• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ANISOTROPIC (p,q)-EQUATIONS WITH COMPETITION PHENOMENA*

    2022-03-12 10:22:02ZhenhaiLIU劉振海

    Zhenhai LIU (劉振海)

    Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing,Yulin Normal University,Yulin 537000,China Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis,Guangxi University for Nationalities,Nanning 530006,China E-mail:zhhliu@hotmail.com

    Nikolaos S.PAPAGEORGIOU

    Department of Mathematics,National Technical University,Zografou Campus,15780 Athens,Greece E-mail:npapg@math.ntua.gr

    Abstract We consider a nonlinear Robin problem driven by the anisotropic (p,q)-Laplacian and with a reaction exhibiting the competing effects of a parametric sublinear (concave) term and of a superlinear (convex) term.We prove a bifurcation-type theorem describing the changes in the set of positive solutions as the parameter varies.We also prove the existence of a minimal positive solution and determine the monotonicity and continuity properties of the minimal solution map.

    Key words concave-convex nonlinearities;anisotropic operators;regularity theory;maximum principle;minimal positive solution

    1 Introduction

    Let Ω?RNbe a bounded domain with a C2-boundary?Ω.In this paper we study the following anisotropic (p,q)-Robin problem:

    In this problem the variable exponents p (·) and q (·) of the two differential operators are Lipschitz continuous on,that is,p,q∈.Then the two operators are defined by

    Recall that,by Rademacher’s theorem,a Lipschitz continuous function is differentiable almost everywhere (see Gasinski-Papageorgiou[13,p.56]).

    In problem (pλ) the potential function ξ∈L∞(Ω) and ξ(z)≥0 for a.a.z∈Ω.In the reaction (right hand side of (pλ)),we have two terms which exhibit different asymptotic behavior as x→+∞(competing nonlinearities).One is the parametric term x→λxτ(z)-1for x≥0,with τ∈and we assume that 1<τ(z)<q (z)<p (z) for all z∈.So this term is (p (z)-1)-sublinear in the sense that=0 uniformly for a.a z∈Ω(“concave”term).On the other hand,the perturbation f (z,x) is a Caratheodory function (that is,for every x∈R z→f (z,x) is measurable and for a.a z∈Ω x→f (z,x) is continuous),which is (p (z)-1)-superlinear as x→+∞,in the sense that=+∞uniformly for a.a z∈Ω(“convex”term).To express this superlinearity of f (z,·),we do not use the Ambrosetti-Rabinowitz condition (the“AR-condition”for short),which is common in the literature when treating superlinear problems.Instead we assume a less restrictive condition which permits the incorporation in our framework of superlinear perturbations with“slower”growth as x→+∞,which fails to satisfy the AR-condition.In the boundary conditiondenotes the conormal derivative of u corresponding to the anisotropic (p,q)-differential operator and it is interpreted using the nonlinear Green’s identity.We mention that our conditions on the exponents p (·) and q (·) imply that

    Thus,using the results of Fan[10]on boundary trace embedding theorems for variable exponent Sobolev spaces,we see that the nonlinear Green’s identity of Casas-Fernandez[4](see also Kenmochi[16]) remains valid in the present anisotropic setting.Moreover,if u∈,then

    with n (·) being the outward unit normal on?Ω.

    Therefore,problem (pλ) exhibits the effects of two nonlinearities of distinct nature.One is sublinear (concave) and the other is superlinear (convex).Hence (pλ) is an anisotropic version of the classical“concave-convex problem”with Robin boundary condition.

    The study of concave-convex problems was initiated with the work of Ambrosetti-Brezis-Cerami[1],who studied semilinear Dirichlet problems driven by the Laplacian.Their work was extended to elliptic equations involving a general operator in divergence form by Molica Bisci-Radulescu-Servadei[23]and to Dirichlet equations driven by the p-Laplacian by Garcia Azorero-Manfredi-Peral Alonso[12].In the aforementioned works,the reaction has the special form

    x→λxq-1+xr-1,?x≥0,with 1<q<p<r<p*.

    Extensions of these works with more general reactions and boundary conditions,can be found in the papers of Chen-Yang[5],Leonardi-Papageorgiou[17],Marano-Marino-Papageorgiou[19],Motreanu-Motreanu-Papageorgiou[21],Papageorgiou-Repovs-Vetro[28],Papageorgiou-Zhang[31],Papageorgiou-Vetro-Vetro[29].Of the aforementioned works,[21]studies Neumann problems driven by the p-Laplacian,while the others consider equations driven by nonhomogeneous differential operators.A common feature of all these works is that the perturbation of the concave term is nonnegative (it can not change sign).Here we remove this restriction.In the book of Motreanu-Motreanu-Papageorgiou[22],the interested reader can find more about isotropic Dirichlet and Neumann elliptic boundary value problems.

    For anisotropic problems,there is only the recent work of Papageorgiou-Radulescu-Repovs[27]on Dirichlet equations driven by the p (z)-Laplacian plus an indefinite potential.

    We mention that equations driven by a combination of differential operators of different nature (such as (p,q)-equations) arise in many mathematical models of physical processes.We mention the works of Bahrouni-Radulescu-Repovs[2](transonic flow problems),Benci-D’Avenia-Fortunato-Pisani[3](quantum physics),Cher fils-Ilyasov[6](reaction-diffusion systems) and Zhikov[37](elasticity problems).We also refer to the two survey papers by Marano-Mosconi[20](isotropic problems) and Radulescu[32](isotropic and anisotropic problems).

    Our aim in this paper is to obtain positive solutions for problem (pλ) and to determine the precise dependence on the parameter λ>0 of the set of positive solutions of (pλ).Eventually we prove a bifurcation-type result describing the changes in the set of positive solutions as the parameter λ>0 moves on=(0,+∞).We also show the existence of a minimal positive solutionand establish the monotonicity and continuity properties of the map λ→.

    2 Mathematical Background-Hypotheses

    The study of anisotropic boundary value problems uses Lebesgue and Sobolev spaces with variable exponents.A comprehensive presentation of these spaces can be found in the book of Diening-Harjulehto-Hasto-Ruzicka[8].

    By M (Ω) we denote the space of all functions u:Ω→R which are Lebesgue measurable.As usual,we identify two such functions which differ only on a Lebesgue-null subset of Ω.Given any r∈,we define

    Let E1={r∈:1<r-}.Given r∈E1,the variable exponent Lebesgue space Lr (z)(Ω) is defined by

    We furnish Lr (z)(Ω) with the so-called“Luxemburg norm”given by

    The space Lr (z)(Ω) equipped with this norm is a separable and reflexive Banach space (actually Lr (z)(Ω) is uniformly convex).Let r′∈E1be defined by=1 for all z∈.Then Lr (z)(Ω)*=,and we have the following H?lder-type inequality:

    If r1,r2∈E1and r1(z)≤r2(z) for all z∈,then

    Having the variable exponent Lebesgue spaces,we can define in a natural way the variable exponent Sobolev spaces.Let r∈E1,we define

    W1,r (z)(Ω)={u∈Lr (z)(Ω):|Du|∈Lr (z)(Ω)},

    with the gradient of u defined in the weak sense.

    We furnish W1,r (z)(Ω) with the norm

    ‖u‖1,r (z)=‖u‖r (z)+‖|Du|‖r (z),?u∈W1,r (z)(Ω).

    In the sequel,for notational simplicity,we write‖Du‖r (z)=‖|Du|‖r (z).For r∈E1,the critical Sobolev exponent corresponding to r (·) is given by

    Important in the study of these variable exponent spaces is the following modular function:

    We write ρr(Du)=ρr(|Du|).The next proposition shows that there is a close relation between this modular function and the Luxemburg norm‖·‖r (z).As always,r∈E1.

    Proposition 2.1(a)‖u‖r (z)=λ=1 for all u∈Lr (z)(Ω),u0.

    On?Ω we consider the (N-1) dimensional Hausdorff (surface) measure σ.Using this measure,we can define as above the“boundary”variable exponent Lebesgue spaces Lr (z)(?Ω) with r∈E1(?Ω)=.From Fan[10],we know that there exists a unique,linear,compact map γ0:W1,p (z)(Ω)→Lp (z)(?Ω)(the“trace map”) such that γ0(u)=u|?Ωfor all u∈W1,p (z)(Ω)∩.In the sequel,for the sake of notational simplicity,we drop the use of γ0(·).All restrictions of the Sobolev functions on?Ω are understood in the sense of traces.

    For r∈E1∩,we consider the nonlinear map Ar (z):W1,r (z)(Ω)→W1,r (z)(Ω)*defined by

    This map has the following propertics (see Gasinski-Papageongiou[14,Proposition 2.5]and Radulescu-Repovs[33,p.40]):

    Proposition 2.2The map Ar (z):W1,r (z)(Ω)→W1,r (z)(Ω)*is bounded (that is,it maps bounded sets to bounded sets),continuous,monotone (hence maximal monotone too) and of type (S)+,that is,it has the following property:

    imply that

    un→uin W1,r (z)(Ω).

    We will also use the Banach space.This is an ordered Banach space with positive (order) cone C+=.This cone has a nonempty interior given by

    We will also use another open cone in,namely the cone

    As before,n (·) is the outward unit normal on?Ω.

    If u,v∈W1,r (z)(Ω) with u≤v,we define

    [u,v]={h∈W1,r (z)(Ω):u (z)≤h (z)≤v (z) for a.a z∈Ω},

    [u)={h∈W1,r (z)(Ω):u (z)≤h (z) for a.a z∈Ω}.

    A set S?W1,r (z)(Ω) is said to be downward directed if,for every pair (u1,u2)∈S×S,we can find u∈S such that u≤u1,u≤u2.

    In the sequel,for notational economy,by‖·‖we denote the norm of W1,p (z)(Ω).So

    ‖u‖=‖u‖p (z)+‖Du‖p (z)for all u∈W1,p (z)(Ω).

    Let X be a Banach space and φ∈C1(X).We define

    Kφ={u∈X:φ′(u)=0}(the critical set of φ).

    We say that φ(·) satisfies the“C-condition”if it has the following property:

    Every sequence{un}n≥1?X such that{φ(un)}n≥1?R is bounded and

    (1+‖un‖X)φ′(un)→0 in X*as n→∞

    admits a strongly convergent subsequence.

    Finally,given any u∈W1,p (z)(Ω),we define

    u+=max{u,0}and u-=max{-u,0}.

    We know that

    u±∈W1,p (z)(Ω),u=u+-u-,|u|=u++u-.

    Next,we introduce the conditions on the data of problem (pλ).

    H1:ξ∈L∞(Ω),ξ(z)≥0 for a.a.z∈Ω,β∈C0,α(?Ω) with α∈(0,1),β(z)≥0 for all z∈?Ω and.

    Remark 2.3This hypothesis incorporates in our framework the Neumann problem (β≡0).

    H2:f:Ω×R→R is a Caratheodory function such that f (z,0)=0 for a.a.z∈Ω and

    Hypotheses H2(ii),(iii) imply that

    Thus,the perturbation f (z,·) is (p+-1)-superlinear.However,this superlinearity hypothesis on f (z,·) is not formulated in terms of the AR-condition,which is common in the literature (see for example Deng[7]).Recall that the AR-condition says that there exist μ>p+and M>0 such that

    In fact,this is a unilateral version of the AR-condition due to (2.1).Integrating the first inequality and using the second,we obtain the weaker condition

    This excludes from consideration nonlinearities f (z,·) with growth slower than the (μ-1)-polynomial one.For example,consider the function

    This function satisfies our hypotheses H2,but fails to satisfy the AR-condition.

    Hypothesis H2(iv) says that f (z,·) is (p+-1)-sublinear near zero.Finally,hypothesis H2(v) is satisfied if,for example,f (z,·) is differentiable and for every ρ>0,we can find>0 such that

    For ξ∈L∞(Ω) with ξ(z)≥0 for a.a.z∈Ω,ξ0,we introduce the seminorm:Lp (z)(Ω)→R defined by

    Proposition 2.5If p∈E1,ξ∈L∞(Ω),ξ(z)≥0 for a.a.z∈Ω,ξ0,then‖·‖and|·|are equivalent norms on W1,p (z)(Ω).

    ProofIt is clear from the definition of the two norms that

    ClaimThere exists c3>0 such that‖u‖p (z)≤c3|u|for all u∈W1,p (z)(Ω).

    We argue indirectly.Suppose that the Claim is not true.Then we can find{un}n≥1?W1,p (z)(Ω) such that

    ‖un‖p (z)>n|un|for all n∈N.

    Normalizing in Lp (z)(Ω),we see that

    We have that

    {un}n≥1?W1,p (z)(Ω) is bounded (recall‖un‖p (z)=1,n∈N),

    so,by passing to a subsequence if necessary,we may assume that

    From (2.2) and (2.3) we have that

    We have

    so we get

    For λ∈(0,1),we have

    Since λ∈(0,1) is arbitrary,we let λ→0+and obtain that

    which leads to a contradiction,since by normalization in Lp (z)(Ω),we have‖un‖p (z)=1 for all n∈N. □

    Corollary 2.6If p∈E1,ξ∈L∞(Ω),ξ(z)≥0 for a.a.z∈Ω,ξ0,then

    Next,let β∈L∞(?Ω),β(z)≥0 for σ-a.a.z∈?Ω,β0,and introduce the seminorm η:Lp (z)(?Ω)→R defined by

    Again we easily see that this is a norm on W1,p (z)(Ω).

    Proposition 2.7If p∈E1,β∈L∞(?Ω),β(z)≥0 for σ-a.a.z∈?Ω and β0,then‖·‖and|·|bare equivalent norms on W1,p (z)(Ω).

    ProofFrom the (compact) embedding of W1,p (z)(Ω) into Lp (z)(?Ω)(via the trace map),we see that

    Also,via a contradiction argument as in the“Claim”in the proof of Proposition 2.5,we show that

    Then,from (2.4) and (2.5),we conclude that‖·‖and|·|bare equivalent norms on W1,p (z)(Ω). □

    Corollary 2.8If p∈E1,β∈L∞(?Ω) and β(z)≥0 for σ-a.a.z∈?Ω and β0,then

    Combining Corollaries 2.6 and 2.8,we can state the following proposition:

    Proposition 2.9If p∈E1and hypotheses H1hold,then

    3 Existence and Multiplicity of Positive Solutions

    We introduce the following two sets:

    In the next proposition,we establish the nonemptiness of L and determine the regularity properties of the elements of the solution set Sλ.

    Proposition 3.1If hypotheses H0,H1,H2hold,then Lφ and for all λ>0,Sλ?intC+.

    ProofFor η∈(0,1]we consider the following anisotropic Robin problem

    Evidently,this map is bounded (that is,it maps bounded sets to bounded sets),continuous,monotone (see Proposition 2.2),and thus maximal monotone.Also,for all u∈W1,p (z)(Ω),we have that

    We know that a maximal monotone,coercive operator is surjective (see Papageorgiou-Radulescu-Repovs[26,p.135]),so we can findsuch that

    From (3.2) and the nonlinear Green’s identity (see also Papageorgiou-Radulescu-Repovs[26,p.35],we have

    From the anisotropic regularity theory (see Fan[9]and Tan-Fang[35]and for isotropic equations Lieberman[18]),we have∈C+{0}.From (3.3) and the maximum principle of Papageorgiou-Qin-Radulescu[24](see also Zhang[36]),we have for η∈(0,1]small

    Next we show the uniqueness of this solution.To this end,we consider the integral functional j:L1(Ω)→=R∪{+∞}defined by

    By Theorem 2.2 of Taka?-Giacomoni[34],the functional j (·) is convex.Let domj={u∈L1(Ω):j (u)<+∞}(the effective domain of j (·)).

    From (3.4),(3.5) and Proposition 4.1.22(p.274) of Papageorgiou-Radulescu-Repovs[26],we have∈L∞(Ω).Thus,if h=,then for|t|<1 small,we have that

    Then,on account of the convexity of j (·),it is Gateaux differentiable atand atin the direction h,and using the nonlinear Green’s identity and the chain rule,we have that

    The convexity of j (·) implies the monotonicity of j′(·),so,we have

    This proves the uniqueness of the solution∈intC+of (3.3).

    On account of hypotheses H2(i),(iv),given∈∈(see (3.4)),we can find>0 such that

    Then we have

    Recall that p+<r.Then,choosing η∈(0,1]small,we can have that

    Also note that for all η∈(0,1],for some>0(see (3.4)).Let λ0>0 be such that

    Thus,we finally have

    Then we have

    We consider the following truncation of the reaction in problem (pλ):

    This is a Caratheodory function.We set Gλ(z,x)=and introduce the C1-functional ψλ:W1,p (z)(Ω)→R,0<λ≤λ0defined by

    Using Proposition 2.9 and (3.8),we see that

    ψλ(·) is coercive.

    Also,the compact embedding of W1,p (z)(Ω) into Lp (z)(Ω) and the compactness of the trace map imply that

    ψλ(·) is sequentially weakly lower semicontinuous.

    Therefore,by the Weierstrass-Tonelli theorem,we can find uλ∈W1,p (z)(Ω) such that

    Let u∈intC+and pick t∈(0,1) small such that tu≤(see[26,p.274],and recall that∈inf C+).Using (3.8) and hypotheses H2(i),we have that

    We know that τ+<q-(see hypotheses H0),so,using hypothesis H2(iv) and choosing t∈(0,1) even smaller if necessary,we have that

    From (3.9),we have that

    In (3.10) first we choose h=∈W1,p (z)(Ω).We obtain

    Thus,we have proved that

    From (3.11),(3.8) and (3.10),we see that

    Moreover,as before,the regularity theory and the maximum principle imply Sλ?intC+for all λ>0. □

    Next we prove a structural property L;namely,we show that L is connected (an interval).

    Proposition 3.2If hypotheses H0,H1and H2hold,and λ∈L and 0<μ<λ,then μ∈L.

    ProofSince λ∈L,we can find uλ∈Sλ?intC+.Then we introduce the following truncation of the reaction in problem (pμ):

    This is a Caratheodory function.We set Kμ(z,x)=and consider the C1-functional:W1,p (z)(Ω)→R defined by

    As in the proof of Proposition 3.1,sinceis coercive (see (3.12) and Proposition 2.9) and sequentially weakly lower semicontinuous,we can find uμ∈W1,p (z)(Ω) such that

    Since τ+<q-(see hypotheses H0),as before (see the proof of Proposition 3.1),we show that

    From (3.13) we have that

    Therefore,uμ∈Sμ?intC+and μ∈L. □

    In the above proof,in addition to showing that μ∈L,we have also proved that if uλ∈Sλ?intC+,we can find uμ∈Sμ?intC+such that uμ≤uλ.We can improve this conclusion as follows:

    Proposition 3.3If hypotheses H0,H1and H2hold,and λ∈L,uλ∈Sλ?intC+and 0<μ<λ,then μ∈L,and we can find uμ∈Sμ?intC+such that

    uλ-uμ∈D+.

    ProofFrom Proposition 3.2 and its proof,we know that μ∈L,and we can find uμ∈Sμ?intC+such that

    Let ρ=‖uλ‖∞and let>0 be as postulated by hypothesis H2(v).We have

    with c9=>0,mμ=>0 since uμ∈intC+(see (3.14),and use hypothesis H2(v))

    Since[λ-μ]c9>0,from Papageorgiou-Qin-Radulescu[20](Proposition 5),we infer that uλ-uμ∈D+. □

    Let λ*=supL.Then we have

    Proposition 3.4If hypotheses H0,H1and H2hold,then λ*<∞.

    ProofSince τ+<q-,and using hypotheses H2(ii),(iii) and (iv),we see that we can find>0 big such that

    For all 0<δ≤δ0≤1,we will have

    so,from (3.16) and Papageorgiou-Qin-Radulescu[20](Proposition 5),we have

    which is a contradiction.Therefore 0<λ*≤<∞. □

    Next,we prove a multiplicity result for λ∈(0,λ*).

    Proposition 3.5If hypotheses H0,H1and H2hold and λ∈(0,λ*),then problem (pλ) admits at least two positive solutions:

    ProofLet η∈(λ,λ*).We know that η,λ∈L (see Proposition 3.2).Moreover,from Proposition 3.3,we know that we can find uη∈Sηand u0∈Sλsuch that uη-u0∈intC+.We introduce the Caratheodory function eλ(z,x) defined by

    We set Eλ(z,x)=and consider the C1-functional μλ:W1,p (z)(Ω)→R defined by

    Also,we introduce the following truncation of eλ(z,·):

    From (3.17) and (3.18) we see that

    Moreover,using (3.17) and (3.18),we easily check that

    Then,on account of (3.20) and (3.21),we infer that,without any loss of generality,we may assume that

    Otherwise,we already have a second positive smooth solution bigger than u0,and so we are done.

    From Proposition 3.2 and (3.18) it is clear thatis coercive,and also that it is sequentially weakly lower semicontinuous.Thus,we can find∈W1,p (z)(Ω) such that

    Recalling that uη-u0∈D+,it follows that

    (see Gasinski-Papageorgiou[14,Proposition 3.3]and Tan-Fang[35,Theorem 3.2]).

    On account of (3.20) and (3.17),we may assume that

    Otherwise,we already have an infinity of positive smooth solutions all bigger than u0and so we are done.From (3.23),(3.24) and Theorem 5.7.6 of Papageorgiou-Radulescu-Repovs[26,p.449],we know that we can find ρ∈(0,1) small such that

    From hypothesis H2(ii) and (3.17),we see that,if u∈intC+,then

    Claimμλ(·) satisfies the C-condition.

    Let{un}n≥1?W1,p (z)(Ω) such that

    From (3.28) we have that

    Then,from (3.27) and (3.30),it follows that

    On the other hand,from (3.29),with h=∈W1,p (z)(Ω),we have that

    We add (3.31) and (3.32) and obtain

    Hypotheses H2(i),(iii) imply that we can find c16>0 such that

    Using (3.34) in (3.33),we obtain

    From hypothesis H2(iii),we see that we may always assume that θ-<r<.Let t∈(0,1) such that

    Invoking the interpolation inequality (see,for example,Papageorgiou-Winkert[30,p.116],we have that

    From hypothesis H2(i),we have that

    Since our goal is to show the boundedness of?W1,p (z)(Ω),there is no loss of generality in assuming that≥1 for all n∈N.In (3.29) we choose h=∈W1,p (z)(Ω) and using (3.37),(3.38),(3.17) and Proposition 2.9,we have that

    From (3.36) we have that

    From (3.30) and (3.40) it follows that

    {un}n≥1?W1,p (z)(Ω) is bounded,

    so we may assume that

    In (3.29) we choose h=un-u∈W1,p (z)(Ω),pass to the limit as n→∞,and use (3.41).We obtain

    Therefore μλ(·) satisfies the C-condition.This proves the Claim.

    Then (3.25),(3.26) and the Claim permit the use of the mountain pass theorem.Thus,we can find∈W1,p (z)(Ω) such that

    From (3.42),(3.17) and (3.29),we infer that

    Finally,it remains to decide whether the critical parameter value λ*>0 is admissible (that is,if λ*∈L).To do this,we need to do some preliminary work,which will also be useful in Section 4.

    From hypotheses H2(i),(iv),we see that we can find c21>0 such that

    Therefore we have

    Motivated by this unilateral growth estimate for the reaction of problem (pλ),we consider the following auxliary anisotropic Robin problem:

    Proposition 3.6If hypotheses H0,H1hold and λ>0,then problem (Qλ) admits a unique positive solution∈inf C+,and the map λ→frominto C+is nondecresing,that is,

    ProofFirst we show the existence of a positive solution for problem (Qλ).To this end,we consider the C1-functional ξλ:W1,p (z)(Ω)→R defined by

    Since τ+<q-≤q+<p+,and using Proposition 2.9,we see that

    ζλ(·) is coercive.

    Also,ζλ(·) is sequentially weakly lower semicontinuous.Thus,we can find∈W1,p (z)(Ω) such that

    In addition,the regularity theory and the maximum principle imply that

    Using the integral functional j (·) from the proof of Proposition 3.1,we show,exactly as in that proof,that the positive solution∈intC+is unique.

    Finally we show the monotonicity of the solution map λ→.

    We set Bμ(z,x)=and consider the C1-functional dμ:W1,p (z)(Ω)→R defined by

    Evidently,dμ(·) is coercive (see (3.44)) and sequentially weakly lower semicontinuous.Therefore,we can find∈W1,p (z)(Ω) such that

    The unique positive solution∈intC+of (Qλ) provides a lower bound for the elements of Sλ.

    Proposition 3.7If hypotheses H0,H1and H2hold and λ∈L,then

    ProofLet u∈Sλ?intC+and consider the continuous on×R function wλ(z,x) defined by

    We set Wλ(z,x)=and consider the C1-functional iλ:W1,p (z)(Ω)→R defined by

    The functional is coercive and sequentially weakly lower semicontinuous,so we can find∈W1,p (z)(Ω) such that

    In (3.46),first we choose h=∈W1,p (z)(Ω),and using (3.45) we show that≥0,0.Next,in (3.46),we choose h=∈W1,p (z)(Ω).Then

    Thus,we have proved that

    From (3.47),(3.45) and (3.46),we infer that

    Now we are ready to prove the admissibility of the critical parameter λ*>0.In what follows by φλ:W1,p (z)(Ω)→R,we denote the C1-energy functinonal of problem (pλ) defined by

    Proposition 3.8If hypotheses H0,H1and H2hold,then λ*∈L.

    ProofLet λn∈(0,λ*)?L such that λn↑λ*and un∈?intC+,n∈N.From the proof of Proposition 3.2,we know that we can have

    Using (3.48)(3.49),and reasoning as in the Claim in the proof of Proposition 3.5,we obtain that

    From (3.49),in the limit as n→∞,we have that

    Therefore,we have established that

    L=(0,λ*].

    Summarizing our findings in this section,we can formulate the following bifurcation-type theorem,describing the dependence of the set of positive solutions on the parameter λ>0:

    Theorem 3.9If hypotheses H0,H1and H2hold,then there exists a critical parameter value λ*>0 such that

    (a) for every λ∈(0,λ*),problem (pλ) has at least two positive solutions:

    (b) for λ=λ*,problem (pλ) has at least one positive solution:

    u*∈intC+;

    (c) for every λ>λ*,problem (pλ) has no positive solution.

    Remark 3.10Note that in the multiplicity result (that is,for λ∈(0,λ*)),the two solutions are ordered.

    4 Minimal Positive Solutions

    In this section we show that for every λ∈L=(0,λ*],problem (pλ) has a smallest positive solution∈intC+(minimal positive solution),and we determine the monotonicity and continuity properties of the map L?λ→uλ∈C+.

    From Papageorgiou-Radulescu-Repovs[25](see the proof of Proposition 2.9),we know that the set Sλis downward directed.

    Proposition 4.1If hypotheses H0,H1,H2hold,and λ∈L=(0,λ*],then the problem (pλ) has a smallest positive solution∈intC+.

    ProofFrom Lemma 3.10 of Hu-Papageorgiou[15,p.178],we know that we can find a decreasing sequence{un}n≥1?Sλsuch that

    {un}n≥1?W1,p (z)(Ω) is bounded.

    Thus we may assume that

    In (4.1) we use that test function h=un-∈W1,p (z)(Ω),pass to the limit as n→∞,and use (4.2).Then

    Proposition 4.2If hypotheses H0,H1and H2hold,then the minimal solution map λ→from L=(0,λ*]intohas the following properties:

    (a) it is strictly increasing,that is,if 0<μ<λ≤λ*,then

    (b) it is left continuous.

    Proof(a) Suppose that 0<μ<λ≤λ*.According to Proposition 3.3,we can find uμ∈Sμ?inf C+such that

    (b) Let λn→λ-with λn∈L for all n∈N.Then λ∈L,and we have that

    Then,from Fan-Zhao[11,Theorem 4.1](see also Gasinski-Papageorgiou[14,Proposition 3.3]and Tan-Fang[35,Theorem 3.1],we have that

    Then the anisotropic regularity theory (see Tan-Fang[35]) implies that there exist α∈(0,1) and c23>0 such that

    which contradicts (a).

    Summarizing our findings in this section,we can state the following theorem:

    Theorem 4.3If hypotheses H0,H1and H2hold,then for every λ∈L=(0,λ*],problem (pλ) has a smallest positive solution∈intC+,and the map λ→from L intois strictly increasing in the sense that 0<μ<λ≤λ*?∈D+,and is left continuous.

    自线自在国产av| 久久久久国内视频| 久久久水蜜桃国产精品网| 欧美黑人欧美精品刺激| 欧美激情 高清一区二区三区| 黄色毛片三级朝国网站| 美女国产高潮福利片在线看| 免费看a级黄色片| 日本黄色日本黄色录像| 高清毛片免费观看视频网站 | 国产精品久久久久久精品古装| av在线播放免费不卡| 欧美日韩中文字幕国产精品一区二区三区 | 国产不卡av网站在线观看| 狠狠婷婷综合久久久久久88av| bbb黄色大片| 我的亚洲天堂| 久热爱精品视频在线9| 巨乳人妻的诱惑在线观看| 国产av精品麻豆| 日本一区二区免费在线视频| 9191精品国产免费久久| 国产日韩欧美亚洲二区| 老司机影院毛片| 99热国产这里只有精品6| 91老司机精品| 亚洲精品国产区一区二| 欧美日本中文国产一区发布| 18禁黄网站禁片午夜丰满| xxxhd国产人妻xxx| 亚洲成人免费电影在线观看| 美女高潮喷水抽搐中文字幕| 欧美成狂野欧美在线观看| 久久影院123| 久久青草综合色| 激情视频va一区二区三区| 久久久欧美国产精品| 母亲3免费完整高清在线观看| 中文字幕色久视频| 我要看黄色一级片免费的| 国产男靠女视频免费网站| 色94色欧美一区二区| 日本av免费视频播放| 国产日韩一区二区三区精品不卡| 欧美日韩黄片免| 美女午夜性视频免费| 免费少妇av软件| 日韩欧美一区视频在线观看| 欧美老熟妇乱子伦牲交| 老司机影院毛片| 亚洲一区二区三区欧美精品| 正在播放国产对白刺激| 亚洲三区欧美一区| 99在线人妻在线中文字幕 | 国产片内射在线| 水蜜桃什么品种好| 亚洲第一青青草原| 香蕉国产在线看| 国产日韩一区二区三区精品不卡| 欧美成人午夜精品| 日韩欧美三级三区| 成年人黄色毛片网站| 黄片播放在线免费| 丝瓜视频免费看黄片| 视频区欧美日本亚洲| 操出白浆在线播放| 热re99久久国产66热| 天天躁夜夜躁狠狠躁躁| 91成年电影在线观看| 无人区码免费观看不卡 | 人成视频在线观看免费观看| 国产人伦9x9x在线观看| 纯流量卡能插随身wifi吗| 啦啦啦 在线观看视频| 国产极品粉嫩免费观看在线| 一本大道久久a久久精品| 久久久国产欧美日韩av| 人成视频在线观看免费观看| 午夜免费鲁丝| 狠狠精品人妻久久久久久综合| 欧美激情极品国产一区二区三区| 午夜精品久久久久久毛片777| 看免费av毛片| 一边摸一边做爽爽视频免费| 极品少妇高潮喷水抽搐| 成人影院久久| 国产亚洲午夜精品一区二区久久| 丰满迷人的少妇在线观看| 欧美大码av| 我的亚洲天堂| 欧美国产精品va在线观看不卡| 亚洲中文字幕日韩| 国产亚洲精品第一综合不卡| 亚洲久久久国产精品| 免费观看av网站的网址| 亚洲人成电影观看| 三级毛片av免费| 欧美成人免费av一区二区三区 | 夜夜爽天天搞| 国产国语露脸激情在线看| 国产精品免费大片| 亚洲国产欧美在线一区| 91麻豆精品激情在线观看国产 | 波多野结衣一区麻豆| 日本欧美视频一区| 妹子高潮喷水视频| 波多野结衣av一区二区av| 亚洲精品国产精品久久久不卡| 免费看十八禁软件| 国产精品一区二区在线观看99| 久久精品91无色码中文字幕| e午夜精品久久久久久久| 久久久久视频综合| 视频区欧美日本亚洲| 久久亚洲真实| 无人区码免费观看不卡 | 男人舔女人的私密视频| 国产精品久久久人人做人人爽| 老司机影院毛片| 又大又爽又粗| 狂野欧美激情性xxxx| 久久青草综合色| 亚洲精品成人av观看孕妇| 精品人妻1区二区| 亚洲av日韩精品久久久久久密| 精品久久久久久电影网| 手机成人av网站| 久久天堂一区二区三区四区| 波多野结衣一区麻豆| 亚洲av片天天在线观看| 国产日韩欧美亚洲二区| 天天操日日干夜夜撸| 国产片内射在线| 老汉色∧v一级毛片| 国产三级黄色录像| 桃花免费在线播放| 精品国产国语对白av| 亚洲欧美激情在线| 亚洲精品一二三| 欧美日韩中文字幕国产精品一区二区三区 | 国产日韩一区二区三区精品不卡| 老熟女久久久| 狠狠婷婷综合久久久久久88av| 午夜成年电影在线免费观看| 999久久久国产精品视频| 亚洲性夜色夜夜综合| av又黄又爽大尺度在线免费看| 一级a爱视频在线免费观看| 人妻一区二区av| 免费在线观看黄色视频的| 国产成+人综合+亚洲专区| 人妻 亚洲 视频| 91国产中文字幕| 91精品国产国语对白视频| 精品亚洲成a人片在线观看| 国产成人精品久久二区二区91| 国产人伦9x9x在线观看| 麻豆成人av在线观看| 黄色视频在线播放观看不卡| 91麻豆av在线| 久久性视频一级片| 色综合欧美亚洲国产小说| 亚洲中文日韩欧美视频| 变态另类成人亚洲欧美熟女 | 黄色 视频免费看| 国产xxxxx性猛交| www.999成人在线观看| 天天躁夜夜躁狠狠躁躁| 精品亚洲成国产av| 久久天堂一区二区三区四区| 国产精品.久久久| 桃红色精品国产亚洲av| 欧美一级毛片孕妇| 色综合婷婷激情| 不卡一级毛片| 国产欧美日韩一区二区三| 交换朋友夫妻互换小说| 亚洲免费av在线视频| 啦啦啦视频在线资源免费观看| 亚洲欧美日韩另类电影网站| 亚洲美女黄片视频| 视频区欧美日本亚洲| 亚洲熟女精品中文字幕| 欧美大码av| 亚洲专区国产一区二区| 成年动漫av网址| 久久人妻福利社区极品人妻图片| 久久这里只有精品19| 亚洲欧美日韩高清在线视频 | 久久免费观看电影| 精品午夜福利视频在线观看一区 | 狠狠精品人妻久久久久久综合| 国产亚洲精品第一综合不卡| 老司机靠b影院| 亚洲男人天堂网一区| 欧美乱妇无乱码| 久久国产亚洲av麻豆专区| 97在线人人人人妻| 99在线人妻在线中文字幕 | 一个人免费在线观看的高清视频| 黄色片一级片一级黄色片| 精品欧美一区二区三区在线| 久久国产精品人妻蜜桃| 超碰成人久久| 欧美成人午夜精品| 久久久精品免费免费高清| 亚洲性夜色夜夜综合| 美女主播在线视频| 正在播放国产对白刺激| 下体分泌物呈黄色| 国产免费av片在线观看野外av| 黄色视频不卡| 女人久久www免费人成看片| 久久婷婷成人综合色麻豆| 久久久精品免费免费高清| 国产有黄有色有爽视频| 一进一出抽搐动态| 我的亚洲天堂| 下体分泌物呈黄色| 999精品在线视频| 国产不卡av网站在线观看| 亚洲精品中文字幕一二三四区 | 亚洲国产欧美网| 婷婷成人精品国产| 国产精品免费一区二区三区在线 | av天堂久久9| 亚洲午夜精品一区,二区,三区| 国产野战对白在线观看| 久久国产精品大桥未久av| 一区二区av电影网| 久久精品国产综合久久久| 亚洲精品在线观看二区| 精品国产乱码久久久久久男人| 91麻豆av在线| 国产精品久久久久久精品电影小说| 亚洲第一av免费看| 日本五十路高清| 日韩欧美国产一区二区入口| 国产一区二区三区综合在线观看| 三级毛片av免费| 亚洲欧美一区二区三区久久| 十八禁高潮呻吟视频| 高清黄色对白视频在线免费看| 成人18禁在线播放| 成年人午夜在线观看视频| 91字幕亚洲| 大陆偷拍与自拍| 久久久久久亚洲精品国产蜜桃av| 欧美国产精品va在线观看不卡| 99久久人妻综合| 成在线人永久免费视频| 两人在一起打扑克的视频| 精品福利观看| 亚洲成av片中文字幕在线观看| 操美女的视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 婷婷成人精品国产| 亚洲精品一二三| 久久久久国内视频| 国产亚洲午夜精品一区二区久久| 高清欧美精品videossex| 日本黄色视频三级网站网址 | 中文字幕人妻丝袜制服| 久久久久国产一级毛片高清牌| 大片免费播放器 马上看| 亚洲美女黄片视频| 大型av网站在线播放| 最近最新中文字幕大全电影3 | 国产日韩一区二区三区精品不卡| 久久久精品区二区三区| 人人妻人人澡人人爽人人夜夜| 亚洲成国产人片在线观看| netflix在线观看网站| 亚洲国产看品久久| a在线观看视频网站| 一级毛片女人18水好多| 老熟女久久久| 色精品久久人妻99蜜桃| 91老司机精品| 国产精品影院久久| 精品国产乱码久久久久久男人| √禁漫天堂资源中文www| 精品少妇一区二区三区视频日本电影| 久久国产精品男人的天堂亚洲| 久久免费观看电影| 免费av中文字幕在线| 在线十欧美十亚洲十日本专区| 国产淫语在线视频| 高清毛片免费观看视频网站 | 成人av一区二区三区在线看| 捣出白浆h1v1| 国产区一区二久久| 欧美 亚洲 国产 日韩一| 免费黄频网站在线观看国产| 国内毛片毛片毛片毛片毛片| 欧美亚洲 丝袜 人妻 在线| av国产精品久久久久影院| 97在线人人人人妻| 叶爱在线成人免费视频播放| 国产欧美日韩一区二区精品| 欧美黄色淫秽网站| 热re99久久国产66热| 精品亚洲成国产av| 免费女性裸体啪啪无遮挡网站| √禁漫天堂资源中文www| 欧美日韩av久久| 国产欧美日韩一区二区三| 99精品久久久久人妻精品| 搡老熟女国产l中国老女人| 丁香欧美五月| 亚洲精华国产精华精| 我的亚洲天堂| 亚洲 国产 在线| 叶爱在线成人免费视频播放| 一级片'在线观看视频| 欧美成人午夜精品| 啦啦啦 在线观看视频| 老司机午夜福利在线观看视频 | 在线观看www视频免费| 在线观看免费视频网站a站| 国产黄色免费在线视频| 法律面前人人平等表现在哪些方面| 不卡av一区二区三区| 国产高清激情床上av| 午夜福利在线观看吧| 国产高清videossex| 欧美性长视频在线观看| 久久久精品免费免费高清| 日本av免费视频播放| 精品卡一卡二卡四卡免费| 国产又爽黄色视频| 成人手机av| 国产成+人综合+亚洲专区| 久久精品国产亚洲av香蕉五月 | 久久天躁狠狠躁夜夜2o2o| 两个人看的免费小视频| 18禁观看日本| 满18在线观看网站| 精品第一国产精品| 纯流量卡能插随身wifi吗| 亚洲av日韩在线播放| 久久人妻av系列| 在线观看一区二区三区激情| 亚洲av国产av综合av卡| 热re99久久国产66热| 少妇被粗大的猛进出69影院| 国产国语露脸激情在线看| 99九九在线精品视频| 国产日韩欧美在线精品| 久久精品亚洲av国产电影网| 美国免费a级毛片| 蜜桃在线观看..| 亚洲国产av影院在线观看| 午夜激情av网站| 男女床上黄色一级片免费看| 极品人妻少妇av视频| 国产老妇伦熟女老妇高清| 他把我摸到了高潮在线观看 | 另类精品久久| 亚洲九九香蕉| 国产高清国产精品国产三级| 99久久人妻综合| 免费人妻精品一区二区三区视频| 热99国产精品久久久久久7| 欧美av亚洲av综合av国产av| 久久亚洲真实| 啦啦啦视频在线资源免费观看| 久久亚洲精品不卡| 99热国产这里只有精品6| 丝袜美足系列| 无遮挡黄片免费观看| 日韩有码中文字幕| 亚洲欧美精品综合一区二区三区| 俄罗斯特黄特色一大片| 脱女人内裤的视频| 日韩欧美一区二区三区在线观看 | 交换朋友夫妻互换小说| 99九九在线精品视频| 人妻 亚洲 视频| 国产成人av教育| 亚洲精品成人av观看孕妇| 两个人免费观看高清视频| 久9热在线精品视频| 午夜福利视频精品| 欧美av亚洲av综合av国产av| 桃红色精品国产亚洲av| 久久久久网色| 午夜福利免费观看在线| 精品第一国产精品| 久久精品aⅴ一区二区三区四区| 国产av又大| 一级a爱视频在线免费观看| 香蕉丝袜av| 脱女人内裤的视频| 巨乳人妻的诱惑在线观看| 精品熟女少妇八av免费久了| 亚洲午夜精品一区,二区,三区| av有码第一页| 亚洲国产中文字幕在线视频| 日本五十路高清| 久9热在线精品视频| 91九色精品人成在线观看| 欧美性长视频在线观看| av在线播放免费不卡| a在线观看视频网站| 99九九在线精品视频| 精品人妻熟女毛片av久久网站| 91av网站免费观看| 少妇猛男粗大的猛烈进出视频| 亚洲精品一二三| 成人三级做爰电影| 91九色精品人成在线观看| avwww免费| 肉色欧美久久久久久久蜜桃| 亚洲国产欧美网| 国产在线观看jvid| 免费看十八禁软件| 丰满少妇做爰视频| 日韩欧美三级三区| 国产亚洲午夜精品一区二区久久| 丁香六月天网| 精品一区二区三区四区五区乱码| 少妇粗大呻吟视频| 桃红色精品国产亚洲av| 一边摸一边抽搐一进一出视频| 国产一区二区三区在线臀色熟女 | 亚洲精品在线观看二区| 久久久久国内视频| 一区二区三区乱码不卡18| 人妻一区二区av| 亚洲成国产人片在线观看| 老熟女久久久| 99香蕉大伊视频| 黑人巨大精品欧美一区二区mp4| 国产一区二区三区综合在线观看| 99热国产这里只有精品6| 中文亚洲av片在线观看爽 | 亚洲av第一区精品v没综合| 亚洲色图综合在线观看| kizo精华| 777米奇影视久久| 丝袜在线中文字幕| 欧美成狂野欧美在线观看| 动漫黄色视频在线观看| 久久精品91无色码中文字幕| 男男h啪啪无遮挡| 国产精品麻豆人妻色哟哟久久| 汤姆久久久久久久影院中文字幕| 国产成+人综合+亚洲专区| 美女高潮到喷水免费观看| 亚洲精品国产色婷婷电影| 97在线人人人人妻| 免费观看a级毛片全部| 手机成人av网站| 啦啦啦 在线观看视频| 丰满人妻熟妇乱又伦精品不卡| 乱人伦中国视频| 国产亚洲精品久久久久5区| 国产高清国产精品国产三级| 国产又爽黄色视频| 国产精品美女特级片免费视频播放器 | 国产xxxxx性猛交| 国产一区二区在线观看av| 亚洲精品一卡2卡三卡4卡5卡| 国产精品国产高清国产av | 国产欧美亚洲国产| 99在线人妻在线中文字幕 | 久久这里只有精品19| 国产单亲对白刺激| 精品一区二区三区视频在线观看免费 | 老司机午夜十八禁免费视频| 不卡av一区二区三区| 日韩熟女老妇一区二区性免费视频| 国产成人av激情在线播放| av欧美777| 国产成人欧美在线观看 | 免费黄频网站在线观看国产| 后天国语完整版免费观看| 激情视频va一区二区三区| 亚洲七黄色美女视频| 精品国产乱子伦一区二区三区| 人妻 亚洲 视频| 首页视频小说图片口味搜索| 日韩欧美国产一区二区入口| 成人黄色视频免费在线看| 亚洲熟女毛片儿| 久久精品91无色码中文字幕| 99九九在线精品视频| 亚洲五月色婷婷综合| 69av精品久久久久久 | 成在线人永久免费视频| 国产片内射在线| 亚洲成人免费av在线播放| e午夜精品久久久久久久| 乱人伦中国视频| 男人操女人黄网站| 中文亚洲av片在线观看爽 | 精品久久久久久电影网| 亚洲三区欧美一区| 纵有疾风起免费观看全集完整版| 久久人妻av系列| 另类亚洲欧美激情| 亚洲精品国产一区二区精华液| 成年人午夜在线观看视频| 曰老女人黄片| 99精国产麻豆久久婷婷| 丝袜美足系列| 女人久久www免费人成看片| 人人澡人人妻人| a级片在线免费高清观看视频| 国产亚洲午夜精品一区二区久久| av在线播放免费不卡| 日韩中文字幕视频在线看片| 丝袜喷水一区| 国产精品秋霞免费鲁丝片| 亚洲 国产 在线| 国产一区二区在线观看av| 久久人人97超碰香蕉20202| 国产欧美日韩综合在线一区二区| 麻豆乱淫一区二区| 久久久久国内视频| 国产视频一区二区在线看| 国产黄频视频在线观看| 热re99久久精品国产66热6| 国产色视频综合| 亚洲中文字幕日韩| 汤姆久久久久久久影院中文字幕| 国产精品久久久久久精品电影小说| 欧美激情高清一区二区三区| 亚洲专区字幕在线| 肉色欧美久久久久久久蜜桃| 丝袜美足系列| 国产有黄有色有爽视频| 色综合婷婷激情| 国产免费现黄频在线看| 美女福利国产在线| 亚洲精品粉嫩美女一区| 男男h啪啪无遮挡| 俄罗斯特黄特色一大片| netflix在线观看网站| 99精国产麻豆久久婷婷| 两性午夜刺激爽爽歪歪视频在线观看 | 91精品三级在线观看| 高潮久久久久久久久久久不卡| 久久久欧美国产精品| 天堂8中文在线网| 国产欧美日韩精品亚洲av| 久久99热这里只频精品6学生| 亚洲久久久国产精品| 久久人妻av系列| 久久久久精品人妻al黑| 日本av手机在线免费观看| 午夜福利,免费看| 色视频在线一区二区三区| 19禁男女啪啪无遮挡网站| 少妇猛男粗大的猛烈进出视频| 亚洲性夜色夜夜综合| 亚洲专区字幕在线| 性色av乱码一区二区三区2| 又紧又爽又黄一区二区| 中文欧美无线码| 12—13女人毛片做爰片一| 亚洲国产av新网站| 日韩视频在线欧美| 国产亚洲午夜精品一区二区久久| av视频免费观看在线观看| 久久久久精品国产欧美久久久| 日本精品一区二区三区蜜桃| 色视频在线一区二区三区| 视频区欧美日本亚洲| av电影中文网址| 久久99一区二区三区| 女性被躁到高潮视频| 久久免费观看电影| 超碰97精品在线观看| 国产精品美女特级片免费视频播放器 | av网站在线播放免费| 欧美黑人欧美精品刺激| 啦啦啦视频在线资源免费观看| 国产男女超爽视频在线观看| 欧美人与性动交α欧美软件| 叶爱在线成人免费视频播放| 女人爽到高潮嗷嗷叫在线视频| 久久中文字幕人妻熟女| 不卡av一区二区三区| 免费观看av网站的网址| 亚洲午夜理论影院| 亚洲,欧美精品.| 成人18禁高潮啪啪吃奶动态图| 一进一出好大好爽视频| 成人18禁高潮啪啪吃奶动态图| 久久久久精品人妻al黑| 亚洲欧洲精品一区二区精品久久久| 日韩 欧美 亚洲 中文字幕| 欧美日韩亚洲国产一区二区在线观看 | 成年人黄色毛片网站| 久久久久久久国产电影| 欧美黄色淫秽网站| 国产免费av片在线观看野外av| 久久久久久久久免费视频了| 国产精品九九99| 美女福利国产在线| 国产伦人伦偷精品视频| 777久久人妻少妇嫩草av网站| 丝袜人妻中文字幕| 动漫黄色视频在线观看| 精品国产乱码久久久久久小说| 新久久久久国产一级毛片| 日韩大片免费观看网站| 国产高清激情床上av| 亚洲色图综合在线观看| 久久国产精品大桥未久av| 国产精品久久久久久精品电影小说| a在线观看视频网站| 亚洲全国av大片|