• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THE EXPONENTIAL PROPERTY OF SOLUTIONS BOUNDED FROM BELOW TO DEGENERATE EQUATIONS IN UNBOUNDED DOMAINS*

    2022-03-12 10:22:10LidanWANG王麗丹

    Lidan WANG (王麗丹)

    School of Mathematical Sciences,Shanghai Jiao Tong University,Shanghai 200240,China E-mail:wanglidan@sjtu.edu.cn

    Abstract This paper is focused on studying the structure of solutions bounded from below to degenerate elliptic equations with Neumann and Dirichlet boundary conditions in unbounded domains.After establishing the weak maximum principles,the global boundary H?lder estimates and the boundary Harnack inequalities of the equations,we show that all solutions bounded from below are linear combinations of two special solutions (exponential growth at one end and exponential decay at the other) with a bounded solution to the degenerate equations.

    Key words degenerate elliptic equations;unbounded domains;boundary Harnack inequalities

    1 Introduction

    In this paper,we study the behavior of solutions bounded from below to degenerate elliptic equations with mixed boundary conditions in unbounded domains.A series of papers,see for example[4-6,9,12],have established a systematic theory for degenerate elliptic operators.In addition,degenerate elliptic equations with mixed boundary conditions also have been studied by many authors;we refer to[2,8,14,17].The references above provide us with useful tools for studying degenerate equations further.The main motivations for studying degenerate elliptic equations are twofold.It is well known that Caffarelli and Silvestre[3]obtained an extension theorem through a Dirichlet-Neumann map.The Caffarelli-Silvestre extension,because of its local nature,is very often used to prove qualitative properties of solutions to problems involving the fractional Laplacian.With the same purpose,we plan to study the behavior of solutions to extension formulations for the fractional Laplacian established by Caffarelli and Silvestre[3],and hope to obtain the corresponding behavior of solutions to a fractional Laplacian.The other motivation comes from the fact that we previously considered the linear uniformly elliptic equations Lu=Di(aij(x) Dju)+bi(x) Diu+c (x) u=f or Lu=aij(x) Diju+bi(x) Diu+cu=f in unbounded cylinders in[15],followed by the fully nonlinear uniformly elliptic equations F (D2u (x))=0 in unbounded cylinders in[16].In the first paper,we established that all solutions bounded from below are linear combinations of two special solutions with a bounded solution to the term f,and in the later one,we showed results similar to but not exactly like the results in[1]under some conditions.Based on these,it is natural to attempt to develop a degenerate elliptic counterpart of the structure of solutions to uniformly elliptic equations.Therefore,our main objective here is to obtain analogous results for the degenerate elliptic equations.

    This paper will follow the lines of[1]and[15].As in[15],if we obtain three fundamental tools-the weak maximum principle in bounded domains and unbounded domains,the boundary H?lder estimates and the boundary Harnack inequalities,of the degenerate elliptic equations with mixed boundary values-then we will get a similar structure of solutions bounded from above.Therefore,we will address these three problems separately.

    More precisely,we will consider the following problem,motivated by the realization of fractional elliptic operators,as Dirichlet-to-Neumann maps of degenerate elliptic equations:

    We consider these in an unbounded domain C×(0,R0)?Rn+1,where C=D×R?Rnis an unbounded cylinder,D is a bounded Lipschitz domain in Rn-1(n≥2) and R0∈R is a positive constant.

    We would like to say that although the degenerate elliptic equations we studied arise from the Caffarelli-Silvestre extension[3]of the Dirichlet problem for the fractional Laplacian,the results obtained in this paper do not hold in the fractional setting.We cannot simply make the trace u (x)=U (x,0) and conclude that the results of problem (1.1) hold for the following fractional order linear equations:

    Actually,it is easy to check that the problem (1.1) and the fractional order linear equations (1.2) are not equivalent.Hence,we cannot analyze problem (1.2) through problem (1.1).We also would like to say that we will study problem (1.2) further in the later paper.

    We always assume that the coefficient and inhomogeneous term satisfy

    Before we state our main results,we give some notations for the reader’s convenience.Let X=(x,t)∈Rn×R,where x=(x′,y)=(x1,···,xn-1,y)∈Rn-1×R,n≥2.For E?R,CE:=D×E={(x′,y)∈Rn|x′∈D,y∈E},?bCE:=?D×E={(x′,y)∈Rn|x′∈?D,y∈E}.For any y∈R,write Cy:=C{y},:=C(y,+∞)and:=C(-∞,y).For simplicity,we denote that C+:=,C-:=.

    In addition,we use~S to denote the set of solutions bounded from below to problem (1.1).If b=0,we denote S as the set of positive solutions to problem (1.1)(we will see that=S with b=0).

    Theorem 1.1Suppose that condition (1.3) holds.Then the boundary problem

    has a unique bounded solution U in H (t1-2σ,C×[0,R0])∩C (C×(0,R0)).

    The following theorem is about the exponential decay of solutions bounded from above in C+×[0,R0]:

    Theorem 1.2Suppose that U is bounded from above and satisfies

    Then there exist positive constants α,C0and C1depending only on n and diam (D) such that

    Following from Theorem 1.2,we obtain a corollary in C-×[0,R0]:

    Corollary 1.3Suppose that U is bounded from above and satisfies

    Then there exist positive constants α,C0and C1depending only on n and diam (D) such that

    Next,we pursue further the structure of solutions to (1.1):

    Theorem 1.4For the problem (1.1),if b=0,then the positive solution sets S+and Sare well defined.Furthermore,S is a linear combination of S+and S-,that is,for any U∈S+and V∈S-,we have that

    S=S++S-={pU+qV|p,q≥0,p+q>0}.

    Theorem 1.5For the problem (1.1),the set of solutions bounded from below can be presented by,for any U∈S+,V∈S-,

    where S0={U0}is the unique bounded solution to (1.4).

    Our paper is organized as follows.In Section 2,we collect some auxiliary results.In Section 3,we prove the weak the maximum principle in bounded domains.In Section 4,we mainly study the global boundary H?lder estimate in bounded domains.In Section 5,we prove the weak maximum principle in unbounded domains.In Section 6,we prove the existence and uniqueness of a bounded solution and the exponential decay of bounded solutions.In the last Section,we analyze the structure theorem with an inhomogeneous term.

    2 Preliminary Results

    In this section,we will collect some basic results which will be used throughout the rest of the paper.First,we present some important inequalities with general A2weights.Then we introduce weighted Sobolev spaces.

    Denote that QR=BR×(0,R)?Rn×R+,?′QR=BR,?′′QR=?QR?′QR,where BRis a ball centered at the origin with the radius R.

    Recalling the definition of the Muckenhoupt A2class in Rn+1,that is,if there exists a constant Cωsuch that,for any ball B?Rn+1,

    we say that ω(X) belongs to the class A2,where ω(X) is a nonnegative measurable function in Rn+1.

    Now we quote some inequalities related to A2weights;these results can be found in[14]or[6].

    Lemma 2.1(Weighted embedding inequality) Let f (X)∈and ω(X)∈A2.Then there exist positive constants C and δ depending only on n and Cwsuch that,for all 1≤k≤+δ,

    where ω(QR)=.

    Lemma 2.2(Weighted Poincaré inequality) Let f (X)∈C1(QR) and ω(X)∈A2.Then there exist positive constants C and δ such that,for all 1≤k≤+δ,

    Lemma 2.3(Trace embedding inequality) Let f (X)∈and α∈(-1,1).Then there exists a positive constant δ depending only on α such that,for any ε>0,

    Next,we introduce weighted Sobolev spaces.Assume that σ∈(0,1) and that t∈R.According to the definition of A2,we see that|t|1-2σbelongs to the class A2.

    Suppose that D is an open domain in Rn+1,and denote L2(|t|1-2σ,D) as the Banach space of all measurable functions U,defined on D,which satisfies

    Now we can define

    with the norm

    Clearly,H (|t|1-2σ,D) is a Hilbert space and C∞(D) is dense in H (|t|1-2σ,D).Moreover,if D is a Lipschitz domain,then there exists a bounded linear extension operator from H (|t|1-2σ,D) to H (|t|1-2σ,Rn+1).

    Suppose that Ω is an open domain in Rn.Recall that Hσ(Ω) is the fractional Sobolev space defined as

    with the norm

    Then C∞(Ω) is dense in Hσ(Ω).What’s more,if Ω is a Lipschitz domain,then there exists a bounded linear extension operator from Hσ(Ω) to Hσ(Rn).If Ω=Rn,Hσ(Rn) can also be expressed by

    Hσ(Rn)={u∈L2(Rn):|ξ|σ(Fu)(ξ)∈L2(Rn)},

    where F denotes the Fourier transform operator.By a result in[11],it is known that the space Hσ(Rn) coincides with the trace on,that is,every U∈H (t1-2σ,) has a well-defined trace u=U (·,0)∈Hσ(Rn).

    The following results follow from results in[8]:

    Lemma 2.4Suppose that D=Ω×(0,R)?Rn×R+,?′D=Ω,?′′D=?D?′D,where Ω is a Lipschitz domain.Then

    (i) If U∈H (t1-2σ,D)∩C (D∪?′D),then u (x)=U (x,0)∈Hσ(Ω),and

    where C is a positive constant depending only on n,σ,R and Ω.Hence,every U∈H (t1-2σ,D) has a well-defined trace U (·,0)∈Hσ(Ω) on?′D.Furthermore,there exists a constant Cn,σdepending only on n and σ such that

    (ii) If u∈Hσ(Ω),then there exists U∈H (t1-2σ,D) such that the trace of U on Ω equals u and

    where C is a positive constant depending only on n,σ,R and Ω.

    3 Weak Maximum Principle in Bounded Domains

    In this section,we assume that D=Ω×(0,R*)?Rn×R+,?′D=Ω?Rn,?′′D=?D?′D,where D is a bounded domain in Rn+1.We will consider the maximum principle of the following boundary value problem:

    Set φ∈H (t1-2σ,D) and H0={U∈H (t1-2σ,D):(U-φ)|?′′D=0 in the trace sense}.

    Definition 3.1We say that U∈H0is a weak solution (supersolution,subsolution) of (3.1) in D.If,for every non-negative Φ∈,

    Lemma 3.2(Weak maximum principle) Suppose that a (x),b (x)∈L∞(Ω) and a (x)≤0 in Ω.If U (x,t)∈H (t1-2σ,D) satisfies the equations

    then we have that U (x,t)≥0 in D.

    ProofSince U is a weak supersolution,we have,for any nonnegative Φ∈,that

    By a density argument,we can take U-as a test function.Therefore,we obtain

    By using U=U+-U-and U+U-=0,we have that

    Therefore,U-=0 in D,and consequently we have that U≥0 in D. □

    Theorem 3.3(Weak maximum principle) Suppose that a (x),b (x)∈L∞(Ω) and a (x)≤0 in Ω and that φ(x,t)∈C (?′′D).If U (x,t)∈H (t1-2σ,D) is a solution of the problem

    then we have that

    where C depends only on n,σ and R*.

    ProofSet Φ=,B=‖b‖L∞(Ω).Since a (x)≤0 on?′D,obviously,we have that

    We construct an auxiliary function V (x,t)=Φ+(μ-) B for (x,t)∈,where μ=.By a straightforward calculation,we have that

    Therefore,

    By Lemma 3.2,we obtain that

    U (x,t)≤V (x,t),(x,t)∈D.

    This yields the desired result:

    Notice that the above weak maximum principle holds under the assumptions of a (x),b (x)∈L∞(Ω) and a (x)≤0 in Ω.If we reduce the integrability of a (x),b (x)∈L∞(Ω) to a (x)∈Lp(Ω),b (x)∈for p>,we have the following weak maximum principle:

    Theorem 3.4(Weak maximum principle) Suppose that a (x)∈Lp(Ω),b (x)∈and a (x)≤0 in Ω.If U (x,t)∈H (t1-2σ,D) satisfies the equations

    ProofLet L=,and assume furthermore that>L.For any K>L,choosing a test function Φ=(U-K)+with support in D∪?′D,by the definition of a weak subsolution,we have that

    It follows that

    Since a∈Lp(Ω) for some p>,by H?lder’s inequality,we have that

    By Lemma 2.4,there exists a constant C>0 depending only on n,σ such that

    By Lemma 2.3,there exist η,C>0 both depending on n and σ such that

    Substituting the above inequalities into (3.5),we obtain

    By using H?lder’s inequality and Lemma 2.4 again,we have that

    where A (K)={(x,t)∈D|U (x,t)>K}.Combining (3.4),(3.6) with (3.7),and taking,we have that

    For the second term on the right hand side in (3.8),we use the ε-Cauchy inequality to get that

    If there exists K0≥L such that

    then,for any K≥K0,we have,from (3.9),that

    By using Lemma 2.1 again,we have that

    Noting that Φ=(U-K)+,when H>K,we have that

    Combining this with (3.11),when H>K≥K0,we have that

    By Lemma 4.1 in[13],we obtain

    Next we estimate K0.We divide things into two steps to estimate K0.

    Step 1Since

    we can choose K0≥and.Thus (3.10) holds.In combination with (3.12),this gives that

    Step 2U has an upper bound from (3.13);the difficulty is to eliminate the second term of the right hand side in (3.13).Therefore,for any ε>0,we consider the function

    Noticing that Φ∈H (t1-σ,D) with compact support in D∪?′D,we put Φ into (3.3).For the left hand side of (3.3),we have that

    For the right hand side of (3.3),we have that

    Combined with (3.3),(3.14) and (3.15),this gives us that

    Therefore,by Lemma 2.1,we have that

    For any K>L,from (3.16),we have that

    Taking K0-L=(1-ξ)(M+ε+B0),where ξ>0 is small and to be determined later,we get that

    It is easy to see that there exists ξ>0 such that (3.10) holds.Therefore,from (3.12),we have that

    4 Global Boundary H?lder Estimates

    In this section,we will prove the global boundary H?lder estimate of solutions to (3.1).For this purpose,we assume further that Ω?Rnis a bounded Lipschitz domain and that Ω satisfies a uniform exterior cone condition.Let a,b∈Lp(Ω) for some p>,and let φ(x,t)∈.

    We denote that QR(x)=BR(x)×(0,R) for R<R*,where?′QR(x)=BR(x),?′′QR(x)=?QR(x)?′QR(x) and BR(x) is a ball centered at x∈Rnwith the radius R.What’s more,we denote that Q1(0)=Q1.

    Lemma 4.1Let U∈H0be a weak subsolution of (3.1) in D.Then,for any x0∈?′D∩?′′D,R>0 and q≥1,we have that

    where

    and C depends only on n,σ,p,q and.Here we have extended a and b to zero outside?′D=Ω.

    ProofWithout loss of generality,we can assume that x0is the origin and that R=1.The general case can be recovered by means of the coordinate transform (x,t)→.We consider q=2 first.

    as the nonnegative test function,where β>0 and η∈is a non-negative function.A direct calculation yields that

    Since U is a weak subsolution of (3.1) in D,it is easy to knowsatisfies

    where we have used the ε-Cauchy inequality and the fact thatand K≤.Hence,we have that

    Now we can rewrite (4.2) as

    Since|?(ηW)|2≤2(η2|?W|2+|?η|2W2),(4.3) can be rewritten as

    Due to a,b∈Lp(B1) for some p>,it follows from H?lder’s inequality that

    By Lemma 2.4,there exists a C>0 depending only on n and σ such that

    By Lemma 2.3,there exist ξ,C>0 both depending on n and σ such that

    By choosing ε small and substituting the above inequalities into (4.4),we obtain

    By Lemma 2.1 and (4.5),we have that

    By the definition of W,we obtain

    Set γ=β+1.Then γ>1,and we get that

    Therefore,we obtain

    By Moser’s iteration,we then obtain that

    This finishes the proof of q=2.This also holds for any q≥1,by standard arguments.Finally,through a simple coordinate transformation (x,t)→,we obtain the desired the result:

    Lemma 4.2Let U∈H0be a nonnegative weak supersolution of (3.1) in D.Then,for any x0∈?′D∩?′′D,R>0,0<q≤and 0<θ<?<1,we have that

    ProofWithout loss of generality,we assume that x0is the origin and that R=1.We set+K with K>0.Then.We also choose

    as the nonnegative test function,where β<0 and where η∈is a nonnegative function.A direct calculation yields that

    Since U is a weak supersolution of (3.1) in D,we know thatsatisfies

    Applying the above test function Φ to (4.6),we obtain that

    where we have used the ε-Cauchy inequality (0<ε≤1) and the fact thatand K≤.By choosing ε=min (1,),we obtain that

    where C (β) is bounded if|β|is bounded away from zero.Now we define W as

    Letting γ=β+1,we rewrite (4.7) as

    Since|?(ηW)|2≤2(η2|?W|2+|?η|2W2),we can rewrite the first inequality (when β-1) of (4.8) as

    The next proof is similar to that of Lemma 4.1.Hence,for any 0<r<τ≤1,we obtain that

    If we can show that there exists some q0>0 such that,for any 0<μ<1,

    where C depends on n,σ and μ,then the desired result will be obtained from (4.10) after finitely many iterations (Moser’s iteration).

    In order to establish (4.11),we turn to the second inequality of (4.8).It follows from the H?lder’s inequality and the Sobolev inequality that

    Therefore,by Lemma 2.2,the H?lder’s inequality and (4.13),we get that

    where Wx,rdenotes the weighted averageof W in Qr(x).Hence,we see that W∈BMO (t1-2σ,Q1).Then,by similar arguments to those of the John-Nirenberg type lemma in[10],we can show that≤C for any μ<1.Recalling the definition of W,we obtain the estimate (4.11),and consequently establish the desired result. □

    Lemma 4.3Let U∈H0be a weak solution of (3.1) in D.Then,for any x0∈?′D∩?′′D and any 0<R≤R0,there exist positive constants C and α depending on n,σ,p,R0andsuch that

    ProofLet x0∈?′D∩?′′D.By the uniform cone condition,we know that|Q2R(x0)D|≥ξ|Q2R(x0)|for some R1>0,some ξ>0,and any Q2R(x0) with R≤R1.

    We may assume,without loss of generality,that R≤.Writing

    Then M4-U is a nonnegative solution of the equations

    while U-m4is a nonnegative solution of the equations

    Since Ω satisfies a uniform exterior cone condition,we know that Q2R(x0)D contains a uniform exterior cone∩Q2R(x0).Then we can apply Lemma 4.2 to the functions M4-U and U-m4in Q4R(x0) by taking q=1,and obtain that

    By addition,we obtain that

    where γ=1-1/C<1 and where C depends on n,σ,p and R0.

    Then the desired result follows from Lemma 8.23 in[7]. □

    Theorem 4.4Let U∈H0be a weak solution of (3.1) in D.Then there exist constants κ,α0such that,for any x0∈?′D and R>0,we have that

    where C,α both depend on n,σ,p and α0.

    ProofIt is easy to obtain (4.15) from Lemma 4.3.From the H?lder continuity at the boundary?′′D,one can con firm Theorem 2.4.6(Dirichlet boundary problem) in[6].Combining the interior H?lder estimate of Proposition 2.6 in[8]with the boundary H?lder estimate (4.15) on?′D,we can obtain our result. □

    5 Weak Maximum Principle in Unbounded Domains

    In this section,we mainly prove the weak maximum principle in unbounded domains.That is,we will consider the domain C×[0,R0]?Rn+1,where C=D×R?Rnis an unbounded cylinder,and assume that C×[0,R0]satisfies a uniform exterior cone condition.We note that the diameter of C(k,k+2)only depends on n and diam (D),i.e.diam (C(k,k+2)) is independent of k and can be denoted by diam (C(k,k+2))=C (n,diam (D)).Therefore,the diameter of the domain C×[0,R0]satisfies diam (C×[0,R0])=C (n,R0,diam (D)).

    Lemma 5.1There are constants 0<ε0,δ<1 such that,if U (x,t) satisfies

    ProofLet U+(x,t) be the solution of

    By the weak maximum principle (Lemma 3.2 and Theorem 3.3),we have that

    where C depends only on n,σ,R0and diam (D).

    By Theorem 4.4,there exists C0depending only on n,σ and D such that

    We apply the weak Harnack inequality (Proposition 2.6) in[8]to (1+Cε0-U+) in×(0,R0),and we obtain,for some η>0,that

    Remark 5.2To prove Lemma 5.1,one key is the weak maximum principle.If we use the weak maximum principle (Theorem 3.4),the result in Lemma 5.1 also holds.

    Now we use Lemma 5.1 to prove the weak maximum principle in unbounded domains C×[0,R0].

    Theorem 5.3(Weak maximum principle) Suppose that U (x,t) is bounded from above,and that U (x,t)∈H (t1-2σ,C×(0,R0)) satisfies

    Then we have that

    where C depends only on n,σ,R0and diam (D).

    Therefore,we only need to prove that

    Suppose that U (x,t)≤M since U is bounded from above.Also,let B=.In order to apply Lemma 5.1,we consider the function

    Then,by iteration,we have,for any k∈Z and t∈[0,R0],that

    By applying Theorem 3.3,for any y∈[k-1,k+1]and t∈[0,R0]with k∈Z,we have that

    Corollary 5.4Suppose that U (x,t) is bounded from above,and that U (x,t)∈H (t1-2σ,C+×(0,R0)) satisfies

    Then we have that

    where C depends only on n,σ,R0and diam (D).

    6 Boundary Harnack Inequality

    In this section,we mainly prove the boundary Harnack inequalities in bounded domains.The method of proofs mainly follows the idea of Lemma 4.9 in[2].The boundary Harnack inequality and a comparison theorem are crucial for the proof of our theorems.

    Let ψ(x′) be a Lipschitz function in Rn-1(n≥2) with a Lipschitz constant,such that

    For r>0,denote

    Fix R0≥1,Qr×(-R0,R0)?Rn×R and Qr×(0,R0)?Rn×R+.Assume,for any X=(x,t)∈?(Qr×(-R0,R0)),that there exists X0=(x0,t0)∈Qr×(-R0,R0) such that|X-X0|<Cr and Br/C(X0)?Qr×(-R0,R0),where C>1,0<r<r0are constants.

    Lemma 6.1(Boundary Harnack inequality) Suppose that U∈H (t1-2σ,Q4r×(0,R0)) satisfies

    Then we have that

    where C depends only on n,σ and.

    ProofBy scaling,we assume that r=1.For some A>0 to be determined later,set

    The function VA(x,t) satisfies

    We consider the even extension of VAacross{t=0}on Q4,defined by

    Denote by LAthe operator

    We introduce the solution h±Aof

    These solutions are obtained from the solutions of the Dirichlet problem (Theorem 2.2) in[6].Hence,we have that

    By the weak maximum principle (for the Dirichlet problem also holds;see of Remark 4.2 in[2]),we have that

    then according to Remark 1 in[5],we have that

    Therefore,we obtain that

    Using (6.2) and (6.3),we have that

    Therefore,(6.4) and (6.5) lead immediately to the desired result:

    Lemma 6.2(Comparison theorem) Suppose that Ui∈H (t1-2σ,Q4r×(0,R0)),i=1,2,satisfy

    Then we have that

    ProofSimilarly,we use the same method as to that of Lemma 6.1 and combine with the boundary Harnarck inequality in[5]to obtain our conclusion.Here,we omit the proof. □

    7 The Exponential Decay of Bounded Solutions

    In this section,we first prove the existence and uniqueness of a bounded solution in unbounded domains;this plays an important role in proving the structure theorem.Then we show that the exponential decay of bounded solutions.

    Proof of Theorem 1.1First,we consider the equations in the bounded domain:

    Here N∈Z+.By Proposition 2.4 in[8],for this problem (7.1),there exists a unique solution UN(x,t)∈H (t1-2σ,C(-N,N)×(0,R0)).By Theorem 3.3,we have that

    where CNdepends only on n,σ,R0and N.

    We will prove that there exists a constant C0>0 not depending on N such that

    For convenience,we denote M=.

    For any ξ satisfying-N+1≤ξ≤N-1,it is clear that C(ξ-1,ξ+1)×(0,R0)?C(-N,N)×(0,R0).By using arguments similar to that in the proof of Theorem 5.3 in C(ξ-1,ξ+1)×(0,R0),we get that

    Then we obtain

    We have,furthermore,that

    For any (x,t)∈C(-N,-N+1)×(0,R0),by Theorem 3.3 again,we have that

    where C2=+C1depending only on n,σ,R0and diam (D).

    For any (x,t)∈C(N-1,N)×(0,R0),similarly,we have that

    Therefore,for any (x,t)∈C(-N,N)×(0,R0),we have that

    where C3=max{C2,},which depends only on n,σ,R0and diam (D).That is,from the definition of M,we have that M≤(1-δ) M+.Thus we obtain

    where C0=,which depends only on n,σ,R0and diam (D).

    Then,by Theorem 4.4,there exists a constant C*>0 depending only on n,σ,D such that

    Thus,for any bounded domain C[-l,l]×[0,R0]with l>0,there exists a subsequence of{UN(x,t)}which uniformly converges in C[-l,l]×[0,R0]by the Arzela-Ascoli theorem.Without loss of generality,we assume that there exists a function U (x,t) such that UN(x,t) uniformly converges to U (x,t) in C0(C×(0,R0)).Therefore,U (x,t) is bounded in C×(0,R0) and satisfies (1.4) in the weak sense.By Theorem 5.3,we know that U is the desired unique bounded solution. □

    Next,we give a proof of the exponential decay of bounded solutions (Theorem 1.2) with general b.

    Proof of Theorem 1.2Assume that=B.Since U is bounded from above,Corollary 5.4 leads to that

    Applying Lemma 5.1,there exists a constant δ∈(0,1) such that

    Similarly,we have that

    By induction,we obtain

    Therefore,we have the following estimate for (x,t)=(x′,y,t)∈C+×[0,R0]:

    where α=-ln (1-δ)>0.Since B=,we have,for any (x,t)∈C+×[0,R0],that

    8 The Structure Theorems of Solutions

    In this section,we show that the structure theorems of solutions with inhomogeneous term b.In the case of b=0,since we have proved the weak maximum principle in unbounded domains (Theorem 5.3) and the boundary Harnack inequalities for the mixed boundary problem (Lemma 6.1 and Lemma 6.2),we can classify all positive solutions and consider the asymptotic behaviors of the solutions to get the proof of Theorem 1.4.The details of the proofs for these results are very similar to those of[1,15,16],so we are not going to give them.Here,we only give the proof of the structure Theorem 1.5.

    Proof of Theorem 1.5Applying Theorem 1.1,we take V such that V is the unique bounded solution of the following problem:

    Then we know that there exists a constant C>0 such that U-V>-C and U-V satisfies

    Since U-V is bounded below,by applying Theorem 5.3,we obtain U-V≥0.

    Thus,either U≡V or U-V>0.If U=V,then our conclusion clearly holds (taking p=q=0).If U-V>0,by applying Theorem 1.4,we derive that there exist W∈S+,Z∈Ssuch that U-V=pW+qZ;that is,U=V+pW+qZ,where V is the bounded solution.Therefore,we obtain our conclusion:

    Here S0={V}is the unique bounded solution of the problem (1.4). □

    AcknowledgementsThe author would like to take this opportunity to express gratitude to her advisors,Professor Chunqin Zhou and Lihe Wang,for their constant encouragements,inspiring discussions and helpful suggestions,without which this work would be impossible to be carried out.

    欧美日韩精品成人综合77777| 亚洲精品亚洲一区二区| 天堂网av新在线| 免费看日本二区| 三级毛片av免费| 国产精华一区二区三区| 亚洲精品影视一区二区三区av| 久久精品影院6| 久久这里只有精品中国| 国产一区二区在线观看日韩| 久久99蜜桃精品久久| 91午夜精品亚洲一区二区三区| 免费av不卡在线播放| 白带黄色成豆腐渣| 欧美激情久久久久久爽电影| 国产精品乱码一区二三区的特点| 国产在线男女| 可以在线观看毛片的网站| 成人综合一区亚洲| 国产色婷婷99| av专区在线播放| 成人一区二区视频在线观看| 国产精品人妻久久久久久| 不卡视频在线观看欧美| 国产老妇女一区| 又粗又爽又猛毛片免费看| 国产精品无大码| 精品国产三级普通话版| 一边亲一边摸免费视频| 美女黄网站色视频| av又黄又爽大尺度在线免费看 | 在线播放无遮挡| 一个人看视频在线观看www免费| 欧洲精品卡2卡3卡4卡5卡区| 丝袜喷水一区| 国产成人精品一,二区 | 色哟哟·www| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | .国产精品久久| 波多野结衣高清无吗| 深夜a级毛片| 亚洲欧美成人综合另类久久久 | 久久精品国产自在天天线| 日韩欧美三级三区| 亚洲国产欧洲综合997久久,| 亚洲国产欧美在线一区| 麻豆国产97在线/欧美| 国产精品三级大全| 狂野欧美激情性xxxx在线观看| 丰满乱子伦码专区| 一夜夜www| 日韩高清综合在线| 好男人在线观看高清免费视频| 国产亚洲av嫩草精品影院| 一本一本综合久久| 久久久色成人| 国产黄色视频一区二区在线观看 | 美女 人体艺术 gogo| 亚洲av电影不卡..在线观看| 级片在线观看| 国内精品久久久久精免费| 久久久久久久久中文| 国产成人freesex在线| 中文亚洲av片在线观看爽| 日韩精品青青久久久久久| 久久精品国产自在天天线| 搡女人真爽免费视频火全软件| 丰满人妻一区二区三区视频av| 亚洲欧洲日产国产| 18禁在线无遮挡免费观看视频| 免费搜索国产男女视频| 国产亚洲av嫩草精品影院| 夜夜夜夜夜久久久久| 又爽又黄无遮挡网站| 国产大屁股一区二区在线视频| 亚洲不卡免费看| 国产欧美日韩精品一区二区| 亚洲精华国产精华液的使用体验 | 亚洲无线在线观看| 久久综合国产亚洲精品| 综合色av麻豆| 爱豆传媒免费全集在线观看| 久久精品夜夜夜夜夜久久蜜豆| 国产真实乱freesex| 国产人妻一区二区三区在| 亚洲五月天丁香| 深夜a级毛片| 男人舔女人下体高潮全视频| 免费电影在线观看免费观看| 国产精品三级大全| 国产精品久久视频播放| 亚洲成人久久爱视频| 欧美另类亚洲清纯唯美| 高清在线视频一区二区三区 | 欧美日韩乱码在线| 久久久久九九精品影院| 日韩 亚洲 欧美在线| 欧美极品一区二区三区四区| 老师上课跳d突然被开到最大视频| 又黄又爽又刺激的免费视频.| 日韩一区二区视频免费看| av在线亚洲专区| 黄色日韩在线| 身体一侧抽搐| 日日啪夜夜撸| 男女下面进入的视频免费午夜| 精华霜和精华液先用哪个| 99久久中文字幕三级久久日本| 精品久久久久久久久亚洲| 国产男人的电影天堂91| 99九九线精品视频在线观看视频| 一夜夜www| 1024手机看黄色片| 非洲黑人性xxxx精品又粗又长| 婷婷色av中文字幕| 又黄又爽又刺激的免费视频.| 波多野结衣巨乳人妻| www.av在线官网国产| 日本-黄色视频高清免费观看| 22中文网久久字幕| 午夜a级毛片| 97在线视频观看| 天美传媒精品一区二区| 日本一二三区视频观看| 人妻系列 视频| 日本在线视频免费播放| 免费av观看视频| 在线观看免费视频日本深夜| 免费观看a级毛片全部| 淫秽高清视频在线观看| 亚洲av熟女| 亚洲人与动物交配视频| 国产一级毛片在线| 桃色一区二区三区在线观看| 一级av片app| 中文字幕久久专区| 欧美最新免费一区二区三区| av天堂在线播放| 亚洲精品色激情综合| av在线天堂中文字幕| 男插女下体视频免费在线播放| 狂野欧美白嫩少妇大欣赏| 国产乱人偷精品视频| 亚洲国产日韩欧美精品在线观看| 国产精品国产高清国产av| 亚洲精品日韩在线中文字幕 | 干丝袜人妻中文字幕| 欧美最黄视频在线播放免费| 免费观看在线日韩| 久久这里只有精品中国| 69人妻影院| 又爽又黄无遮挡网站| 亚洲,欧美,日韩| 国产乱人视频| 99在线人妻在线中文字幕| 1024手机看黄色片| 亚洲欧美日韩高清在线视频| 国产老妇女一区| 亚洲欧美日韩无卡精品| 精品久久国产蜜桃| 国产亚洲av嫩草精品影院| 高清在线视频一区二区三区 | 丝袜喷水一区| 在线a可以看的网站| 国产一区二区三区av在线 | 国产大屁股一区二区在线视频| 欧美+日韩+精品| 国产免费一级a男人的天堂| 亚洲一级一片aⅴ在线观看| 日日干狠狠操夜夜爽| 性欧美人与动物交配| 国产午夜精品一二区理论片| 亚洲一区二区三区色噜噜| 看非洲黑人一级黄片| 亚洲精品国产成人久久av| 美女cb高潮喷水在线观看| 99热这里只有精品一区| av在线老鸭窝| 欧美+日韩+精品| 插逼视频在线观看| 男人舔女人下体高潮全视频| 狠狠狠狠99中文字幕| 最近2019中文字幕mv第一页| 高清毛片免费看| 免费看光身美女| 亚洲国产精品sss在线观看| 久久精品影院6| 一本一本综合久久| 国产在视频线在精品| 一个人看的www免费观看视频| 蜜臀久久99精品久久宅男| 久久久久久国产a免费观看| 久久久色成人| 国产精品不卡视频一区二区| 亚洲精品乱码久久久久久按摩| 久久亚洲精品不卡| 欧美精品国产亚洲| 午夜福利视频1000在线观看| 一卡2卡三卡四卡精品乱码亚洲| 男女那种视频在线观看| 插逼视频在线观看| 99久久精品热视频| 色播亚洲综合网| 成人亚洲精品av一区二区| 国产精品人妻久久久久久| 国产av在哪里看| 有码 亚洲区| 成人av在线播放网站| 亚洲欧美日韩高清在线视频| 日本-黄色视频高清免费观看| 精华霜和精华液先用哪个| 我要搜黄色片| 干丝袜人妻中文字幕| 国产伦理片在线播放av一区 | 久久久久久久久大av| 欧美激情在线99| 欧美另类亚洲清纯唯美| 成人高潮视频无遮挡免费网站| 你懂的网址亚洲精品在线观看 | 日韩欧美三级三区| 两个人视频免费观看高清| 国产v大片淫在线免费观看| 伊人久久精品亚洲午夜| 两个人的视频大全免费| 国产精品三级大全| 最近的中文字幕免费完整| 国产伦精品一区二区三区四那| 三级男女做爰猛烈吃奶摸视频| 亚洲成人中文字幕在线播放| 成人漫画全彩无遮挡| 男人狂女人下面高潮的视频| 内射极品少妇av片p| 久久久午夜欧美精品| 91久久精品国产一区二区三区| 国产精品久久久久久av不卡| 欧美另类亚洲清纯唯美| 波野结衣二区三区在线| 国产高清激情床上av| 99国产精品一区二区蜜桃av| 精品日产1卡2卡| 国语自产精品视频在线第100页| 精品人妻视频免费看| 丝袜美腿在线中文| 欧洲精品卡2卡3卡4卡5卡区| 成人高潮视频无遮挡免费网站| 久久国产乱子免费精品| 免费人成视频x8x8入口观看| 免费黄网站久久成人精品| 国产精品.久久久| 黄片wwwwww| 久久韩国三级中文字幕| 久久精品国产亚洲av天美| 三级男女做爰猛烈吃奶摸视频| 草草在线视频免费看| 啦啦啦啦在线视频资源| 天堂影院成人在线观看| 黄色一级大片看看| 26uuu在线亚洲综合色| 欧美在线一区亚洲| 亚洲av电影不卡..在线观看| 网址你懂的国产日韩在线| 只有这里有精品99| 少妇裸体淫交视频免费看高清| 三级毛片av免费| 欧美激情国产日韩精品一区| 村上凉子中文字幕在线| 亚洲精品国产成人久久av| 日本撒尿小便嘘嘘汇集6| 国产伦一二天堂av在线观看| 久久精品国产自在天天线| 国产成人a∨麻豆精品| 国产v大片淫在线免费观看| 亚洲av二区三区四区| 国产一区二区在线观看日韩| 成人无遮挡网站| 中文字幕人妻熟人妻熟丝袜美| 夫妻性生交免费视频一级片| 在线观看一区二区三区| 亚洲国产精品成人综合色| 又黄又爽又刺激的免费视频.| 人妻夜夜爽99麻豆av| 综合色av麻豆| 欧美成人精品欧美一级黄| 成人亚洲欧美一区二区av| 草草在线视频免费看| 最后的刺客免费高清国语| 一级毛片aaaaaa免费看小| 神马国产精品三级电影在线观看| 国产一区二区在线av高清观看| 久久午夜亚洲精品久久| 99精品在免费线老司机午夜| 国产亚洲5aaaaa淫片| 欧美zozozo另类| 老女人水多毛片| 夫妻性生交免费视频一级片| 99热只有精品国产| 国产片特级美女逼逼视频| 免费观看精品视频网站| 身体一侧抽搐| 国产av不卡久久| 简卡轻食公司| 精品少妇黑人巨大在线播放 | 国产真实伦视频高清在线观看| 欧美性猛交╳xxx乱大交人| 中文字幕制服av| 精品不卡国产一区二区三区| 男女下面进入的视频免费午夜| 成人漫画全彩无遮挡| 午夜精品国产一区二区电影 | 国产伦精品一区二区三区四那| 国产精品久久久久久亚洲av鲁大| 久久精品综合一区二区三区| 人妻久久中文字幕网| 久久精品91蜜桃| 欧美精品国产亚洲| 中文字幕精品亚洲无线码一区| 色5月婷婷丁香| 成人国产麻豆网| 亚洲成人久久爱视频| 欧美+日韩+精品| www.色视频.com| 国产精品一区www在线观看| 色综合色国产| 99热只有精品国产| 亚洲成人久久爱视频| 精品少妇黑人巨大在线播放 | 日韩欧美精品v在线| 日韩欧美精品免费久久| 中文字幕久久专区| 欧美又色又爽又黄视频| 午夜亚洲福利在线播放| 亚洲图色成人| 男人舔奶头视频| 欧美成人a在线观看| 亚洲人成网站高清观看| 成人毛片a级毛片在线播放| 偷拍熟女少妇极品色| 国产91av在线免费观看| 岛国毛片在线播放| 国产av不卡久久| 一级av片app| 夜夜看夜夜爽夜夜摸| 麻豆国产97在线/欧美| 亚洲欧美精品综合久久99| 不卡一级毛片| 日本免费a在线| 国产91av在线免费观看| 亚洲一区二区三区色噜噜| 天美传媒精品一区二区| 99久久人妻综合| 又粗又爽又猛毛片免费看| 男女视频在线观看网站免费| 亚洲三级黄色毛片| 亚洲成人中文字幕在线播放| 禁无遮挡网站| 日韩在线高清观看一区二区三区| 日韩人妻高清精品专区| 91在线精品国自产拍蜜月| 99热这里只有是精品50| 亚洲乱码一区二区免费版| 男插女下体视频免费在线播放| 免费av观看视频| 久久精品国产清高在天天线| 欧美色欧美亚洲另类二区| 九九在线视频观看精品| 成人特级av手机在线观看| 99久久人妻综合| 久久99蜜桃精品久久| 嫩草影院入口| a级一级毛片免费在线观看| 热99在线观看视频| 午夜福利视频1000在线观看| 国产av麻豆久久久久久久| 3wmmmm亚洲av在线观看| 男人的好看免费观看在线视频| 久久久欧美国产精品| 久久这里只有精品中国| 秋霞在线观看毛片| 夫妻性生交免费视频一级片| 中国国产av一级| 日韩欧美国产在线观看| 99国产极品粉嫩在线观看| 能在线免费看毛片的网站| 亚洲欧美成人精品一区二区| 一区福利在线观看| 国产片特级美女逼逼视频| 国产精品乱码一区二三区的特点| 欧美bdsm另类| 可以在线观看的亚洲视频| 欧美日韩国产亚洲二区| 国产精品国产三级国产av玫瑰| 欧美xxxx性猛交bbbb| 日本成人三级电影网站| 老女人水多毛片| 日韩精品青青久久久久久| 91久久精品国产一区二区成人| 日韩大尺度精品在线看网址| eeuss影院久久| av女优亚洲男人天堂| 大香蕉久久网| 久久久久久久午夜电影| 99久久人妻综合| 亚洲乱码一区二区免费版| 18禁裸乳无遮挡免费网站照片| 午夜视频国产福利| 久久99热这里只有精品18| 欧美色欧美亚洲另类二区| 国产成人精品久久久久久| 两个人视频免费观看高清| 午夜免费男女啪啪视频观看| 99久久精品热视频| 最近的中文字幕免费完整| 欧美日韩综合久久久久久| 成人午夜高清在线视频| 国产亚洲精品av在线| 国产黄a三级三级三级人| 日韩欧美国产在线观看| 久久精品久久久久久噜噜老黄 | 亚洲最大成人手机在线| 老熟妇乱子伦视频在线观看| 深爱激情五月婷婷| 99久久成人亚洲精品观看| 日韩精品青青久久久久久| 一本一本综合久久| 色5月婷婷丁香| 国产亚洲91精品色在线| 精品久久久久久久久久久久久| 2022亚洲国产成人精品| 给我免费播放毛片高清在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲一级一片aⅴ在线观看| 欧美成人免费av一区二区三区| 我的老师免费观看完整版| 色播亚洲综合网| 成人一区二区视频在线观看| 美女国产视频在线观看| 99久国产av精品| 男的添女的下面高潮视频| videossex国产| 成年版毛片免费区| 搡老妇女老女人老熟妇| 国产午夜精品一二区理论片| 国产精品免费一区二区三区在线| 干丝袜人妻中文字幕| 中文字幕av成人在线电影| 久久久久九九精品影院| 看黄色毛片网站| 久久久久久久久久成人| 久久精品影院6| 九九爱精品视频在线观看| 亚洲激情五月婷婷啪啪| 欧美成人一区二区免费高清观看| 99热这里只有精品一区| 国产精品久久久久久亚洲av鲁大| 欧美zozozo另类| 18+在线观看网站| 在线免费观看的www视频| 亚洲精品456在线播放app| 男的添女的下面高潮视频| 久久久色成人| 夫妻性生交免费视频一级片| 色播亚洲综合网| 伦精品一区二区三区| 国产精品三级大全| 日韩大尺度精品在线看网址| 国产蜜桃级精品一区二区三区| 可以在线观看的亚洲视频| 美女脱内裤让男人舔精品视频 | 夜夜夜夜夜久久久久| 身体一侧抽搐| 日韩av在线大香蕉| 内射极品少妇av片p| АⅤ资源中文在线天堂| 国产在视频线在精品| 欧美bdsm另类| 性欧美人与动物交配| 此物有八面人人有两片| 欧美色视频一区免费| 在线观看66精品国产| 噜噜噜噜噜久久久久久91| av在线老鸭窝| 日日撸夜夜添| 成年av动漫网址| 中文欧美无线码| 久久精品夜色国产| 国产高潮美女av| 亚洲欧美中文字幕日韩二区| 国内精品美女久久久久久| 午夜福利视频1000在线观看| 亚洲国产精品合色在线| 舔av片在线| 亚洲欧美成人精品一区二区| 亚洲精品粉嫩美女一区| 久久人妻av系列| 美女国产视频在线观看| 精品久久久久久成人av| 精品国产三级普通话版| 亚洲av不卡在线观看| 色噜噜av男人的天堂激情| 免费黄网站久久成人精品| 少妇被粗大猛烈的视频| 青春草国产在线视频 | 亚洲欧美日韩无卡精品| 青春草国产在线视频 | 国产精品女同一区二区软件| 国产69精品久久久久777片| 在线观看av片永久免费下载| 美女cb高潮喷水在线观看| 插逼视频在线观看| 中国美女看黄片| 九草在线视频观看| 精品免费久久久久久久清纯| 亚洲欧美成人精品一区二区| 噜噜噜噜噜久久久久久91| 少妇的逼水好多| 亚洲av成人av| 亚洲欧美日韩高清在线视频| 97超视频在线观看视频| 国产 一区 欧美 日韩| 久久久久久久久大av| 99久国产av精品| 亚洲成人中文字幕在线播放| 婷婷色av中文字幕| 99国产极品粉嫩在线观看| 国产真实乱freesex| 日本-黄色视频高清免费观看| 夜夜爽天天搞| 成年版毛片免费区| 色播亚洲综合网| 色综合色国产| 欧美在线一区亚洲| 人人妻人人澡人人爽人人夜夜 | 久久久久久久亚洲中文字幕| 我的女老师完整版在线观看| 观看免费一级毛片| 中文精品一卡2卡3卡4更新| 黄色欧美视频在线观看| 天堂√8在线中文| 日韩大尺度精品在线看网址| 久久久久久国产a免费观看| 日韩在线高清观看一区二区三区| 九色成人免费人妻av| 可以在线观看毛片的网站| 黑人高潮一二区| 国产色婷婷99| 九色成人免费人妻av| 嘟嘟电影网在线观看| 久久国产乱子免费精品| 亚洲成人久久爱视频| 国产乱人视频| 国产视频内射| 国产精品无大码| 国产精品久久电影中文字幕| 久久久成人免费电影| 又爽又黄a免费视频| 日韩欧美三级三区| 国产精品电影一区二区三区| 国产一区二区三区在线臀色熟女| 午夜精品一区二区三区免费看| 美女国产视频在线观看| 精品久久久噜噜| 亚洲欧洲日产国产| 少妇的逼水好多| 免费大片18禁| 人妻制服诱惑在线中文字幕| 国产高清有码在线观看视频| 一个人看的www免费观看视频| 久久韩国三级中文字幕| 女同久久另类99精品国产91| 日韩高清综合在线| av在线蜜桃| 国产中年淑女户外野战色| av免费观看日本| 又爽又黄a免费视频| 国产av不卡久久| 欧美高清成人免费视频www| a级毛片免费高清观看在线播放| 97超碰精品成人国产| 久久精品综合一区二区三区| 日本三级黄在线观看| 亚洲自拍偷在线| 在线免费十八禁| 亚洲电影在线观看av| 六月丁香七月| 熟妇人妻久久中文字幕3abv| 嫩草影院精品99| 国产亚洲精品av在线| 狂野欧美激情性xxxx在线观看| 久久精品国产亚洲av天美| 日本五十路高清| 美女cb高潮喷水在线观看| 欧美最新免费一区二区三区| 国产高清有码在线观看视频| 一个人看视频在线观看www免费| 97人妻精品一区二区三区麻豆| 欧美3d第一页| 免费av毛片视频| 天堂网av新在线| 亚洲精品国产成人久久av| 黄色配什么色好看| 日韩高清综合在线| 亚洲精品乱码久久久久久按摩| 99热这里只有是精品在线观看| 黄片无遮挡物在线观看| 尤物成人国产欧美一区二区三区| 亚洲一级一片aⅴ在线观看| 精品久久久久久久人妻蜜臀av| 一级毛片电影观看 | 干丝袜人妻中文字幕| 99久久精品热视频| 黄色欧美视频在线观看| 99九九线精品视频在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看| 91久久精品国产一区二区成人| 一个人看的www免费观看视频|