• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A SPECTRAL METHOD FOR A WEAKLY SINGULAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATION WITH PANTOGRAPH DELAY*

    2022-03-12 10:22:28WeishanZHENG鄭偉珊
    關(guān)鍵詞:艷萍

    Weishan ZHENG (鄭偉珊)

    College of Mathematics and Statistics,Hanshan Normal University,Chaozhou 521041,China E-mail:weishanzheng@yeah.net

    Yanping CHEN (陳艷萍)?

    School of Mathematical Sciences,South China Normal University,Guangzhou 510631,China E-mail:yanpingchen@scnu.edu.cn

    Abstract In this paper,a Jacobi-collocation spectral method is developed for a Volterraintegro-differential equation with delay,which contains a weakly singular kernel.We use a function transformation and a variable transformation to change the equation into a new Volterra integral equation defined on the standard interval[-1,1],so that the Jacobi orthogonal polynomial theory can be applied conveniently.In order to obtain high order accuracy for the approximation,the integral term in the resulting equation is approximated by Jacobi spectral quadrature rules.In the end,we provide a rigorous error analysis for the proposed method.The spectral rate of convergence for the proposed method is established in both the L∞-norm and the weighted L2-norm.

    Key words Volterra integro-differential equation;pantograph delay;weakly singular kernel;Jacobi-collocation spectral methods;error analysis;convergence analysis

    1 Introduction

    Volterra integro-differential equations with delay arise often in mathematical models of physical and biological phenomena.As they are widely encountered and applied,they must be solved successfully with efficient numerical methods.There has been a lot of study on this subject,such as[6,7,17,21,23,24].This topic has also attracted the attention of famous mathematicians,such as Ali,Brunner and Tang[1],Ishiwata and Muroya[10],Wei and Chen[18].

    As far as we know,very little work has been done on the Volterra delay-integro-differential equations with a weakly singular kernel using spectral approximation.Spectral methods are a class of techniques used in applied mathematics and scientific computing to numerically solve certain Volterra equations[3,4,19,20,22,25],and they are favoured due to their excellent error properties and their“exponential convergence”being the fastest possible.In this paper,we provide a Jacobi-collocation spectral method for Volterra integro-differential equations with a pantograph delay that contain a weakly singular kernel.In the end,we provide a rigorous error analysis for the proposed method.The spectral rate of convergence for the proposed method is established in the L∞-norm and the weighted L2-norm.

    In this paper,we study the pantograph Volterra delay-integro-differential equation with a weakly singular kernel of the form

    where 0<μ<1,0<q<1,the functions a (t),b (t),g (t)∈C1(I),y (t) are the unknown functions and are supposed to be sufficiently smooth,and K (t,t)0 for t∈I:=[0,T].(t-s)-μis a weak kernel and y (qt) is the pantograph delay.

    To use the theory of orthogonal polynomials,we make the change of variable

    Furthermore,to transfer the integral interval[0,T (1+x)/2]to the interval[-1,x],we make a linear transformation s=T (1+τ)/2,τ∈[-1,x].Then eq.(1.2) becomes

    where

    The main purpose of this work is to use a Jacobi-collocation method to numerically solve the Volterra integro-differential equations with a pantograph delay that contain a weakly singular kernel.We will provide a rigorous error analysis which theoretically justifies the spectral rate of convergence.The rest of the paper is organized as follows:in Section 2,we introduce the Jacobi-collocation spectral approach for (1.3).Some useful lemmas are provided in Section 3;These are are important for the convergence analysis.In Section 4 the convergence analysis is outlined,and Section 5 contains numerical results which will be used to a the theoretical results obtained in the former section.Finally,in Section 6,we end with a conclusion and a discussion of future work.

    Throughout the paper C will denote a generic positive constant that is independent of N,but dependant on T,the given functions and the index μ.

    2 Jacobi-Collocation Methods

    Now we introduce the Jacobi polynomialsof indices α,β>-1 which are the solutions to singular Sturm-Liouville problems

    Hereafter,we denote the Jacobi weight function of index (α,β) by ωα,β(x)=(1-x)α(1+x)β(see[2,8,9,16]).We define the“usual”weighted Sobolev spaces as follows:

    For a given N≥0,we denote bythe Jacobi Gauss points,and bythe corresponding Jacobi weights.Then,the Jacobi Gauss integration formula is

    In particular,we denote that

    In order to use the Jacobi-collocation methods naturally,we restate (1.4) as

    Letting v (x)=u (qx+q-1),we have that

    First,eqs.(1.3),(2.7) and (2.8) hold at the collocation pointson[-1,1],associated with ω-μ,-μ,i.e.,

    In order to obtain high order accuracy for the problem (2.9)-(2.11),the main difficulty is to compute the integral term.In particular,for small values of xi,there is little information available for u (τ).To overcome this difficulty,we transfer the integral interval[-1,xi]to a fixed interval[-1,1],

    by using the following variable change:

    Next,using the Jacobi Gauss integration formula,the integration term in (2.12) can be approximated by

    We use uiandto approximate the function values u (xi) and u′(xi)(0≤i≤N),respectively,and use

    Remark 2.1Since Fj,j=0,1,···,N are polynomials of a degree not exceeding N,we have that

    3 Some Useful Lemmas

    In this section,we will give some lemmas which are important for the derivation of the main results of the subsequent section.

    Lemma 3.1(see[2]) Let PNdenote the space of all polynomials of a degree not exceeding N.Assume that the Gauss quadrature formula relative to the Jacobi weight is used to integrate the product vφ,where v∈for some m≥1 and φ∈PN.Then there exists a constant C independent of N such that

    Then the following estimates hold:

    ProofThe inequality (1) can be found in[2].We only prove (2).Let∈PNdenote the interpolant of v at the Chebyshev Gauss points.From (5.5.28) in[2],the interpolation error estimate in the maximum norm is given by

    By using (3.7),Lemma 3.2 and (3.6),we obtain that

    where J (x) is an integrable function,then

    Lemma 3.4(Gronwall inequality) If a non-negative integrable function E (x) satisfies

    where q is a constant and 0<q<1,we get

    ProofUsing the variable change

    where 0<q<1,qx+q-1=q (x+1)-1<x+1-1=x,for x∈(-1,1].

    This,together with (3.11),gives us

    This leads to the result found in (3.12) and (3.13). □

    Lemma 3.5For nonnegative integer r and κ∈(0,1),there exists a constant Cr,κ>0 such that for any function v∈Cr,κ([-1,1]),there exists a polynomial function TNv∈PNsuch that

    where‖·‖r,κis the standard norm in Cr,κ([-1,1]).Actually,as stated in[14,15],TNis a linear operator from Cr,κ([-1,1]) into PN.

    Lemma 3.6(see[5]) Let κ∈(0,1) and M be defined by

    Then,for any function v∈C ([-1,1]),there exists a positive constant C such that

    under the assumption that 0<κ<1-μ,for any x′,x′′∈[-1,1]and x′x′′.This implies that

    Lemma 3.7(see[11]) For all measurable functions f≥0,the generalized Hardy inequality

    holds if and only if

    for the case 1<p≤q<∞.Here,T is an operator of the form (Tf)(x)=,with k (x,t) a given kernel,u,v weight functions,and-∞≤a<b≤∞.

    Lemma 3.8(see[13]) For every bounded function v (x),there exists a constant C independent of v such that

    where Fi(x) is the Lagrange interpolation basis function associated with the Jacobi collocation points.

    4 Error Analysis

    This section is devoted to providing a convergence analysis for the numerical scheme (2.18)-(2.20).The goal is to show that the rate of convergence is exponential and the spectral accuracy can be obtained for the proposed approximations.First,we carry out the convergence analysis in L∞space.

    Theorem 4.1Let u (x) be the exact solution of (1.3) with (1.4),which is assumed to be sufficiently smooth.Assume thatare obtained by using the spectral collocation scheme (2.18)-(2.20),together with a polynomial interpolation (2.17).If μ associated with the weakly singular kernel satisfies 0<μ<1 and u∈,then

    provided that N is sufficiently large,where C is a constant independent of N but which will depend on the bounds of the functionsand the index μ,and

    ProofFirst,using the weighted inner product,we note that

    and,by using the discrete inner product,we set

    Then,the numerical scheme (2.18)-(2.20) can be written as

    where (4.6) and (4.7) are obtained by Remark 2.1.By subtracting (4.5) from (2.12),subtracting (4.6) from (2.10) and subtracting (4.7) from (2.11) and letting eu(x)=u (x)-,eu′(x)=u′(x)-,we obtain that

    Using the integration error estimate in Lemma 3.1,we have

    Multiplying Fi(x) on both sides of eqs.(4.8) and (4.9) and summing up from i=0 to i=N yields

    Due to eqs.(4.14)-(4.15),and using Dirichlet’s formula,which states that

    and provided that the integral exists,we obtain

    Denoting D:={(x,s):-1≤s≤x,x∈[-1,1]},we have

    Eq.(4.14) gives

    It follows from the Gronwall inequality in Lemma 3.4 that

    It follows from (4.15) that

    Using Lemma 3.2,and the estimates (4.11) and (4.17),we have

    Due to Lemma 3.3,

    By virtue of Lemma 3.3(2) with m=1,we have that

    We now estimate the term J5(x).It follows from Lemmas 3.5 and 3.6 that

    where in the last step we used Lemma 3.6 under the following assumption:

    We now obtain the estimate forby using (4.16):

    The above estimate,together with (4.17),yields that

    This completes the proof of the theorem. □

    Next we will give the error analysis inspace.

    Theorem 4.2If the hypotheses given in Theorem 4.1 hold,then

    for any κ∈(0,1-μ),provided that N is sufficiently large and C is a constant independent of N,where

    ProofBy using the Gronwall inequality (Lemma 3.4) and the Hardy inequality (Lemma 3.7),we obtain that

    Now,using Lemma 3.8,we have that

    By the convergence result in Theorem 4.1(m=1),we have that

    Due to Lemma 3.3,

    By virtue of Lemma 3.3(1) with m=1,

    Finally,it follows from Lemmas 3.5 and 3.8 that

    where,in the last step,we used Lemma 3.6 for any κ∈(0,1-μ).By the convergence result in Theorem 4.1,we obtain that

    for N sufficiently large and for any κ∈(0,1-μ).The desired estimates (4.18) and (4.19) are obtained. □

    5 Numerical Example

    Writing U′=,U=(u0,u1,···,uN)T,U-1=u-1×(1,1,···,1)Tand V=(v0,v1,···,vN)T,we obtain the following equations of the matrix form from (2.18)-(2.20):

    The entries of the matrices are given by

    We give a numerical example to con firm our analysis.Consider weakly singular Volterra integro-differential equations with a pantograph delay

    Figure 1 Comparison between approximate solution uN and exact solution u (left);Comparison between approximate derivative and exact derivative u′(right)

    Figure 2 The errors u-uN(left) andu′-(right) versus the number of collocation pointsin L∞ and norms

    Table 1 The errors

    Table 1 The errors

    Table 2 The errors

    Table 2 The errors

    6 Conclusion and Future Work

    This paper has given a Jacobi-collocation spectral method for Volterra-integro-differential equations with a pantograph delay which contain a weakly singular kernel (t-s)-μ,0<μ<1,under the hypothesis that the solution is smooth.The main point of this work is that it has demonstrated rigorously that the errors of spectral approximations decay exponentially in both the L∞-norm and the-norm;This is a desired feature for a spectral method.In a future article we will extend our work to the fractional Volterra-integro-differential equations that contain a pantograph delay.

    猜你喜歡
    艷萍
    Weighted norm inequalities for commutators of the Kato square root of second order elliptic operators on Rn
    基于JavaScript編程語(yǔ)言之 閉包技術(shù)在焦點(diǎn)輪播上的應(yīng)用
    藏在毛衣里的愛
    新少年(2021年3期)2021-03-28 02:30:27
    春分
    NUMERICAL ANALYSIS FOR VOLTERRA INTEGRAL EQUATION WITH TWO KINDS OF DELAY?
    詠江石
    我的發(fā)現(xiàn)
    學(xué)吹泡泡
    可愛的小手套
    Study of TSP based on self-organizing map
    久久这里只有精品19| 国产熟女午夜一区二区三区| 欧美丝袜亚洲另类 | 国产激情久久老熟女| 亚洲精品国产一区二区精华液| 午夜福利成人在线免费观看| 国产片内射在线| 波多野结衣巨乳人妻| 九色亚洲精品在线播放| 12—13女人毛片做爰片一| 国产亚洲欧美精品永久| 黄色女人牲交| 国产欧美日韩一区二区三| 久久人妻福利社区极品人妻图片| 久久久精品国产亚洲av高清涩受| av天堂久久9| 女性被躁到高潮视频| 波多野结衣高清无吗| 在线免费观看的www视频| 丝袜美腿诱惑在线| 成人国语在线视频| 亚洲国产精品合色在线| 亚洲国产精品999在线| 成人免费观看视频高清| 日日摸夜夜添夜夜添小说| 亚洲午夜理论影院| 嫩草影视91久久| 长腿黑丝高跟| 久久香蕉激情| 高潮久久久久久久久久久不卡| av免费在线观看网站| 亚洲成人精品中文字幕电影| 露出奶头的视频| 又大又爽又粗| 熟女少妇亚洲综合色aaa.| 国产免费男女视频| 在线观看一区二区三区| 在线观看午夜福利视频| 人人澡人人妻人| 又紧又爽又黄一区二区| 午夜福利一区二区在线看| 亚洲欧美一区二区三区黑人| 女人精品久久久久毛片| 精品一区二区三区四区五区乱码| 久久人人97超碰香蕉20202| 国产成人欧美| 纯流量卡能插随身wifi吗| 国产高清视频在线播放一区| 99热只有精品国产| 欧美日韩福利视频一区二区| 亚洲国产日韩欧美精品在线观看 | 亚洲第一av免费看| 视频在线观看一区二区三区| 色尼玛亚洲综合影院| 岛国在线观看网站| 亚洲,欧美精品.| 久久天躁狠狠躁夜夜2o2o| 亚洲avbb在线观看| 欧美成人午夜精品| 婷婷六月久久综合丁香| 中亚洲国语对白在线视频| www.精华液| 亚洲一区中文字幕在线| 在线永久观看黄色视频| 后天国语完整版免费观看| 免费观看精品视频网站| 神马国产精品三级电影在线观看 | 国产精品,欧美在线| 这个男人来自地球电影免费观看| 国产在线精品亚洲第一网站| 伊人久久大香线蕉亚洲五| 免费高清在线观看日韩| 亚洲免费av在线视频| 欧美日本视频| 日韩欧美一区视频在线观看| 制服诱惑二区| 亚洲av片天天在线观看| 免费无遮挡裸体视频| 一进一出抽搐gif免费好疼| 嫩草影视91久久| 两个人免费观看高清视频| 国产精品 国内视频| 亚洲国产精品久久男人天堂| 国产精品99久久99久久久不卡| 在线观看免费视频网站a站| 国产精品久久久久久人妻精品电影| 免费久久久久久久精品成人欧美视频| 国语自产精品视频在线第100页| 一a级毛片在线观看| 国产精品久久久久久人妻精品电影| 国产精品 欧美亚洲| 9热在线视频观看99| 日本 av在线| 日本 欧美在线| 久久人妻av系列| 亚洲中文字幕一区二区三区有码在线看 | 久久人妻熟女aⅴ| www国产在线视频色| 亚洲最大成人中文| 免费在线观看完整版高清| 两性夫妻黄色片| 免费一级毛片在线播放高清视频 | www.熟女人妻精品国产| 中文亚洲av片在线观看爽| 99热只有精品国产| 国产亚洲欧美98| 国产精品国产高清国产av| 亚洲片人在线观看| 欧美色视频一区免费| 热re99久久国产66热| 午夜免费成人在线视频| 69av精品久久久久久| 成人18禁在线播放| 伊人久久大香线蕉亚洲五| 香蕉丝袜av| 精品日产1卡2卡| 久久国产精品影院| 琪琪午夜伦伦电影理论片6080| 国产精品秋霞免费鲁丝片| 一本大道久久a久久精品| 99re在线观看精品视频| 黄片大片在线免费观看| 色播在线永久视频| 在线观看免费视频网站a站| 午夜免费激情av| 看免费av毛片| 搡老岳熟女国产| 一级片免费观看大全| 日韩欧美国产在线观看| 久久久久久人人人人人| 亚洲aⅴ乱码一区二区在线播放 | 两性夫妻黄色片| 99在线人妻在线中文字幕| 欧美激情极品国产一区二区三区| 亚洲黑人精品在线| 欧美丝袜亚洲另类 | 欧美中文综合在线视频| 亚洲国产欧美网| 亚洲 欧美 日韩 在线 免费| 久久精品aⅴ一区二区三区四区| av在线天堂中文字幕| 18禁裸乳无遮挡免费网站照片 | e午夜精品久久久久久久| 99国产精品一区二区三区| 国产不卡一卡二| 一级片免费观看大全| 黄色a级毛片大全视频| 日本免费一区二区三区高清不卡 | 亚洲色图av天堂| 亚洲成av片中文字幕在线观看| 国产精品秋霞免费鲁丝片| 久久久久国产精品人妻aⅴ院| 国产蜜桃级精品一区二区三区| 国产成人影院久久av| xxx96com| 国产精品综合久久久久久久免费 | 99久久精品国产亚洲精品| 国产精品乱码一区二三区的特点 | 国产成人av激情在线播放| 午夜视频精品福利| 叶爱在线成人免费视频播放| 91老司机精品| 国产野战对白在线观看| 一区二区三区精品91| 欧美最黄视频在线播放免费| 国产真人三级小视频在线观看| 18美女黄网站色大片免费观看| 高潮久久久久久久久久久不卡| 人人妻人人澡欧美一区二区 | 欧美亚洲日本最大视频资源| 日本免费a在线| 高清在线国产一区| 精品电影一区二区在线| 国产精品 国内视频| 日日夜夜操网爽| 久久久国产欧美日韩av| 99香蕉大伊视频| 一本大道久久a久久精品| 午夜免费观看网址| 久久精品国产99精品国产亚洲性色 | 在线视频色国产色| 欧美成狂野欧美在线观看| 9191精品国产免费久久| 亚洲久久久国产精品| 精品一区二区三区四区五区乱码| 欧美成人午夜精品| 国产伦人伦偷精品视频| 久久青草综合色| 天天躁狠狠躁夜夜躁狠狠躁| 高清毛片免费观看视频网站| 亚洲av成人一区二区三| 亚洲成av片中文字幕在线观看| 日韩一卡2卡3卡4卡2021年| 亚洲av五月六月丁香网| 国产精品精品国产色婷婷| 亚洲国产精品久久男人天堂| 国产亚洲精品第一综合不卡| 麻豆国产av国片精品| 一本大道久久a久久精品| 免费在线观看完整版高清| 夜夜夜夜夜久久久久| 侵犯人妻中文字幕一二三四区| 中文字幕人妻丝袜一区二区| 久久亚洲真实| 91在线观看av| 日韩欧美国产在线观看| 欧美性长视频在线观看| 免费看a级黄色片| 久久久久久大精品| 一进一出抽搐动态| 看片在线看免费视频| 午夜精品国产一区二区电影| 少妇被粗大的猛进出69影院| 1024视频免费在线观看| 欧美一级毛片孕妇| 两性午夜刺激爽爽歪歪视频在线观看 | 露出奶头的视频| 操出白浆在线播放| 窝窝影院91人妻| 亚洲中文字幕一区二区三区有码在线看 | 黑丝袜美女国产一区| 国产精品永久免费网站| 神马国产精品三级电影在线观看 | 人成视频在线观看免费观看| 亚洲国产日韩欧美精品在线观看 | 在线观看免费午夜福利视频| 在线观看免费视频日本深夜| 日韩av在线大香蕉| 热re99久久国产66热| 午夜免费观看网址| 国产成人欧美在线观看| 亚洲 国产 在线| 亚洲国产欧美一区二区综合| 麻豆一二三区av精品| 日韩欧美一区视频在线观看| 久久久久国产一级毛片高清牌| 妹子高潮喷水视频| 麻豆av在线久日| 国产成+人综合+亚洲专区| 岛国视频午夜一区免费看| 女人被狂操c到高潮| 精品一区二区三区视频在线观看免费| 久久久久久久久久久久大奶| 99国产精品一区二区三区| 久久香蕉国产精品| 亚洲欧美日韩高清在线视频| 久久国产精品男人的天堂亚洲| 男人操女人黄网站| 国产精品一区二区精品视频观看| 午夜亚洲福利在线播放| 看黄色毛片网站| 久久天堂一区二区三区四区| 国产成人啪精品午夜网站| 欧美+亚洲+日韩+国产| 国产亚洲欧美在线一区二区| 精品久久久久久久毛片微露脸| 看黄色毛片网站| 91精品国产国语对白视频| 午夜两性在线视频| 色综合亚洲欧美另类图片| 黄片大片在线免费观看| 九色国产91popny在线| 一区二区三区高清视频在线| 国产成人精品在线电影| 国产97色在线日韩免费| 亚洲av成人一区二区三| 国产在线观看jvid| 亚洲精华国产精华精| www.熟女人妻精品国产| 亚洲人成网站在线播放欧美日韩| 亚洲第一青青草原| 久久午夜亚洲精品久久| 两个人看的免费小视频| 久久欧美精品欧美久久欧美| 午夜精品在线福利| 国产精品亚洲一级av第二区| 久久精品国产亚洲av高清一级| 免费一级毛片在线播放高清视频 | 国产亚洲欧美精品永久| 最好的美女福利视频网| 别揉我奶头~嗯~啊~动态视频| 9热在线视频观看99| 久久久国产精品麻豆| 国产高清videossex| 亚洲精品一区av在线观看| 久久香蕉激情| 激情视频va一区二区三区| 亚洲av第一区精品v没综合| 精品国内亚洲2022精品成人| 亚洲久久久国产精品| 国产精品久久电影中文字幕| 无遮挡黄片免费观看| 亚洲人成电影免费在线| 999精品在线视频| 满18在线观看网站| 真人做人爱边吃奶动态| 美女高潮到喷水免费观看| 成人18禁在线播放| 精品国产一区二区三区四区第35| 日韩一卡2卡3卡4卡2021年| 不卡一级毛片| 国产精品久久视频播放| www日本在线高清视频| 淫秽高清视频在线观看| 精品久久久久久久久久免费视频| 日韩欧美一区视频在线观看| 久久久久国产一级毛片高清牌| 婷婷精品国产亚洲av在线| 欧美成狂野欧美在线观看| 欧美不卡视频在线免费观看 | 日本精品一区二区三区蜜桃| 法律面前人人平等表现在哪些方面| 人人妻人人澡欧美一区二区 | 亚洲国产毛片av蜜桃av| 亚洲欧美激情综合另类| 亚洲av成人不卡在线观看播放网| 国产av又大| 国产精品一区二区精品视频观看| 亚洲五月天丁香| 9191精品国产免费久久| 亚洲中文av在线| 黄片播放在线免费| 在线观看免费视频网站a站| 久久久国产成人精品二区| 久久久久久人人人人人| 中文字幕人妻熟女乱码| 午夜视频精品福利| 后天国语完整版免费观看| 日韩中文字幕欧美一区二区| 久久天躁狠狠躁夜夜2o2o| 又黄又粗又硬又大视频| 亚洲九九香蕉| 欧美性长视频在线观看| 制服丝袜大香蕉在线| 91精品国产国语对白视频| 亚洲久久久国产精品| www.熟女人妻精品国产| 久热这里只有精品99| 精品一区二区三区四区五区乱码| 亚洲色图av天堂| 校园春色视频在线观看| 国产高清videossex| 久久香蕉精品热| 亚洲av日韩精品久久久久久密| 首页视频小说图片口味搜索| 午夜激情av网站| 中文字幕人妻丝袜一区二区| 夜夜夜夜夜久久久久| 欧美成人午夜精品| 淫秽高清视频在线观看| 日韩欧美在线二视频| 欧美一区二区精品小视频在线| 精品国产乱码久久久久久男人| 黄片播放在线免费| 亚洲成人精品中文字幕电影| a在线观看视频网站| 亚洲中文日韩欧美视频| 男女做爰动态图高潮gif福利片 | 正在播放国产对白刺激| 最好的美女福利视频网| 99riav亚洲国产免费| 高清在线国产一区| 丝袜人妻中文字幕| 国产亚洲欧美98| 激情在线观看视频在线高清| 在线观看一区二区三区| 十八禁人妻一区二区| 法律面前人人平等表现在哪些方面| 亚洲全国av大片| 日韩av在线大香蕉| 国产精品电影一区二区三区| 亚洲美女黄片视频| 久久性视频一级片| 日韩国内少妇激情av| 99国产精品免费福利视频| 国产亚洲欧美98| 妹子高潮喷水视频| 午夜亚洲福利在线播放| 9色porny在线观看| 国产又爽黄色视频| 麻豆国产av国片精品| 亚洲午夜精品一区,二区,三区| 亚洲熟妇熟女久久| 成人亚洲精品av一区二区| 亚洲全国av大片| 亚洲五月天丁香| av电影中文网址| 日韩视频一区二区在线观看| 9191精品国产免费久久| 少妇裸体淫交视频免费看高清 | 99riav亚洲国产免费| 亚洲欧美日韩另类电影网站| 在线观看午夜福利视频| 激情视频va一区二区三区| 真人一进一出gif抽搐免费| 丝袜在线中文字幕| av福利片在线| www.自偷自拍.com| 亚洲成国产人片在线观看| 亚洲国产精品sss在线观看| 久久久久久亚洲精品国产蜜桃av| 男人舔女人下体高潮全视频| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产欧美日韩在线播放| АⅤ资源中文在线天堂| 久久这里只有精品19| 天堂√8在线中文| 99在线视频只有这里精品首页| 亚洲精品av麻豆狂野| 久久亚洲精品不卡| 精品国产一区二区久久| 欧美成人午夜精品| 午夜亚洲福利在线播放| 夜夜躁狠狠躁天天躁| 国产又爽黄色视频| 麻豆国产av国片精品| 老熟妇乱子伦视频在线观看| 亚洲精品粉嫩美女一区| 法律面前人人平等表现在哪些方面| 成人国产一区最新在线观看| 免费看美女性在线毛片视频| 黄色a级毛片大全视频| 美女午夜性视频免费| 男人操女人黄网站| 免费无遮挡裸体视频| 天堂√8在线中文| www.精华液| 国产三级在线视频| 91国产中文字幕| 欧美绝顶高潮抽搐喷水| ponron亚洲| avwww免费| 亚洲精品久久国产高清桃花| 91大片在线观看| 日本五十路高清| 这个男人来自地球电影免费观看| 久久精品国产综合久久久| 日韩欧美三级三区| 91麻豆av在线| 国产男靠女视频免费网站| 大香蕉久久成人网| 成年版毛片免费区| 黑丝袜美女国产一区| 亚洲精品av麻豆狂野| 他把我摸到了高潮在线观看| 女人精品久久久久毛片| 国产精品综合久久久久久久免费 | aaaaa片日本免费| 精品国产亚洲在线| 色精品久久人妻99蜜桃| 欧美不卡视频在线免费观看 | 国产一区二区三区视频了| 国产av又大| 亚洲伊人色综图| 国产亚洲欧美98| 国产又色又爽无遮挡免费看| 精品久久久久久久久久免费视频| 日韩欧美在线二视频| 国产精品香港三级国产av潘金莲| 欧美中文综合在线视频| 亚洲激情在线av| 人人澡人人妻人| 国产亚洲欧美在线一区二区| 国产免费男女视频| 国产精品 国内视频| 国产午夜福利久久久久久| 国产极品粉嫩免费观看在线| 国产亚洲精品第一综合不卡| 熟女少妇亚洲综合色aaa.| 深夜精品福利| 成人精品一区二区免费| 免费女性裸体啪啪无遮挡网站| 欧美精品亚洲一区二区| 在线观看日韩欧美| 91成人精品电影| www.精华液| 99精品欧美一区二区三区四区| 我的亚洲天堂| 极品教师在线免费播放| 亚洲五月色婷婷综合| 欧美乱妇无乱码| 免费在线观看影片大全网站| 国产区一区二久久| 日本欧美视频一区| 正在播放国产对白刺激| 变态另类丝袜制服| 免费在线观看视频国产中文字幕亚洲| 母亲3免费完整高清在线观看| 国产精品亚洲一级av第二区| bbb黄色大片| av中文乱码字幕在线| 亚洲成国产人片在线观看| 国产主播在线观看一区二区| 国产精品野战在线观看| 日本免费a在线| 国产亚洲精品久久久久久毛片| 91国产中文字幕| www.自偷自拍.com| 大码成人一级视频| www.999成人在线观看| 国产成人精品久久二区二区免费| 欧美日韩乱码在线| 国产99白浆流出| 午夜老司机福利片| 免费少妇av软件| 在线播放国产精品三级| 琪琪午夜伦伦电影理论片6080| 成人永久免费在线观看视频| 日韩av在线大香蕉| 亚洲国产欧美日韩在线播放| 桃色一区二区三区在线观看| 婷婷六月久久综合丁香| 可以在线观看毛片的网站| 免费高清在线观看日韩| 9热在线视频观看99| 精品欧美国产一区二区三| 自线自在国产av| 91麻豆av在线| 亚洲久久久国产精品| 99久久99久久久精品蜜桃| 免费女性裸体啪啪无遮挡网站| 在线观看免费视频日本深夜| 人人妻人人澡人人看| 亚洲自拍偷在线| svipshipincom国产片| 长腿黑丝高跟| 91九色精品人成在线观看| 丝袜人妻中文字幕| 好男人电影高清在线观看| 久久久久国产一级毛片高清牌| 国产精品免费一区二区三区在线| 精品国产国语对白av| 啪啪无遮挡十八禁网站| 亚洲国产欧美日韩在线播放| 大码成人一级视频| 欧美激情 高清一区二区三区| 国产1区2区3区精品| 满18在线观看网站| 国产午夜福利久久久久久| 狂野欧美激情性xxxx| 男女做爰动态图高潮gif福利片 | 色综合亚洲欧美另类图片| 波多野结衣巨乳人妻| 免费搜索国产男女视频| 12—13女人毛片做爰片一| 一卡2卡三卡四卡精品乱码亚洲| 美女高潮喷水抽搐中文字幕| 韩国av一区二区三区四区| 桃红色精品国产亚洲av| 午夜免费成人在线视频| 两个人看的免费小视频| 免费看美女性在线毛片视频| 久久精品91蜜桃| 大码成人一级视频| 男女床上黄色一级片免费看| 国产免费男女视频| 嫁个100分男人电影在线观看| 天天躁夜夜躁狠狠躁躁| 亚洲精品国产色婷婷电影| 亚洲av日韩精品久久久久久密| 国产乱人伦免费视频| 国产极品粉嫩免费观看在线| 在线观看一区二区三区| 国产99久久九九免费精品| 久久亚洲真实| 亚洲全国av大片| 正在播放国产对白刺激| 极品教师在线免费播放| 亚洲电影在线观看av| 婷婷丁香在线五月| 十八禁网站免费在线| 亚洲av五月六月丁香网| 操出白浆在线播放| 两个人免费观看高清视频| 9191精品国产免费久久| 亚洲精华国产精华精| 男女午夜视频在线观看| 91大片在线观看| 天天添夜夜摸| 激情视频va一区二区三区| 久久久久久亚洲精品国产蜜桃av| 亚洲av成人av| www日本在线高清视频| 国产麻豆成人av免费视频| 国产主播在线观看一区二区| 黄色毛片三级朝国网站| 日韩高清综合在线| 男女午夜视频在线观看| 看免费av毛片| 母亲3免费完整高清在线观看| 男人舔女人的私密视频| 成人18禁高潮啪啪吃奶动态图| 俄罗斯特黄特色一大片| 久久婷婷成人综合色麻豆| 亚洲avbb在线观看| 免费高清视频大片| 国产精品免费视频内射| x7x7x7水蜜桃| 亚洲熟妇中文字幕五十中出| 欧美国产精品va在线观看不卡| av福利片在线| 色综合亚洲欧美另类图片| 黑人操中国人逼视频| 给我免费播放毛片高清在线观看| 欧美av亚洲av综合av国产av| 真人做人爱边吃奶动态| 久久天躁狠狠躁夜夜2o2o| 欧美av亚洲av综合av国产av| 国内精品久久久久精免费| 男女之事视频高清在线观看| 午夜福利高清视频| 正在播放国产对白刺激| 一个人免费在线观看的高清视频| 国产成+人综合+亚洲专区| 免费人成视频x8x8入口观看|