• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ANISOTROPIC (p,q)-EQUATIONS WITH COMPETITION PHENOMENA*

    2022-03-12 10:22:02ZhenhaiLIU劉振海

    Zhenhai LIU (劉振海)

    Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing,Yulin Normal University,Yulin 537000,China Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis,Guangxi University for Nationalities,Nanning 530006,China E-mail:zhhliu@hotmail.com

    Nikolaos S.PAPAGEORGIOU

    Department of Mathematics,National Technical University,Zografou Campus,15780 Athens,Greece E-mail:npapg@math.ntua.gr

    Abstract We consider a nonlinear Robin problem driven by the anisotropic (p,q)-Laplacian and with a reaction exhibiting the competing effects of a parametric sublinear (concave) term and of a superlinear (convex) term.We prove a bifurcation-type theorem describing the changes in the set of positive solutions as the parameter varies.We also prove the existence of a minimal positive solution and determine the monotonicity and continuity properties of the minimal solution map.

    Key words concave-convex nonlinearities;anisotropic operators;regularity theory;maximum principle;minimal positive solution

    1 Introduction

    Let Ω?RNbe a bounded domain with a C2-boundary?Ω.In this paper we study the following anisotropic (p,q)-Robin problem:

    In this problem the variable exponents p (·) and q (·) of the two differential operators are Lipschitz continuous on,that is,p,q∈.Then the two operators are defined by

    Recall that,by Rademacher’s theorem,a Lipschitz continuous function is differentiable almost everywhere (see Gasinski-Papageorgiou[13,p.56]).

    In problem (pλ) the potential function ξ∈L∞(Ω) and ξ(z)≥0 for a.a.z∈Ω.In the reaction (right hand side of (pλ)),we have two terms which exhibit different asymptotic behavior as x→+∞(competing nonlinearities).One is the parametric term x→λxτ(z)-1for x≥0,with τ∈and we assume that 1<τ(z)<q (z)<p (z) for all z∈.So this term is (p (z)-1)-sublinear in the sense that=0 uniformly for a.a z∈Ω(“concave”term).On the other hand,the perturbation f (z,x) is a Caratheodory function (that is,for every x∈R z→f (z,x) is measurable and for a.a z∈Ω x→f (z,x) is continuous),which is (p (z)-1)-superlinear as x→+∞,in the sense that=+∞uniformly for a.a z∈Ω(“convex”term).To express this superlinearity of f (z,·),we do not use the Ambrosetti-Rabinowitz condition (the“AR-condition”for short),which is common in the literature when treating superlinear problems.Instead we assume a less restrictive condition which permits the incorporation in our framework of superlinear perturbations with“slower”growth as x→+∞,which fails to satisfy the AR-condition.In the boundary conditiondenotes the conormal derivative of u corresponding to the anisotropic (p,q)-differential operator and it is interpreted using the nonlinear Green’s identity.We mention that our conditions on the exponents p (·) and q (·) imply that

    Thus,using the results of Fan[10]on boundary trace embedding theorems for variable exponent Sobolev spaces,we see that the nonlinear Green’s identity of Casas-Fernandez[4](see also Kenmochi[16]) remains valid in the present anisotropic setting.Moreover,if u∈,then

    with n (·) being the outward unit normal on?Ω.

    Therefore,problem (pλ) exhibits the effects of two nonlinearities of distinct nature.One is sublinear (concave) and the other is superlinear (convex).Hence (pλ) is an anisotropic version of the classical“concave-convex problem”with Robin boundary condition.

    The study of concave-convex problems was initiated with the work of Ambrosetti-Brezis-Cerami[1],who studied semilinear Dirichlet problems driven by the Laplacian.Their work was extended to elliptic equations involving a general operator in divergence form by Molica Bisci-Radulescu-Servadei[23]and to Dirichlet equations driven by the p-Laplacian by Garcia Azorero-Manfredi-Peral Alonso[12].In the aforementioned works,the reaction has the special form

    x→λxq-1+xr-1,?x≥0,with 1<q<p<r<p*.

    Extensions of these works with more general reactions and boundary conditions,can be found in the papers of Chen-Yang[5],Leonardi-Papageorgiou[17],Marano-Marino-Papageorgiou[19],Motreanu-Motreanu-Papageorgiou[21],Papageorgiou-Repovs-Vetro[28],Papageorgiou-Zhang[31],Papageorgiou-Vetro-Vetro[29].Of the aforementioned works,[21]studies Neumann problems driven by the p-Laplacian,while the others consider equations driven by nonhomogeneous differential operators.A common feature of all these works is that the perturbation of the concave term is nonnegative (it can not change sign).Here we remove this restriction.In the book of Motreanu-Motreanu-Papageorgiou[22],the interested reader can find more about isotropic Dirichlet and Neumann elliptic boundary value problems.

    For anisotropic problems,there is only the recent work of Papageorgiou-Radulescu-Repovs[27]on Dirichlet equations driven by the p (z)-Laplacian plus an indefinite potential.

    We mention that equations driven by a combination of differential operators of different nature (such as (p,q)-equations) arise in many mathematical models of physical processes.We mention the works of Bahrouni-Radulescu-Repovs[2](transonic flow problems),Benci-D’Avenia-Fortunato-Pisani[3](quantum physics),Cher fils-Ilyasov[6](reaction-diffusion systems) and Zhikov[37](elasticity problems).We also refer to the two survey papers by Marano-Mosconi[20](isotropic problems) and Radulescu[32](isotropic and anisotropic problems).

    Our aim in this paper is to obtain positive solutions for problem (pλ) and to determine the precise dependence on the parameter λ>0 of the set of positive solutions of (pλ).Eventually we prove a bifurcation-type result describing the changes in the set of positive solutions as the parameter λ>0 moves on=(0,+∞).We also show the existence of a minimal positive solutionand establish the monotonicity and continuity properties of the map λ→.

    2 Mathematical Background-Hypotheses

    The study of anisotropic boundary value problems uses Lebesgue and Sobolev spaces with variable exponents.A comprehensive presentation of these spaces can be found in the book of Diening-Harjulehto-Hasto-Ruzicka[8].

    By M (Ω) we denote the space of all functions u:Ω→R which are Lebesgue measurable.As usual,we identify two such functions which differ only on a Lebesgue-null subset of Ω.Given any r∈,we define

    Let E1={r∈:1<r-}.Given r∈E1,the variable exponent Lebesgue space Lr (z)(Ω) is defined by

    We furnish Lr (z)(Ω) with the so-called“Luxemburg norm”given by

    The space Lr (z)(Ω) equipped with this norm is a separable and reflexive Banach space (actually Lr (z)(Ω) is uniformly convex).Let r′∈E1be defined by=1 for all z∈.Then Lr (z)(Ω)*=,and we have the following H?lder-type inequality:

    If r1,r2∈E1and r1(z)≤r2(z) for all z∈,then

    Having the variable exponent Lebesgue spaces,we can define in a natural way the variable exponent Sobolev spaces.Let r∈E1,we define

    W1,r (z)(Ω)={u∈Lr (z)(Ω):|Du|∈Lr (z)(Ω)},

    with the gradient of u defined in the weak sense.

    We furnish W1,r (z)(Ω) with the norm

    ‖u‖1,r (z)=‖u‖r (z)+‖|Du|‖r (z),?u∈W1,r (z)(Ω).

    In the sequel,for notational simplicity,we write‖Du‖r (z)=‖|Du|‖r (z).For r∈E1,the critical Sobolev exponent corresponding to r (·) is given by

    Important in the study of these variable exponent spaces is the following modular function:

    We write ρr(Du)=ρr(|Du|).The next proposition shows that there is a close relation between this modular function and the Luxemburg norm‖·‖r (z).As always,r∈E1.

    Proposition 2.1(a)‖u‖r (z)=λ=1 for all u∈Lr (z)(Ω),u0.

    On?Ω we consider the (N-1) dimensional Hausdorff (surface) measure σ.Using this measure,we can define as above the“boundary”variable exponent Lebesgue spaces Lr (z)(?Ω) with r∈E1(?Ω)=.From Fan[10],we know that there exists a unique,linear,compact map γ0:W1,p (z)(Ω)→Lp (z)(?Ω)(the“trace map”) such that γ0(u)=u|?Ωfor all u∈W1,p (z)(Ω)∩.In the sequel,for the sake of notational simplicity,we drop the use of γ0(·).All restrictions of the Sobolev functions on?Ω are understood in the sense of traces.

    For r∈E1∩,we consider the nonlinear map Ar (z):W1,r (z)(Ω)→W1,r (z)(Ω)*defined by

    This map has the following propertics (see Gasinski-Papageongiou[14,Proposition 2.5]and Radulescu-Repovs[33,p.40]):

    Proposition 2.2The map Ar (z):W1,r (z)(Ω)→W1,r (z)(Ω)*is bounded (that is,it maps bounded sets to bounded sets),continuous,monotone (hence maximal monotone too) and of type (S)+,that is,it has the following property:

    imply that

    un→uin W1,r (z)(Ω).

    We will also use the Banach space.This is an ordered Banach space with positive (order) cone C+=.This cone has a nonempty interior given by

    We will also use another open cone in,namely the cone

    As before,n (·) is the outward unit normal on?Ω.

    If u,v∈W1,r (z)(Ω) with u≤v,we define

    [u,v]={h∈W1,r (z)(Ω):u (z)≤h (z)≤v (z) for a.a z∈Ω},

    [u)={h∈W1,r (z)(Ω):u (z)≤h (z) for a.a z∈Ω}.

    A set S?W1,r (z)(Ω) is said to be downward directed if,for every pair (u1,u2)∈S×S,we can find u∈S such that u≤u1,u≤u2.

    In the sequel,for notational economy,by‖·‖we denote the norm of W1,p (z)(Ω).So

    ‖u‖=‖u‖p (z)+‖Du‖p (z)for all u∈W1,p (z)(Ω).

    Let X be a Banach space and φ∈C1(X).We define

    Kφ={u∈X:φ′(u)=0}(the critical set of φ).

    We say that φ(·) satisfies the“C-condition”if it has the following property:

    Every sequence{un}n≥1?X such that{φ(un)}n≥1?R is bounded and

    (1+‖un‖X)φ′(un)→0 in X*as n→∞

    admits a strongly convergent subsequence.

    Finally,given any u∈W1,p (z)(Ω),we define

    u+=max{u,0}and u-=max{-u,0}.

    We know that

    u±∈W1,p (z)(Ω),u=u+-u-,|u|=u++u-.

    Next,we introduce the conditions on the data of problem (pλ).

    H1:ξ∈L∞(Ω),ξ(z)≥0 for a.a.z∈Ω,β∈C0,α(?Ω) with α∈(0,1),β(z)≥0 for all z∈?Ω and.

    Remark 2.3This hypothesis incorporates in our framework the Neumann problem (β≡0).

    H2:f:Ω×R→R is a Caratheodory function such that f (z,0)=0 for a.a.z∈Ω and

    Hypotheses H2(ii),(iii) imply that

    Thus,the perturbation f (z,·) is (p+-1)-superlinear.However,this superlinearity hypothesis on f (z,·) is not formulated in terms of the AR-condition,which is common in the literature (see for example Deng[7]).Recall that the AR-condition says that there exist μ>p+and M>0 such that

    In fact,this is a unilateral version of the AR-condition due to (2.1).Integrating the first inequality and using the second,we obtain the weaker condition

    This excludes from consideration nonlinearities f (z,·) with growth slower than the (μ-1)-polynomial one.For example,consider the function

    This function satisfies our hypotheses H2,but fails to satisfy the AR-condition.

    Hypothesis H2(iv) says that f (z,·) is (p+-1)-sublinear near zero.Finally,hypothesis H2(v) is satisfied if,for example,f (z,·) is differentiable and for every ρ>0,we can find>0 such that

    For ξ∈L∞(Ω) with ξ(z)≥0 for a.a.z∈Ω,ξ0,we introduce the seminorm:Lp (z)(Ω)→R defined by

    Proposition 2.5If p∈E1,ξ∈L∞(Ω),ξ(z)≥0 for a.a.z∈Ω,ξ0,then‖·‖and|·|are equivalent norms on W1,p (z)(Ω).

    ProofIt is clear from the definition of the two norms that

    ClaimThere exists c3>0 such that‖u‖p (z)≤c3|u|for all u∈W1,p (z)(Ω).

    We argue indirectly.Suppose that the Claim is not true.Then we can find{un}n≥1?W1,p (z)(Ω) such that

    ‖un‖p (z)>n|un|for all n∈N.

    Normalizing in Lp (z)(Ω),we see that

    We have that

    {un}n≥1?W1,p (z)(Ω) is bounded (recall‖un‖p (z)=1,n∈N),

    so,by passing to a subsequence if necessary,we may assume that

    From (2.2) and (2.3) we have that

    We have

    so we get

    For λ∈(0,1),we have

    Since λ∈(0,1) is arbitrary,we let λ→0+and obtain that

    which leads to a contradiction,since by normalization in Lp (z)(Ω),we have‖un‖p (z)=1 for all n∈N. □

    Corollary 2.6If p∈E1,ξ∈L∞(Ω),ξ(z)≥0 for a.a.z∈Ω,ξ0,then

    Next,let β∈L∞(?Ω),β(z)≥0 for σ-a.a.z∈?Ω,β0,and introduce the seminorm η:Lp (z)(?Ω)→R defined by

    Again we easily see that this is a norm on W1,p (z)(Ω).

    Proposition 2.7If p∈E1,β∈L∞(?Ω),β(z)≥0 for σ-a.a.z∈?Ω and β0,then‖·‖and|·|bare equivalent norms on W1,p (z)(Ω).

    ProofFrom the (compact) embedding of W1,p (z)(Ω) into Lp (z)(?Ω)(via the trace map),we see that

    Also,via a contradiction argument as in the“Claim”in the proof of Proposition 2.5,we show that

    Then,from (2.4) and (2.5),we conclude that‖·‖and|·|bare equivalent norms on W1,p (z)(Ω). □

    Corollary 2.8If p∈E1,β∈L∞(?Ω) and β(z)≥0 for σ-a.a.z∈?Ω and β0,then

    Combining Corollaries 2.6 and 2.8,we can state the following proposition:

    Proposition 2.9If p∈E1and hypotheses H1hold,then

    3 Existence and Multiplicity of Positive Solutions

    We introduce the following two sets:

    In the next proposition,we establish the nonemptiness of L and determine the regularity properties of the elements of the solution set Sλ.

    Proposition 3.1If hypotheses H0,H1,H2hold,then Lφ and for all λ>0,Sλ?intC+.

    ProofFor η∈(0,1]we consider the following anisotropic Robin problem

    Evidently,this map is bounded (that is,it maps bounded sets to bounded sets),continuous,monotone (see Proposition 2.2),and thus maximal monotone.Also,for all u∈W1,p (z)(Ω),we have that

    We know that a maximal monotone,coercive operator is surjective (see Papageorgiou-Radulescu-Repovs[26,p.135]),so we can findsuch that

    From (3.2) and the nonlinear Green’s identity (see also Papageorgiou-Radulescu-Repovs[26,p.35],we have

    From the anisotropic regularity theory (see Fan[9]and Tan-Fang[35]and for isotropic equations Lieberman[18]),we have∈C+{0}.From (3.3) and the maximum principle of Papageorgiou-Qin-Radulescu[24](see also Zhang[36]),we have for η∈(0,1]small

    Next we show the uniqueness of this solution.To this end,we consider the integral functional j:L1(Ω)→=R∪{+∞}defined by

    By Theorem 2.2 of Taka?-Giacomoni[34],the functional j (·) is convex.Let domj={u∈L1(Ω):j (u)<+∞}(the effective domain of j (·)).

    From (3.4),(3.5) and Proposition 4.1.22(p.274) of Papageorgiou-Radulescu-Repovs[26],we have∈L∞(Ω).Thus,if h=,then for|t|<1 small,we have that

    Then,on account of the convexity of j (·),it is Gateaux differentiable atand atin the direction h,and using the nonlinear Green’s identity and the chain rule,we have that

    The convexity of j (·) implies the monotonicity of j′(·),so,we have

    This proves the uniqueness of the solution∈intC+of (3.3).

    On account of hypotheses H2(i),(iv),given∈∈(see (3.4)),we can find>0 such that

    Then we have

    Recall that p+<r.Then,choosing η∈(0,1]small,we can have that

    Also note that for all η∈(0,1],for some>0(see (3.4)).Let λ0>0 be such that

    Thus,we finally have

    Then we have

    We consider the following truncation of the reaction in problem (pλ):

    This is a Caratheodory function.We set Gλ(z,x)=and introduce the C1-functional ψλ:W1,p (z)(Ω)→R,0<λ≤λ0defined by

    Using Proposition 2.9 and (3.8),we see that

    ψλ(·) is coercive.

    Also,the compact embedding of W1,p (z)(Ω) into Lp (z)(Ω) and the compactness of the trace map imply that

    ψλ(·) is sequentially weakly lower semicontinuous.

    Therefore,by the Weierstrass-Tonelli theorem,we can find uλ∈W1,p (z)(Ω) such that

    Let u∈intC+and pick t∈(0,1) small such that tu≤(see[26,p.274],and recall that∈inf C+).Using (3.8) and hypotheses H2(i),we have that

    We know that τ+<q-(see hypotheses H0),so,using hypothesis H2(iv) and choosing t∈(0,1) even smaller if necessary,we have that

    From (3.9),we have that

    In (3.10) first we choose h=∈W1,p (z)(Ω).We obtain

    Thus,we have proved that

    From (3.11),(3.8) and (3.10),we see that

    Moreover,as before,the regularity theory and the maximum principle imply Sλ?intC+for all λ>0. □

    Next we prove a structural property L;namely,we show that L is connected (an interval).

    Proposition 3.2If hypotheses H0,H1and H2hold,and λ∈L and 0<μ<λ,then μ∈L.

    ProofSince λ∈L,we can find uλ∈Sλ?intC+.Then we introduce the following truncation of the reaction in problem (pμ):

    This is a Caratheodory function.We set Kμ(z,x)=and consider the C1-functional:W1,p (z)(Ω)→R defined by

    As in the proof of Proposition 3.1,sinceis coercive (see (3.12) and Proposition 2.9) and sequentially weakly lower semicontinuous,we can find uμ∈W1,p (z)(Ω) such that

    Since τ+<q-(see hypotheses H0),as before (see the proof of Proposition 3.1),we show that

    From (3.13) we have that

    Therefore,uμ∈Sμ?intC+and μ∈L. □

    In the above proof,in addition to showing that μ∈L,we have also proved that if uλ∈Sλ?intC+,we can find uμ∈Sμ?intC+such that uμ≤uλ.We can improve this conclusion as follows:

    Proposition 3.3If hypotheses H0,H1and H2hold,and λ∈L,uλ∈Sλ?intC+and 0<μ<λ,then μ∈L,and we can find uμ∈Sμ?intC+such that

    uλ-uμ∈D+.

    ProofFrom Proposition 3.2 and its proof,we know that μ∈L,and we can find uμ∈Sμ?intC+such that

    Let ρ=‖uλ‖∞and let>0 be as postulated by hypothesis H2(v).We have

    with c9=>0,mμ=>0 since uμ∈intC+(see (3.14),and use hypothesis H2(v))

    Since[λ-μ]c9>0,from Papageorgiou-Qin-Radulescu[20](Proposition 5),we infer that uλ-uμ∈D+. □

    Let λ*=supL.Then we have

    Proposition 3.4If hypotheses H0,H1and H2hold,then λ*<∞.

    ProofSince τ+<q-,and using hypotheses H2(ii),(iii) and (iv),we see that we can find>0 big such that

    For all 0<δ≤δ0≤1,we will have

    so,from (3.16) and Papageorgiou-Qin-Radulescu[20](Proposition 5),we have

    which is a contradiction.Therefore 0<λ*≤<∞. □

    Next,we prove a multiplicity result for λ∈(0,λ*).

    Proposition 3.5If hypotheses H0,H1and H2hold and λ∈(0,λ*),then problem (pλ) admits at least two positive solutions:

    ProofLet η∈(λ,λ*).We know that η,λ∈L (see Proposition 3.2).Moreover,from Proposition 3.3,we know that we can find uη∈Sηand u0∈Sλsuch that uη-u0∈intC+.We introduce the Caratheodory function eλ(z,x) defined by

    We set Eλ(z,x)=and consider the C1-functional μλ:W1,p (z)(Ω)→R defined by

    Also,we introduce the following truncation of eλ(z,·):

    From (3.17) and (3.18) we see that

    Moreover,using (3.17) and (3.18),we easily check that

    Then,on account of (3.20) and (3.21),we infer that,without any loss of generality,we may assume that

    Otherwise,we already have a second positive smooth solution bigger than u0,and so we are done.

    From Proposition 3.2 and (3.18) it is clear thatis coercive,and also that it is sequentially weakly lower semicontinuous.Thus,we can find∈W1,p (z)(Ω) such that

    Recalling that uη-u0∈D+,it follows that

    (see Gasinski-Papageorgiou[14,Proposition 3.3]and Tan-Fang[35,Theorem 3.2]).

    On account of (3.20) and (3.17),we may assume that

    Otherwise,we already have an infinity of positive smooth solutions all bigger than u0and so we are done.From (3.23),(3.24) and Theorem 5.7.6 of Papageorgiou-Radulescu-Repovs[26,p.449],we know that we can find ρ∈(0,1) small such that

    From hypothesis H2(ii) and (3.17),we see that,if u∈intC+,then

    Claimμλ(·) satisfies the C-condition.

    Let{un}n≥1?W1,p (z)(Ω) such that

    From (3.28) we have that

    Then,from (3.27) and (3.30),it follows that

    On the other hand,from (3.29),with h=∈W1,p (z)(Ω),we have that

    We add (3.31) and (3.32) and obtain

    Hypotheses H2(i),(iii) imply that we can find c16>0 such that

    Using (3.34) in (3.33),we obtain

    From hypothesis H2(iii),we see that we may always assume that θ-<r<.Let t∈(0,1) such that

    Invoking the interpolation inequality (see,for example,Papageorgiou-Winkert[30,p.116],we have that

    From hypothesis H2(i),we have that

    Since our goal is to show the boundedness of?W1,p (z)(Ω),there is no loss of generality in assuming that≥1 for all n∈N.In (3.29) we choose h=∈W1,p (z)(Ω) and using (3.37),(3.38),(3.17) and Proposition 2.9,we have that

    From (3.36) we have that

    From (3.30) and (3.40) it follows that

    {un}n≥1?W1,p (z)(Ω) is bounded,

    so we may assume that

    In (3.29) we choose h=un-u∈W1,p (z)(Ω),pass to the limit as n→∞,and use (3.41).We obtain

    Therefore μλ(·) satisfies the C-condition.This proves the Claim.

    Then (3.25),(3.26) and the Claim permit the use of the mountain pass theorem.Thus,we can find∈W1,p (z)(Ω) such that

    From (3.42),(3.17) and (3.29),we infer that

    Finally,it remains to decide whether the critical parameter value λ*>0 is admissible (that is,if λ*∈L).To do this,we need to do some preliminary work,which will also be useful in Section 4.

    From hypotheses H2(i),(iv),we see that we can find c21>0 such that

    Therefore we have

    Motivated by this unilateral growth estimate for the reaction of problem (pλ),we consider the following auxliary anisotropic Robin problem:

    Proposition 3.6If hypotheses H0,H1hold and λ>0,then problem (Qλ) admits a unique positive solution∈inf C+,and the map λ→frominto C+is nondecresing,that is,

    ProofFirst we show the existence of a positive solution for problem (Qλ).To this end,we consider the C1-functional ξλ:W1,p (z)(Ω)→R defined by

    Since τ+<q-≤q+<p+,and using Proposition 2.9,we see that

    ζλ(·) is coercive.

    Also,ζλ(·) is sequentially weakly lower semicontinuous.Thus,we can find∈W1,p (z)(Ω) such that

    In addition,the regularity theory and the maximum principle imply that

    Using the integral functional j (·) from the proof of Proposition 3.1,we show,exactly as in that proof,that the positive solution∈intC+is unique.

    Finally we show the monotonicity of the solution map λ→.

    We set Bμ(z,x)=and consider the C1-functional dμ:W1,p (z)(Ω)→R defined by

    Evidently,dμ(·) is coercive (see (3.44)) and sequentially weakly lower semicontinuous.Therefore,we can find∈W1,p (z)(Ω) such that

    The unique positive solution∈intC+of (Qλ) provides a lower bound for the elements of Sλ.

    Proposition 3.7If hypotheses H0,H1and H2hold and λ∈L,then

    ProofLet u∈Sλ?intC+and consider the continuous on×R function wλ(z,x) defined by

    We set Wλ(z,x)=and consider the C1-functional iλ:W1,p (z)(Ω)→R defined by

    The functional is coercive and sequentially weakly lower semicontinuous,so we can find∈W1,p (z)(Ω) such that

    In (3.46),first we choose h=∈W1,p (z)(Ω),and using (3.45) we show that≥0,0.Next,in (3.46),we choose h=∈W1,p (z)(Ω).Then

    Thus,we have proved that

    From (3.47),(3.45) and (3.46),we infer that

    Now we are ready to prove the admissibility of the critical parameter λ*>0.In what follows by φλ:W1,p (z)(Ω)→R,we denote the C1-energy functinonal of problem (pλ) defined by

    Proposition 3.8If hypotheses H0,H1and H2hold,then λ*∈L.

    ProofLet λn∈(0,λ*)?L such that λn↑λ*and un∈?intC+,n∈N.From the proof of Proposition 3.2,we know that we can have

    Using (3.48)(3.49),and reasoning as in the Claim in the proof of Proposition 3.5,we obtain that

    From (3.49),in the limit as n→∞,we have that

    Therefore,we have established that

    L=(0,λ*].

    Summarizing our findings in this section,we can formulate the following bifurcation-type theorem,describing the dependence of the set of positive solutions on the parameter λ>0:

    Theorem 3.9If hypotheses H0,H1and H2hold,then there exists a critical parameter value λ*>0 such that

    (a) for every λ∈(0,λ*),problem (pλ) has at least two positive solutions:

    (b) for λ=λ*,problem (pλ) has at least one positive solution:

    u*∈intC+;

    (c) for every λ>λ*,problem (pλ) has no positive solution.

    Remark 3.10Note that in the multiplicity result (that is,for λ∈(0,λ*)),the two solutions are ordered.

    4 Minimal Positive Solutions

    In this section we show that for every λ∈L=(0,λ*],problem (pλ) has a smallest positive solution∈intC+(minimal positive solution),and we determine the monotonicity and continuity properties of the map L?λ→uλ∈C+.

    From Papageorgiou-Radulescu-Repovs[25](see the proof of Proposition 2.9),we know that the set Sλis downward directed.

    Proposition 4.1If hypotheses H0,H1,H2hold,and λ∈L=(0,λ*],then the problem (pλ) has a smallest positive solution∈intC+.

    ProofFrom Lemma 3.10 of Hu-Papageorgiou[15,p.178],we know that we can find a decreasing sequence{un}n≥1?Sλsuch that

    {un}n≥1?W1,p (z)(Ω) is bounded.

    Thus we may assume that

    In (4.1) we use that test function h=un-∈W1,p (z)(Ω),pass to the limit as n→∞,and use (4.2).Then

    Proposition 4.2If hypotheses H0,H1and H2hold,then the minimal solution map λ→from L=(0,λ*]intohas the following properties:

    (a) it is strictly increasing,that is,if 0<μ<λ≤λ*,then

    (b) it is left continuous.

    Proof(a) Suppose that 0<μ<λ≤λ*.According to Proposition 3.3,we can find uμ∈Sμ?inf C+such that

    (b) Let λn→λ-with λn∈L for all n∈N.Then λ∈L,and we have that

    Then,from Fan-Zhao[11,Theorem 4.1](see also Gasinski-Papageorgiou[14,Proposition 3.3]and Tan-Fang[35,Theorem 3.1],we have that

    Then the anisotropic regularity theory (see Tan-Fang[35]) implies that there exist α∈(0,1) and c23>0 such that

    which contradicts (a).

    Summarizing our findings in this section,we can state the following theorem:

    Theorem 4.3If hypotheses H0,H1and H2hold,then for every λ∈L=(0,λ*],problem (pλ) has a smallest positive solution∈intC+,and the map λ→from L intois strictly increasing in the sense that 0<μ<λ≤λ*?∈D+,and is left continuous.

    欧美精品亚洲一区二区| videos熟女内射| 十八禁人妻一区二区| 99国产极品粉嫩在线观看| 久久久久国产一级毛片高清牌| 国产精品国产av在线观看| 久久人人爽av亚洲精品天堂| 亚洲精品中文字幕一二三四区| 午夜视频精品福利| 欧美另类亚洲清纯唯美| а√天堂www在线а√下载 | 日韩免费高清中文字幕av| 人人妻人人澡人人爽人人夜夜| 久久天堂一区二区三区四区| 国产xxxxx性猛交| 精品亚洲成a人片在线观看| 亚洲精品在线观看二区| 身体一侧抽搐| 在线观看免费高清a一片| 高潮久久久久久久久久久不卡| 久久久久精品国产欧美久久久| 色综合欧美亚洲国产小说| 色精品久久人妻99蜜桃| 免费高清在线观看日韩| 欧美日本中文国产一区发布| 99re6热这里在线精品视频| 女人被躁到高潮嗷嗷叫费观| 国产精品国产高清国产av | 国产精品久久久人人做人人爽| 亚洲国产精品sss在线观看 | 欧美日韩亚洲国产一区二区在线观看 | 日韩免费av在线播放| 激情视频va一区二区三区| 美女国产高潮福利片在线看| 一级毛片女人18水好多| 国产精品av久久久久免费| 成年人免费黄色播放视频| 久久久国产欧美日韩av| 妹子高潮喷水视频| 免费在线观看视频国产中文字幕亚洲| 热99国产精品久久久久久7| 国产精品一区二区免费欧美| 777米奇影视久久| 欧美一级毛片孕妇| 免费久久久久久久精品成人欧美视频| 欧美黄色淫秽网站| 99热网站在线观看| 精品国产一区二区久久| av福利片在线| 成人黄色视频免费在线看| 久久九九热精品免费| 电影成人av| 美女高潮到喷水免费观看| 欧美老熟妇乱子伦牲交| 日韩 欧美 亚洲 中文字幕| 欧美精品高潮呻吟av久久| 国产亚洲精品久久久久久毛片 | 捣出白浆h1v1| av在线播放免费不卡| 国产主播在线观看一区二区| 久久精品国产a三级三级三级| 亚洲伊人色综图| 不卡一级毛片| 动漫黄色视频在线观看| 咕卡用的链子| 91麻豆av在线| 99久久综合精品五月天人人| 国内久久婷婷六月综合欲色啪| svipshipincom国产片| 自拍欧美九色日韩亚洲蝌蚪91| 首页视频小说图片口味搜索| 午夜老司机福利片| 一级作爱视频免费观看| 久久香蕉激情| 免费高清在线观看日韩| 日韩三级视频一区二区三区| 亚洲精品自拍成人| 国产又爽黄色视频| 亚洲午夜理论影院| 天天添夜夜摸| 午夜免费鲁丝| 午夜成年电影在线免费观看| 脱女人内裤的视频| 高清欧美精品videossex| 欧美激情久久久久久爽电影 | 免费观看a级毛片全部| 香蕉国产在线看| 69精品国产乱码久久久| 性少妇av在线| 三级毛片av免费| 国产精品.久久久| 欧美黑人欧美精品刺激| 亚洲视频免费观看视频| 老熟妇仑乱视频hdxx| 99久久99久久久精品蜜桃| 91麻豆av在线| 无人区码免费观看不卡| 香蕉国产在线看| 久久久国产成人精品二区 | 亚洲精品中文字幕一二三四区| 这个男人来自地球电影免费观看| 亚洲国产欧美一区二区综合| 亚洲精品自拍成人| 午夜精品久久久久久毛片777| 青草久久国产| 91国产中文字幕| 日韩有码中文字幕| e午夜精品久久久久久久| 两人在一起打扑克的视频| 免费久久久久久久精品成人欧美视频| 久久人妻av系列| 日日夜夜操网爽| 欧美性长视频在线观看| 777久久人妻少妇嫩草av网站| 亚洲一区中文字幕在线| 岛国在线观看网站| 欧美不卡视频在线免费观看 | 国产区一区二久久| 精品国产一区二区久久| 少妇的丰满在线观看| av一本久久久久| √禁漫天堂资源中文www| 国产精品成人在线| 视频区欧美日本亚洲| 欧美激情极品国产一区二区三区| 国产三级黄色录像| 国产亚洲精品久久久久5区| 人成视频在线观看免费观看| 波多野结衣一区麻豆| 夜夜夜夜夜久久久久| 色尼玛亚洲综合影院| 怎么达到女性高潮| 91九色精品人成在线观看| 精品一区二区三区视频在线观看免费 | 亚洲熟妇中文字幕五十中出 | 18禁国产床啪视频网站| 天堂√8在线中文| 大陆偷拍与自拍| 极品教师在线免费播放| 一区二区三区精品91| 亚洲av熟女| 日韩人妻精品一区2区三区| 欧美精品啪啪一区二区三区| 色老头精品视频在线观看| 建设人人有责人人尽责人人享有的| 老熟妇仑乱视频hdxx| 日韩精品免费视频一区二区三区| 99re6热这里在线精品视频| 五月开心婷婷网| 精品福利永久在线观看| av福利片在线| 美女扒开内裤让男人捅视频| 欧美大码av| 国精品久久久久久国模美| 久久精品亚洲熟妇少妇任你| 丰满饥渴人妻一区二区三| 亚洲国产毛片av蜜桃av| 国产高清激情床上av| 久久久水蜜桃国产精品网| 久久99一区二区三区| 国产黄色免费在线视频| a在线观看视频网站| 日本一区二区免费在线视频| 国内久久婷婷六月综合欲色啪| 精品国内亚洲2022精品成人 | 午夜影院日韩av| 国产高清激情床上av| 亚洲av日韩精品久久久久久密| 国产精品自产拍在线观看55亚洲 | av电影中文网址| 欧美激情久久久久久爽电影 | 99热国产这里只有精品6| 极品人妻少妇av视频| 国产成人啪精品午夜网站| 亚洲精品久久午夜乱码| 国产成+人综合+亚洲专区| 国产精品99久久99久久久不卡| 欧美日韩黄片免| 老熟妇仑乱视频hdxx| 久久狼人影院| 黄色视频,在线免费观看| 大香蕉久久成人网| 精品无人区乱码1区二区| www.熟女人妻精品国产| 男女高潮啪啪啪动态图| 看黄色毛片网站| 欧美日韩黄片免| 日韩 欧美 亚洲 中文字幕| 亚洲精品美女久久av网站| 男女下面插进去视频免费观看| 老鸭窝网址在线观看| 麻豆国产av国片精品| 国产单亲对白刺激| 午夜91福利影院| 免费在线观看影片大全网站| 久久精品国产亚洲av香蕉五月 | 中文字幕高清在线视频| 一级黄色大片毛片| 国产日韩欧美亚洲二区| 久久亚洲精品不卡| 大香蕉久久网| 久久久久久久精品吃奶| 18禁黄网站禁片午夜丰满| 可以免费在线观看a视频的电影网站| 精品国内亚洲2022精品成人 | 成人特级黄色片久久久久久久| 亚洲av成人不卡在线观看播放网| 精品人妻在线不人妻| 99国产综合亚洲精品| 免费在线观看黄色视频的| 伦理电影免费视频| 国产精品久久久久成人av| 动漫黄色视频在线观看| 日韩 欧美 亚洲 中文字幕| 国产欧美日韩精品亚洲av| 99国产综合亚洲精品| 黄色片一级片一级黄色片| 欧美久久黑人一区二区| 在线观看66精品国产| 国产在线观看jvid| 五月开心婷婷网| 欧美精品一区二区免费开放| 欧洲精品卡2卡3卡4卡5卡区| 在线国产一区二区在线| 亚洲精品成人av观看孕妇| 国产成人系列免费观看| 亚洲精品美女久久久久99蜜臀| 男女下面插进去视频免费观看| 在线观看日韩欧美| 欧美日韩亚洲国产一区二区在线观看 | 色婷婷av一区二区三区视频| 久久ye,这里只有精品| 手机成人av网站| 午夜福利视频在线观看免费| 日韩欧美一区二区三区在线观看| 国产精品精品国产色婷婷| 日本 欧美在线| 午夜激情欧美在线| 国产在线精品亚洲第一网站| 欧美最新免费一区二区三区 | 国产精品一区二区三区四区免费观看 | 少妇的逼水好多| 悠悠久久av| 婷婷六月久久综合丁香| 久久这里只有精品中国| 成人特级av手机在线观看| 可以在线观看的亚洲视频| 国内精品久久久久精免费| 亚洲久久久久久中文字幕| 久久久久久久久中文| 悠悠久久av| АⅤ资源中文在线天堂| 给我免费播放毛片高清在线观看| 97超级碰碰碰精品色视频在线观看| 久久久精品大字幕| 国产精品一区二区三区四区免费观看 | 午夜精品一区二区三区免费看| 成人特级黄色片久久久久久久| 欧美bdsm另类| 亚洲七黄色美女视频| 亚洲av不卡在线观看| 白带黄色成豆腐渣| 国产伦精品一区二区三区视频9 | 午夜福利成人在线免费观看| 免费看光身美女| 亚洲真实伦在线观看| 麻豆国产97在线/欧美| 久9热在线精品视频| 国产又黄又爽又无遮挡在线| 99视频精品全部免费 在线| 色综合亚洲欧美另类图片| 亚洲精华国产精华精| 亚洲精品乱码久久久v下载方式 | 亚洲精品国产精品久久久不卡| 久99久视频精品免费| 少妇的逼水好多| 欧美又色又爽又黄视频| 国产精品爽爽va在线观看网站| 18禁黄网站禁片午夜丰满| 国产成人a区在线观看| 欧美日韩黄片免| 哪里可以看免费的av片| 99在线视频只有这里精品首页| 成人欧美大片| 国产高清视频在线播放一区| 19禁男女啪啪无遮挡网站| 欧美乱妇无乱码| 国产精品野战在线观看| 又粗又爽又猛毛片免费看| 欧美日韩中文字幕国产精品一区二区三区| 欧美日韩一级在线毛片| 久久久久久久久中文| 国产精品久久久久久亚洲av鲁大| 国产av不卡久久| 黄片大片在线免费观看| 欧美大码av| 91久久精品电影网| 久久久国产精品麻豆| 国产日本99.免费观看| 亚洲成av人片在线播放无| 日本五十路高清| 一夜夜www| 亚洲国产中文字幕在线视频| 亚洲精品一卡2卡三卡4卡5卡| 久久精品国产清高在天天线| 青草久久国产| 一区二区三区国产精品乱码| 亚洲精品在线观看二区| 欧美一区二区亚洲| 精品日产1卡2卡| 黄色日韩在线| 久久久久久久久大av| 一本一本综合久久| 中文字幕高清在线视频| 嫩草影视91久久| 极品教师在线免费播放| 狂野欧美激情性xxxx| 国产黄片美女视频| 宅男免费午夜| 午夜激情福利司机影院| 欧美精品啪啪一区二区三区| 色综合亚洲欧美另类图片| 熟女人妻精品中文字幕| 国产亚洲精品综合一区在线观看| 国产真实伦视频高清在线观看 | 成人特级黄色片久久久久久久| 亚洲内射少妇av| e午夜精品久久久久久久| 99久久九九国产精品国产免费| www.色视频.com| 好男人在线观看高清免费视频| 国产亚洲精品综合一区在线观看| www日本黄色视频网| 老鸭窝网址在线观看| 午夜精品一区二区三区免费看| 免费看a级黄色片| 久久久精品欧美日韩精品| 热99re8久久精品国产| 欧美乱色亚洲激情| 亚洲真实伦在线观看| 亚洲精品影视一区二区三区av| 亚洲avbb在线观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲内射少妇av| 久久精品国产99精品国产亚洲性色| 又紧又爽又黄一区二区| 成人特级av手机在线观看| 午夜福利成人在线免费观看| 久久久久免费精品人妻一区二区| 亚洲欧美日韩无卡精品| 午夜老司机福利剧场| 国产成人a区在线观看| 99国产极品粉嫩在线观看| 老鸭窝网址在线观看| 精品国内亚洲2022精品成人| 在线视频色国产色| 日韩高清综合在线| 在线国产一区二区在线| 一区福利在线观看| 亚洲国产色片| 亚洲av五月六月丁香网| 五月玫瑰六月丁香| 少妇人妻精品综合一区二区 | 天堂动漫精品| 日本撒尿小便嘘嘘汇集6| 欧美区成人在线视频| 色综合站精品国产| 色综合欧美亚洲国产小说| 久久国产精品影院| or卡值多少钱| 国产精品 欧美亚洲| 99国产极品粉嫩在线观看| 欧美一区二区亚洲| 亚洲人成网站高清观看| 国产三级在线视频| 亚洲aⅴ乱码一区二区在线播放| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 天堂网av新在线| 女人高潮潮喷娇喘18禁视频| 精品久久久久久久末码| 少妇的逼水好多| 久久久久久久久大av| 在线看三级毛片| 变态另类成人亚洲欧美熟女| 舔av片在线| 亚洲天堂国产精品一区在线| av天堂在线播放| 国产精华一区二区三区| 成人永久免费在线观看视频| 99久久精品热视频| 美女 人体艺术 gogo| 在线观看免费视频日本深夜| 日韩欧美免费精品| 久久久久久久亚洲中文字幕 | 亚洲激情在线av| 欧美色欧美亚洲另类二区| 国产亚洲精品久久久久久毛片| 露出奶头的视频| 日韩欧美国产在线观看| 午夜影院日韩av| 久久久久九九精品影院| 欧美绝顶高潮抽搐喷水| 99在线人妻在线中文字幕| 成年免费大片在线观看| 小说图片视频综合网站| 欧美性猛交黑人性爽| 欧美黄色淫秽网站| 国语自产精品视频在线第100页| 成人特级av手机在线观看| 欧美大码av| 亚洲精品成人久久久久久| tocl精华| 中文资源天堂在线| 亚洲av成人av| 欧美极品一区二区三区四区| 亚洲中文字幕日韩| 国产高清有码在线观看视频| 天堂网av新在线| 国产一区在线观看成人免费| 麻豆国产av国片精品| 国产乱人伦免费视频| 听说在线观看完整版免费高清| 午夜久久久久精精品| 我的老师免费观看完整版| 欧美zozozo另类| 国产色婷婷99| 久久精品国产自在天天线| 狂野欧美白嫩少妇大欣赏| 国产亚洲精品av在线| 欧美黄色片欧美黄色片| 成人鲁丝片一二三区免费| av在线蜜桃| 日韩av在线大香蕉| 午夜免费男女啪啪视频观看 | 嫩草影院精品99| 高清在线国产一区| 五月伊人婷婷丁香| 狂野欧美白嫩少妇大欣赏| 欧美三级亚洲精品| 丝袜美腿在线中文| 日日摸夜夜添夜夜添小说| 国产精品影院久久| 成人特级av手机在线观看| 黑人欧美特级aaaaaa片| 老熟妇仑乱视频hdxx| 一夜夜www| 韩国av一区二区三区四区| 日日干狠狠操夜夜爽| 最新美女视频免费是黄的| 一区福利在线观看| 日本撒尿小便嘘嘘汇集6| 久久国产精品影院| 精品乱码久久久久久99久播| 日本撒尿小便嘘嘘汇集6| 欧美最新免费一区二区三区 | 国产老妇女一区| 制服丝袜大香蕉在线| 免费人成在线观看视频色| 午夜免费观看网址| 人妻久久中文字幕网| 久久久久亚洲av毛片大全| 男人和女人高潮做爰伦理| 欧美日韩瑟瑟在线播放| 久久久久久久午夜电影| 久久久精品大字幕| www.色视频.com| 特大巨黑吊av在线直播| 亚洲真实伦在线观看| 别揉我奶头~嗯~啊~动态视频| 成人特级黄色片久久久久久久| 欧美激情在线99| 亚洲一区二区三区不卡视频| 麻豆国产97在线/欧美| 制服人妻中文乱码| 九九久久精品国产亚洲av麻豆| 夜夜夜夜夜久久久久| 大型黄色视频在线免费观看| 免费观看的影片在线观看| 少妇高潮的动态图| 免费大片18禁| 国产av麻豆久久久久久久| 日本精品一区二区三区蜜桃| 色尼玛亚洲综合影院| 久久精品国产自在天天线| 国产视频内射| 91字幕亚洲| 亚洲aⅴ乱码一区二区在线播放| 亚洲国产日韩欧美精品在线观看 | 色综合欧美亚洲国产小说| 精品人妻1区二区| 别揉我奶头~嗯~啊~动态视频| 久久精品91蜜桃| 欧美xxxx黑人xx丫x性爽| 国产毛片a区久久久久| 偷拍熟女少妇极品色| 一区二区三区国产精品乱码| 波多野结衣高清作品| 亚洲av成人精品一区久久| 亚洲美女视频黄频| 色综合欧美亚洲国产小说| 日韩欧美精品v在线| 久99久视频精品免费| 精品国产超薄肉色丝袜足j| 免费搜索国产男女视频| 国产探花极品一区二区| 日韩欧美免费精品| 亚洲国产欧美网| 女生性感内裤真人,穿戴方法视频| 久久人妻av系列| 他把我摸到了高潮在线观看| 色av中文字幕| 日韩欧美精品v在线| 欧美丝袜亚洲另类 | 三级毛片av免费| ponron亚洲| 欧美成狂野欧美在线观看| 日韩中文字幕欧美一区二区| 国产精品久久视频播放| 欧美不卡视频在线免费观看| 男女之事视频高清在线观看| 国产伦在线观看视频一区| 国产精品爽爽va在线观看网站| 色综合婷婷激情| 欧美一区二区国产精品久久精品| 国内毛片毛片毛片毛片毛片| 少妇的逼水好多| 久久精品综合一区二区三区| 啦啦啦观看免费观看视频高清| 亚洲18禁久久av| 免费观看精品视频网站| 波多野结衣高清作品| 啦啦啦韩国在线观看视频| 亚洲精品粉嫩美女一区| 免费观看精品视频网站| 亚洲精品粉嫩美女一区| 日日夜夜操网爽| 成年女人永久免费观看视频| 成人欧美大片| 亚洲av日韩精品久久久久久密| 99久久精品一区二区三区| 国产一区二区在线av高清观看| 一级毛片女人18水好多| 九色成人免费人妻av| 精品国内亚洲2022精品成人| 亚洲av成人av| 可以在线观看毛片的网站| 麻豆国产97在线/欧美| 可以在线观看毛片的网站| 久久香蕉国产精品| 国产探花在线观看一区二区| 免费高清视频大片| 亚洲欧美日韩高清在线视频| 国产精品一区二区三区四区久久| 免费观看精品视频网站| 哪里可以看免费的av片| 国产精品野战在线观看| 国产一区二区在线av高清观看| 国产精品电影一区二区三区| 亚洲av成人av| 99久久精品一区二区三区| 国产三级黄色录像| av专区在线播放| 亚洲熟妇熟女久久| 成人一区二区视频在线观看| 国产一区二区亚洲精品在线观看| 国产欧美日韩精品一区二区| 久久久国产精品麻豆| 国产午夜精品论理片| 国产黄色小视频在线观看| 又黄又爽又免费观看的视频| 女人十人毛片免费观看3o分钟| 激情在线观看视频在线高清| 男女视频在线观看网站免费| h日本视频在线播放| 成人无遮挡网站| 夜夜看夜夜爽夜夜摸| 一本一本综合久久| 精品电影一区二区在线| 国产中年淑女户外野战色| 2021天堂中文幕一二区在线观| x7x7x7水蜜桃| 18禁黄网站禁片免费观看直播| 99热这里只有精品一区| 久久中文看片网| 啦啦啦观看免费观看视频高清| 九色成人免费人妻av| 日韩欧美在线乱码| 久久久久久久精品吃奶| 日韩中文字幕欧美一区二区| 成人av在线播放网站| 久久欧美精品欧美久久欧美| 亚洲一区高清亚洲精品| 国产真人三级小视频在线观看| www.熟女人妻精品国产| 美女高潮喷水抽搐中文字幕| 波多野结衣巨乳人妻| 午夜福利免费观看在线| 香蕉久久夜色| 日本 欧美在线| 三级国产精品欧美在线观看| 热99re8久久精品国产| 少妇人妻一区二区三区视频| 熟女少妇亚洲综合色aaa.| 国产精品香港三级国产av潘金莲| 日韩欧美国产在线观看| 国产国拍精品亚洲av在线观看 | 男女午夜视频在线观看| 色综合欧美亚洲国产小说| 国产精品一及| 国产精品野战在线观看| 天美传媒精品一区二区| 欧美日韩综合久久久久久 | 国内精品一区二区在线观看| 国模一区二区三区四区视频| 一区二区三区高清视频在线|