看视频| 国产中年淑女户外野战色| 嫩草影院新地址| 久久久久久久久大av| av天堂在线播放| 又粗又爽又猛毛片免费看| 日产精品乱码卡一卡2卡三| 91aial.com中文字幕在线观看| 亚洲经典国产精华液单| 91精品一卡2卡3卡4卡| 午夜免费男女啪啪视频观看| 国产综合懂色| 国产单亲对白刺激| 亚洲四区av| 嫩草影院新地址| 日韩强制内射视频| 亚洲18禁久久av| av国产免费在线观看| 在线观看av片永久免费下载| 人妻夜夜爽99麻豆av| 成年版毛片免费区| 欧美一级a爱片免费观看看| 国产精品一二三区在线看| 性色avwww在线观看| 精品免费久久久久久久清纯| 国产一区亚洲一区在线观看| 午夜a级毛片| 国产 一区精品| 国产极品天堂在线| 欧美不卡视频在线免费观看| 中文字幕久久专区| 老司机福利观看| 午夜精品在线福利| 亚洲七黄色美女视频| 久久久精品94久久精品| 美女黄网站色视频| 男人舔女人下体高潮全视频| 国产精品无大码| 久久欧美精品欧美久久欧美| 亚洲一区二区三区色噜噜| 国产黄片美女视频| 国产伦一二天堂av在线观看| 别揉我奶头 嗯啊视频| 国产麻豆成人av免费视频| 18禁裸乳无遮挡免费网站照片| 少妇裸体淫交视频免费看高清| 一夜夜www| 欧美一区二区国产精品久久精品| 日韩欧美三级三区| 日韩欧美三级三区| 26uuu在线亚洲综合色| 日韩精品青青久久久久久| 亚洲第一区二区三区不卡| 插逼视频在线观看| 色综合色国产| 欧美日韩国产亚洲二区| 中文字幕av在线有码专区| 天堂网av新在线| 天堂网av新在线| 99久久人妻综合| 欧美成人精品欧美一级黄| 久久九九热精品免费| 一区二区三区四区激情视频 | 久久99热6这里只有精品| 美女 人体艺术 gogo| av免费观看日本| 我的老师免费观看完整版| 日韩av不卡免费在线播放| 久久欧美精品欧美久久欧美| 亚洲一区二区三区色噜噜| 亚洲激情五月婷婷啪啪| 日产精品乱码卡一卡2卡三| 亚洲精品亚洲一区二区| 欧美区成人在线视频| 国语自产精品视频在线第100页| 国产精品不卡视频一区二区| 18+在线观看网站| 看黄色毛片网站| 精品久久久噜噜| 天堂网av新在线| 亚洲欧美日韩高清在线视频| 看黄色毛片网站| 女人被狂操c到高潮| 在线免费观看不下载黄p国产| 好男人在线观看高清免费视频| videossex国产| 国产黄片视频在线免费观看| 18禁在线播放成人免费| or卡值多少钱| 欧美一区二区亚洲| 久久午夜福利片| 国产亚洲欧美98| 日韩视频在线欧美| 青春草视频在线免费观看| 黄色欧美视频在线观看| 亚洲丝袜综合中文字幕| 国产激情偷乱视频一区二区| 黄色欧美视频在线观看| 欧美潮喷喷水| av专区在线播放| 国产av麻豆久久久久久久| 人人妻人人看人人澡| 亚洲av二区三区四区| 我的老师免费观看完整版| 国产 一区精品| 免费观看a级毛片全部| 只有这里有精品99| 亚洲成人中文字幕在线播放| 亚洲精品成人久久久久久| eeuss影院久久| 少妇丰满av| 日韩精品有码人妻一区| 26uuu在线亚洲综合色| 热99在线观看视频| 99热只有精品国产| 国产成人91sexporn| 亚洲综合色惰| 亚洲国产欧洲综合997久久,| 日日撸夜夜添| 高清日韩中文字幕在线| 色综合亚洲欧美另类图片| 婷婷六月久久综合丁香| 搡女人真爽免费视频火全软件| 亚洲自拍偷在线| 18禁黄网站禁片免费观看直播| 日本与韩国留学比较| 97人妻精品一区二区三区麻豆| 搡女人真爽免费视频火全软件| 免费电影在线观看免费观看| 久久精品国产清高在天天线| 国产亚洲5aaaaa淫片| 亚洲中文字幕一区二区三区有码在线看| 人体艺术视频欧美日本| 久久欧美精品欧美久久欧美| 精华霜和精华液先用哪个| 亚洲美女视频黄频| 国产亚洲91精品色在线| 亚洲av.av天堂| 日日摸夜夜添夜夜爱| 亚洲人与动物交配视频| 黄色欧美视频在线观看| 亚洲成人av在线免费| 12—13女人毛片做爰片一| 国产精品一区二区三区四区久久| 国产黄a三级三级三级人| 成年女人永久免费观看视频| 免费不卡的大黄色大毛片视频在线观看 | 女人十人毛片免费观看3o分钟| 中文字幕熟女人妻在线| 国产高清有码在线观看视频| 亚洲精品国产av成人精品| 亚洲成人久久爱视频| av黄色大香蕉| 日韩在线高清观看一区二区三区| 欧美激情久久久久久爽电影| 高清午夜精品一区二区三区 | 午夜老司机福利剧场| 精品日产1卡2卡| 乱码一卡2卡4卡精品| 国产精品不卡视频一区二区| 国产成人一区二区在线| 亚洲经典国产精华液单| 亚洲精品久久久久久婷婷小说 | 三级经典国产精品| 亚洲第一区二区三区不卡| 日本与韩国留学比较| 国产精品免费一区二区三区在线| 日韩成人av中文字幕在线观看| 1024手机看黄色片| 狂野欧美白嫩少妇大欣赏| 成人亚洲精品av一区二区| 99热精品在线国产| 永久网站在线| 国产男人的电影天堂91| 毛片女人毛片| 午夜精品一区二区三区免费看| 永久网站在线| 欧美日本亚洲视频在线播放| 午夜a级毛片| 国产精品三级大全| 美女内射精品一级片tv| 久久久色成人| 久久草成人影院| 日韩在线高清观看一区二区三区| 欧美区成人在线视频| 中文欧美无线码| 一边亲一边摸免费视频| 久久6这里有精品| 三级毛片av免费| 国产色婷婷99| 黄色日韩在线| 国产精品福利在线免费观看| 中文精品一卡2卡3卡4更新| 国产成人a∨麻豆精品| 午夜福利成人在线免费观看| 色5月婷婷丁香| 亚洲第一区二区三区不卡| 日日啪夜夜撸| 黑人高潮一二区| 能在线免费看毛片的网站| 女人被狂操c到高潮| 国产精品野战在线观看| 亚洲成人av在线免费| 日韩欧美精品v在线| 久久久久久久午夜电影| 中国美女看黄片| 欧美3d第一页| av在线亚洲专区| 久久欧美精品欧美久久欧美| 国产伦精品一区二区三区视频9| 中文字幕熟女人妻在线| 亚洲aⅴ乱码一区二区在线播放| 麻豆成人午夜福利视频| 亚洲av不卡在线观看| 中文字幕久久专区| 变态另类成人亚洲欧美熟女| 亚洲精品久久久久久婷婷小说 | 免费av不卡在线播放| 久久亚洲精品不卡| 久久韩国三级中文字幕| 青春草国产在线视频 | 久久精品91蜜桃| 神马国产精品三级电影在线观看| 热99在线观看视频| 长腿黑丝高跟| 亚洲av一区综合| 一本久久中文字幕| 精品无人区乱码1区二区| 欧洲精品卡2卡3卡4卡5卡区| 久久久久久久亚洲中文字幕| 亚洲无线观看免费| 在线a可以看的网站| 久久精品国产自在天天线| 丰满人妻一区二区三区视频av| 嫩草影院精品99| 一边摸一边抽搐一进一小说| 桃色一区二区三区在线观看| kizo精华| 亚洲精品日韩在线中文字幕 | 蜜桃久久精品国产亚洲av| 国内精品一区二区在线观看| www.色视频.com| 能在线免费看毛片的网站| 男女那种视频在线观看| 欧美一区二区精品小视频在线| 国产精品爽爽va在线观看网站| 中出人妻视频一区二区| 久久久久免费精品人妻一区二区| 欧美精品一区二区大全| www.色视频.com| 美女cb高潮喷水在线观看| 老司机福利观看| 18+在线观看网站| 日韩成人伦理影院| 亚洲av中文av极速乱| 欧美精品国产亚洲| 在线免费十八禁| 日韩在线高清观看一区二区三区| 日韩欧美精品v在线| 日本av手机在线免费观看| 午夜福利成人在线免费观看| 变态另类成人亚洲欧美熟女| 日韩三级伦理在线观看| 最近2019中文字幕mv第一页| 日本一本二区三区精品| 日本黄色视频三级网站网址| 五月伊人婷婷丁香| 免费看美女性在线毛片视频| 一级av片app| 内射极品少妇av片p| 美女大奶头视频| 狠狠狠狠99中文字幕| 成年av动漫网址| 欧美最新免费一区二区三区| 深夜a级毛片| 综合色av麻豆| 99热这里只有是精品在线观看| 国内精品久久久久精免费| 国产精品1区2区在线观看.| 久久人人精品亚洲av| 综合色av麻豆| 午夜精品在线福利| 亚洲精华国产精华液的使用体验 | 国产av不卡久久| 亚洲五月天丁香| 一级av片app| 成人高潮视频无遮挡免费网站| 日韩制服骚丝袜av| 午夜福利在线观看吧| 亚洲图色成人| 免费观看在线日韩| 哪里可以看免费的av片| 日韩亚洲欧美综合| 可以在线观看毛片的网站| 亚洲欧美精品专区久久| 免费人成在线观看视频色| 直男gayav资源| 午夜激情欧美在线| 国产高清有码在线观看视频| 哪里可以看免费的av片| 亚洲一级一片aⅴ在线观看| 久久精品久久久久久噜噜老黄 | 久久久久久久久中文| 国产精品野战在线观看| 老熟妇乱子伦视频在线观看| 你懂的网址亚洲精品在线观看 | 久久久精品94久久精品| 亚洲国产精品sss在线观看| 中文亚洲av片在线观看爽| 蜜臀久久99精品久久宅男| 婷婷色综合大香蕉| 亚洲av.av天堂| 亚洲内射少妇av| 一级毛片电影观看 | 久久精品国产自在天天线| 丰满人妻一区二区三区视频av| 乱人视频在线观看| 国产精品久久视频播放| 蜜桃亚洲精品一区二区三区| 天堂影院成人在线观看| 日韩大尺度精品在线看网址| 国产精品人妻久久久久久| 欧美不卡视频在线免费观看| 插逼视频在线观看| 日产精品乱码卡一卡2卡三| 美女脱内裤让男人舔精品视频 | 可以在线观看毛片的网站| 国产探花极品一区二区| 天堂中文最新版在线下载 | 熟妇人妻久久中文字幕3abv| 精品少妇黑人巨大在线播放 | 赤兔流量卡办理| 亚洲最大成人中文| 亚洲第一区二区三区不卡| 大型黄色视频在线免费观看| 国产午夜精品久久久久久一区二区三区| 日本与韩国留学比较| 只有这里有精品99| 色吧在线观看| 男女做爰动态图高潮gif福利片| 久久99蜜桃精品久久| 亚州av有码| 69av精品久久久久久| 久久精品久久久久久久性| 在现免费观看毛片| 狂野欧美白嫩少妇大欣赏| 久久精品国产亚洲av天美| 啦啦啦韩国在线观看视频| 欧美极品一区二区三区四区| 狂野欧美白嫩少妇大欣赏| 国产色婷婷99| 国产精品不卡视频一区二区| 一区二区三区高清视频在线| 精华霜和精华液先用哪个| 美女内射精品一级片tv| 一级黄片播放器| 又黄又爽又刺激的免费视频.| 啦啦啦观看免费观看视频高清| kizo精华| 乱码一卡2卡4卡精品| 日日摸夜夜添夜夜添av毛片| 91久久精品电影网| 精品不卡国产一区二区三区| 欧美三级亚洲精品| 亚洲精品乱码久久久久久按摩| avwww免费| 九九久久精品国产亚洲av麻豆| av免费观看日本| 国产成人福利小说| 国产亚洲av嫩草精品影院| 中文字幕免费在线视频6| 国产成人a区在线观看| 国产精品不卡视频一区二区| 国产极品精品免费视频能看的| 亚洲真实伦在线观看| 黑人高潮一二区| 最近中文字幕高清免费大全6| 欧美色视频一区免费| 高清在线视频一区二区三区 | 美女高潮的动态| 国产 一区 欧美 日韩| 99久久人妻综合| 亚洲无线观看免费| 寂寞人妻少妇视频99o| 欧美日韩在线观看h| 在线免费观看的www视频| 午夜亚洲福利在线播放| 国产精品美女特级片免费视频播放器| 国产亚洲av片在线观看秒播厂 | 日本-黄色视频高清免费观看| .国产精品久久| 色哟哟哟哟哟哟| 波多野结衣高清无吗| 日韩中字成人| 丰满乱子伦码专区| 亚洲精品久久国产高清桃花| 啦啦啦观看免费观看视频高清| 可以在线观看的亚洲视频| 精品人妻熟女av久视频| 99久久人妻综合| 特级一级黄色大片| 国产精品无大码| 国产黄a三级三级三级人| 能在线免费看毛片的网站| 精品日产1卡2卡| 可以在线观看毛片的网站| 国产亚洲精品久久久久久毛片| 黄片wwwwww| 97在线视频观看| 日韩 亚洲 欧美在线| 又爽又黄a免费视频| 亚洲最大成人中文| 亚洲乱码一区二区免费版| 国产亚洲91精品色在线| 国产黄a三级三级三级人| 国模一区二区三区四区视频| 99久国产av精品| 麻豆成人av视频| 日韩欧美精品v在线| 免费观看人在逋| 性欧美人与动物交配| 天堂av国产一区二区熟女人妻| 成人毛片a级毛片在线播放| 九色成人免费人妻av| 成人午夜高清在线视频| 日日摸夜夜添夜夜爱| 日本在线视频免费播放| 成人亚洲欧美一区二区av| 国产精品,欧美在线| 日韩欧美精品免费久久| 中文字幕制服av| 日韩国内少妇激情av| 99国产极品粉嫩在线观看| 欧美性感艳星| 我要看日韩黄色一级片| 少妇猛男粗大的猛烈进出视频 | 免费av观看视频| 99视频精品全部免费 在线| 亚洲精品亚洲一区二区| 亚洲18禁久久av| 亚洲av.av天堂| 六月丁香七月| 国产91av在线免费观看| 亚洲丝袜综合中文字幕| 亚洲第一区二区三区不卡| 亚洲av免费在线观看| 夜夜爽天天搞| 久久午夜福利片| 可以在线观看的亚洲视频| 国产在视频线在精品| 精品少妇黑人巨大在线播放 | 国产黄色小视频在线观看| 精品久久久久久久末码| 午夜爱爱视频在线播放| 国产综合懂色| 亚洲色图av天堂| 在线观看一区二区三区| 午夜福利在线观看吧| 男人和女人高潮做爰伦理| 色尼玛亚洲综合影院| 黄色日韩在线| 天堂√8在线中文| 可以在线观看的亚洲视频| 97超碰精品成人国产| 亚洲激情五月婷婷啪啪| 精品午夜福利在线看| 少妇的逼好多水| 国产精品一区www在线观看| 日韩一区二区视频免费看| 国产精品野战在线观看| 精品人妻视频免费看| 成人午夜高清在线视频| 欧美高清性xxxxhd video| 亚洲国产精品合色在线| 一个人看的www免费观看视频| 亚洲av.av天堂| 99在线视频只有这里精品首页| 国产高清三级在线| 身体一侧抽搐| 国产黄a三级三级三级人| 男插女下体视频免费在线播放| 久久久久久久久久久丰满| 亚洲欧美日韩高清在线视频| 久久精品91蜜桃| 亚洲国产欧美在线一区| 51国产日韩欧美| 国产伦理片在线播放av一区 | 婷婷精品国产亚洲av| 亚洲欧美成人综合另类久久久 | 亚洲精品国产av成人精品| 欧美3d第一页| 午夜福利成人在线免费观看| 波野结衣二区三区在线| 精品久久久久久久久av| 亚洲精品456在线播放app| 欧美不卡视频在线免费观看| 久久精品国产清高在天天线| 一本久久精品| 亚洲久久久久久中文字幕| 午夜免费男女啪啪视频观看| 1000部很黄的大片| 淫秽高清视频在线观看| 亚洲不卡免费看| 波野结衣二区三区在线| 91麻豆精品激情在线观看国产| 午夜福利视频1000在线观看| 亚洲欧美日韩高清在线视频| 一区二区三区高清视频在线| 亚洲国产欧美在线一区| 日本欧美国产在线视频| av专区在线播放| 欧美日韩在线观看h| 毛片女人毛片| 91狼人影院| 少妇被粗大猛烈的视频| 久久午夜福利片| 可以在线观看毛片的网站| 只有这里有精品99| 天天躁日日操中文字幕| 国产成人精品一,二区 | 午夜精品一区二区三区免费看| 亚洲中文字幕一区二区三区有码在线看| 欧美性猛交黑人性爽| 18禁在线无遮挡免费观看视频| 观看免费一级毛片| 精品人妻偷拍中文字幕| 一级毛片久久久久久久久女| 精品日产1卡2卡| 在线观看免费视频日本深夜| 成年女人永久免费观看视频| 又爽又黄无遮挡网站| 免费无遮挡裸体视频| 久久久久久久久久黄片| 能在线免费观看的黄片| 国产精品人妻久久久久久| 在线观看av片永久免费下载| 99九九线精品视频在线观看视频| 国产亚洲av片在线观看秒播厂 | 久久精品夜色国产| 亚洲,欧美,日韩| 国内揄拍国产精品人妻在线| 国产亚洲av嫩草精品影院| 亚洲,欧美,日韩| 亚洲av成人av| 欧美日韩乱码在线| 一级av片app| av.在线天堂| 我的女老师完整版在线观看| 99久久无色码亚洲精品果冻| 国产成人精品一,二区 | 亚洲真实伦在线观看| 久久午夜福利片| 日日摸夜夜添夜夜添av毛片| 亚洲av男天堂| 久久人人爽人人片av| 熟女电影av网| 变态另类丝袜制服| 99热全是精品| 亚洲性久久影院| 少妇丰满av| 国产老妇伦熟女老妇高清| 亚洲性久久影院|