• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THE EXPONENTIAL PROPERTY OF SOLUTIONS BOUNDED FROM BELOW TO DEGENERATE EQUATIONS IN UNBOUNDED DOMAINS*

    2022-03-12 10:22:10LidanWANG王麗丹

    Lidan WANG (王麗丹)

    School of Mathematical Sciences,Shanghai Jiao Tong University,Shanghai 200240,China E-mail:wanglidan@sjtu.edu.cn

    Abstract This paper is focused on studying the structure of solutions bounded from below to degenerate elliptic equations with Neumann and Dirichlet boundary conditions in unbounded domains.After establishing the weak maximum principles,the global boundary H?lder estimates and the boundary Harnack inequalities of the equations,we show that all solutions bounded from below are linear combinations of two special solutions (exponential growth at one end and exponential decay at the other) with a bounded solution to the degenerate equations.

    Key words degenerate elliptic equations;unbounded domains;boundary Harnack inequalities

    1 Introduction

    In this paper,we study the behavior of solutions bounded from below to degenerate elliptic equations with mixed boundary conditions in unbounded domains.A series of papers,see for example[4-6,9,12],have established a systematic theory for degenerate elliptic operators.In addition,degenerate elliptic equations with mixed boundary conditions also have been studied by many authors;we refer to[2,8,14,17].The references above provide us with useful tools for studying degenerate equations further.The main motivations for studying degenerate elliptic equations are twofold.It is well known that Caffarelli and Silvestre[3]obtained an extension theorem through a Dirichlet-Neumann map.The Caffarelli-Silvestre extension,because of its local nature,is very often used to prove qualitative properties of solutions to problems involving the fractional Laplacian.With the same purpose,we plan to study the behavior of solutions to extension formulations for the fractional Laplacian established by Caffarelli and Silvestre[3],and hope to obtain the corresponding behavior of solutions to a fractional Laplacian.The other motivation comes from the fact that we previously considered the linear uniformly elliptic equations Lu=Di(aij(x) Dju)+bi(x) Diu+c (x) u=f or Lu=aij(x) Diju+bi(x) Diu+cu=f in unbounded cylinders in[15],followed by the fully nonlinear uniformly elliptic equations F (D2u (x))=0 in unbounded cylinders in[16].In the first paper,we established that all solutions bounded from below are linear combinations of two special solutions with a bounded solution to the term f,and in the later one,we showed results similar to but not exactly like the results in[1]under some conditions.Based on these,it is natural to attempt to develop a degenerate elliptic counterpart of the structure of solutions to uniformly elliptic equations.Therefore,our main objective here is to obtain analogous results for the degenerate elliptic equations.

    This paper will follow the lines of[1]and[15].As in[15],if we obtain three fundamental tools-the weak maximum principle in bounded domains and unbounded domains,the boundary H?lder estimates and the boundary Harnack inequalities,of the degenerate elliptic equations with mixed boundary values-then we will get a similar structure of solutions bounded from above.Therefore,we will address these three problems separately.

    More precisely,we will consider the following problem,motivated by the realization of fractional elliptic operators,as Dirichlet-to-Neumann maps of degenerate elliptic equations:

    We consider these in an unbounded domain C×(0,R0)?Rn+1,where C=D×R?Rnis an unbounded cylinder,D is a bounded Lipschitz domain in Rn-1(n≥2) and R0∈R is a positive constant.

    We would like to say that although the degenerate elliptic equations we studied arise from the Caffarelli-Silvestre extension[3]of the Dirichlet problem for the fractional Laplacian,the results obtained in this paper do not hold in the fractional setting.We cannot simply make the trace u (x)=U (x,0) and conclude that the results of problem (1.1) hold for the following fractional order linear equations:

    Actually,it is easy to check that the problem (1.1) and the fractional order linear equations (1.2) are not equivalent.Hence,we cannot analyze problem (1.2) through problem (1.1).We also would like to say that we will study problem (1.2) further in the later paper.

    We always assume that the coefficient and inhomogeneous term satisfy

    Before we state our main results,we give some notations for the reader’s convenience.Let X=(x,t)∈Rn×R,where x=(x′,y)=(x1,···,xn-1,y)∈Rn-1×R,n≥2.For E?R,CE:=D×E={(x′,y)∈Rn|x′∈D,y∈E},?bCE:=?D×E={(x′,y)∈Rn|x′∈?D,y∈E}.For any y∈R,write Cy:=C{y},:=C(y,+∞)and:=C(-∞,y).For simplicity,we denote that C+:=,C-:=.

    In addition,we use~S to denote the set of solutions bounded from below to problem (1.1).If b=0,we denote S as the set of positive solutions to problem (1.1)(we will see that=S with b=0).

    Theorem 1.1Suppose that condition (1.3) holds.Then the boundary problem

    has a unique bounded solution U in H (t1-2σ,C×[0,R0])∩C (C×(0,R0)).

    The following theorem is about the exponential decay of solutions bounded from above in C+×[0,R0]:

    Theorem 1.2Suppose that U is bounded from above and satisfies

    Then there exist positive constants α,C0and C1depending only on n and diam (D) such that

    Following from Theorem 1.2,we obtain a corollary in C-×[0,R0]:

    Corollary 1.3Suppose that U is bounded from above and satisfies

    Then there exist positive constants α,C0and C1depending only on n and diam (D) such that

    Next,we pursue further the structure of solutions to (1.1):

    Theorem 1.4For the problem (1.1),if b=0,then the positive solution sets S+and Sare well defined.Furthermore,S is a linear combination of S+and S-,that is,for any U∈S+and V∈S-,we have that

    S=S++S-={pU+qV|p,q≥0,p+q>0}.

    Theorem 1.5For the problem (1.1),the set of solutions bounded from below can be presented by,for any U∈S+,V∈S-,

    where S0={U0}is the unique bounded solution to (1.4).

    Our paper is organized as follows.In Section 2,we collect some auxiliary results.In Section 3,we prove the weak the maximum principle in bounded domains.In Section 4,we mainly study the global boundary H?lder estimate in bounded domains.In Section 5,we prove the weak maximum principle in unbounded domains.In Section 6,we prove the existence and uniqueness of a bounded solution and the exponential decay of bounded solutions.In the last Section,we analyze the structure theorem with an inhomogeneous term.

    2 Preliminary Results

    In this section,we will collect some basic results which will be used throughout the rest of the paper.First,we present some important inequalities with general A2weights.Then we introduce weighted Sobolev spaces.

    Denote that QR=BR×(0,R)?Rn×R+,?′QR=BR,?′′QR=?QR?′QR,where BRis a ball centered at the origin with the radius R.

    Recalling the definition of the Muckenhoupt A2class in Rn+1,that is,if there exists a constant Cωsuch that,for any ball B?Rn+1,

    we say that ω(X) belongs to the class A2,where ω(X) is a nonnegative measurable function in Rn+1.

    Now we quote some inequalities related to A2weights;these results can be found in[14]or[6].

    Lemma 2.1(Weighted embedding inequality) Let f (X)∈and ω(X)∈A2.Then there exist positive constants C and δ depending only on n and Cwsuch that,for all 1≤k≤+δ,

    where ω(QR)=.

    Lemma 2.2(Weighted Poincaré inequality) Let f (X)∈C1(QR) and ω(X)∈A2.Then there exist positive constants C and δ such that,for all 1≤k≤+δ,

    Lemma 2.3(Trace embedding inequality) Let f (X)∈and α∈(-1,1).Then there exists a positive constant δ depending only on α such that,for any ε>0,

    Next,we introduce weighted Sobolev spaces.Assume that σ∈(0,1) and that t∈R.According to the definition of A2,we see that|t|1-2σbelongs to the class A2.

    Suppose that D is an open domain in Rn+1,and denote L2(|t|1-2σ,D) as the Banach space of all measurable functions U,defined on D,which satisfies

    Now we can define

    with the norm

    Clearly,H (|t|1-2σ,D) is a Hilbert space and C∞(D) is dense in H (|t|1-2σ,D).Moreover,if D is a Lipschitz domain,then there exists a bounded linear extension operator from H (|t|1-2σ,D) to H (|t|1-2σ,Rn+1).

    Suppose that Ω is an open domain in Rn.Recall that Hσ(Ω) is the fractional Sobolev space defined as

    with the norm

    Then C∞(Ω) is dense in Hσ(Ω).What’s more,if Ω is a Lipschitz domain,then there exists a bounded linear extension operator from Hσ(Ω) to Hσ(Rn).If Ω=Rn,Hσ(Rn) can also be expressed by

    Hσ(Rn)={u∈L2(Rn):|ξ|σ(Fu)(ξ)∈L2(Rn)},

    where F denotes the Fourier transform operator.By a result in[11],it is known that the space Hσ(Rn) coincides with the trace on,that is,every U∈H (t1-2σ,) has a well-defined trace u=U (·,0)∈Hσ(Rn).

    The following results follow from results in[8]:

    Lemma 2.4Suppose that D=Ω×(0,R)?Rn×R+,?′D=Ω,?′′D=?D?′D,where Ω is a Lipschitz domain.Then

    (i) If U∈H (t1-2σ,D)∩C (D∪?′D),then u (x)=U (x,0)∈Hσ(Ω),and

    where C is a positive constant depending only on n,σ,R and Ω.Hence,every U∈H (t1-2σ,D) has a well-defined trace U (·,0)∈Hσ(Ω) on?′D.Furthermore,there exists a constant Cn,σdepending only on n and σ such that

    (ii) If u∈Hσ(Ω),then there exists U∈H (t1-2σ,D) such that the trace of U on Ω equals u and

    where C is a positive constant depending only on n,σ,R and Ω.

    3 Weak Maximum Principle in Bounded Domains

    In this section,we assume that D=Ω×(0,R*)?Rn×R+,?′D=Ω?Rn,?′′D=?D?′D,where D is a bounded domain in Rn+1.We will consider the maximum principle of the following boundary value problem:

    Set φ∈H (t1-2σ,D) and H0={U∈H (t1-2σ,D):(U-φ)|?′′D=0 in the trace sense}.

    Definition 3.1We say that U∈H0is a weak solution (supersolution,subsolution) of (3.1) in D.If,for every non-negative Φ∈,

    Lemma 3.2(Weak maximum principle) Suppose that a (x),b (x)∈L∞(Ω) and a (x)≤0 in Ω.If U (x,t)∈H (t1-2σ,D) satisfies the equations

    then we have that U (x,t)≥0 in D.

    ProofSince U is a weak supersolution,we have,for any nonnegative Φ∈,that

    By a density argument,we can take U-as a test function.Therefore,we obtain

    By using U=U+-U-and U+U-=0,we have that

    Therefore,U-=0 in D,and consequently we have that U≥0 in D. □

    Theorem 3.3(Weak maximum principle) Suppose that a (x),b (x)∈L∞(Ω) and a (x)≤0 in Ω and that φ(x,t)∈C (?′′D).If U (x,t)∈H (t1-2σ,D) is a solution of the problem

    then we have that

    where C depends only on n,σ and R*.

    ProofSet Φ=,B=‖b‖L∞(Ω).Since a (x)≤0 on?′D,obviously,we have that

    We construct an auxiliary function V (x,t)=Φ+(μ-) B for (x,t)∈,where μ=.By a straightforward calculation,we have that

    Therefore,

    By Lemma 3.2,we obtain that

    U (x,t)≤V (x,t),(x,t)∈D.

    This yields the desired result:

    Notice that the above weak maximum principle holds under the assumptions of a (x),b (x)∈L∞(Ω) and a (x)≤0 in Ω.If we reduce the integrability of a (x),b (x)∈L∞(Ω) to a (x)∈Lp(Ω),b (x)∈for p>,we have the following weak maximum principle:

    Theorem 3.4(Weak maximum principle) Suppose that a (x)∈Lp(Ω),b (x)∈and a (x)≤0 in Ω.If U (x,t)∈H (t1-2σ,D) satisfies the equations

    ProofLet L=,and assume furthermore that>L.For any K>L,choosing a test function Φ=(U-K)+with support in D∪?′D,by the definition of a weak subsolution,we have that

    It follows that

    Since a∈Lp(Ω) for some p>,by H?lder’s inequality,we have that

    By Lemma 2.4,there exists a constant C>0 depending only on n,σ such that

    By Lemma 2.3,there exist η,C>0 both depending on n and σ such that

    Substituting the above inequalities into (3.5),we obtain

    By using H?lder’s inequality and Lemma 2.4 again,we have that

    where A (K)={(x,t)∈D|U (x,t)>K}.Combining (3.4),(3.6) with (3.7),and taking,we have that

    For the second term on the right hand side in (3.8),we use the ε-Cauchy inequality to get that

    If there exists K0≥L such that

    then,for any K≥K0,we have,from (3.9),that

    By using Lemma 2.1 again,we have that

    Noting that Φ=(U-K)+,when H>K,we have that

    Combining this with (3.11),when H>K≥K0,we have that

    By Lemma 4.1 in[13],we obtain

    Next we estimate K0.We divide things into two steps to estimate K0.

    Step 1Since

    we can choose K0≥and.Thus (3.10) holds.In combination with (3.12),this gives that

    Step 2U has an upper bound from (3.13);the difficulty is to eliminate the second term of the right hand side in (3.13).Therefore,for any ε>0,we consider the function

    Noticing that Φ∈H (t1-σ,D) with compact support in D∪?′D,we put Φ into (3.3).For the left hand side of (3.3),we have that

    For the right hand side of (3.3),we have that

    Combined with (3.3),(3.14) and (3.15),this gives us that

    Therefore,by Lemma 2.1,we have that

    For any K>L,from (3.16),we have that

    Taking K0-L=(1-ξ)(M+ε+B0),where ξ>0 is small and to be determined later,we get that

    It is easy to see that there exists ξ>0 such that (3.10) holds.Therefore,from (3.12),we have that

    4 Global Boundary H?lder Estimates

    In this section,we will prove the global boundary H?lder estimate of solutions to (3.1).For this purpose,we assume further that Ω?Rnis a bounded Lipschitz domain and that Ω satisfies a uniform exterior cone condition.Let a,b∈Lp(Ω) for some p>,and let φ(x,t)∈.

    We denote that QR(x)=BR(x)×(0,R) for R<R*,where?′QR(x)=BR(x),?′′QR(x)=?QR(x)?′QR(x) and BR(x) is a ball centered at x∈Rnwith the radius R.What’s more,we denote that Q1(0)=Q1.

    Lemma 4.1Let U∈H0be a weak subsolution of (3.1) in D.Then,for any x0∈?′D∩?′′D,R>0 and q≥1,we have that

    where

    and C depends only on n,σ,p,q and.Here we have extended a and b to zero outside?′D=Ω.

    ProofWithout loss of generality,we can assume that x0is the origin and that R=1.The general case can be recovered by means of the coordinate transform (x,t)→.We consider q=2 first.

    as the nonnegative test function,where β>0 and η∈is a non-negative function.A direct calculation yields that

    Since U is a weak subsolution of (3.1) in D,it is easy to knowsatisfies

    where we have used the ε-Cauchy inequality and the fact thatand K≤.Hence,we have that

    Now we can rewrite (4.2) as

    Since|?(ηW)|2≤2(η2|?W|2+|?η|2W2),(4.3) can be rewritten as

    Due to a,b∈Lp(B1) for some p>,it follows from H?lder’s inequality that

    By Lemma 2.4,there exists a C>0 depending only on n and σ such that

    By Lemma 2.3,there exist ξ,C>0 both depending on n and σ such that

    By choosing ε small and substituting the above inequalities into (4.4),we obtain

    By Lemma 2.1 and (4.5),we have that

    By the definition of W,we obtain

    Set γ=β+1.Then γ>1,and we get that

    Therefore,we obtain

    By Moser’s iteration,we then obtain that

    This finishes the proof of q=2.This also holds for any q≥1,by standard arguments.Finally,through a simple coordinate transformation (x,t)→,we obtain the desired the result:

    Lemma 4.2Let U∈H0be a nonnegative weak supersolution of (3.1) in D.Then,for any x0∈?′D∩?′′D,R>0,0<q≤and 0<θ<?<1,we have that

    ProofWithout loss of generality,we assume that x0is the origin and that R=1.We set+K with K>0.Then.We also choose

    as the nonnegative test function,where β<0 and where η∈is a nonnegative function.A direct calculation yields that

    Since U is a weak supersolution of (3.1) in D,we know thatsatisfies

    Applying the above test function Φ to (4.6),we obtain that

    where we have used the ε-Cauchy inequality (0<ε≤1) and the fact thatand K≤.By choosing ε=min (1,),we obtain that

    where C (β) is bounded if|β|is bounded away from zero.Now we define W as

    Letting γ=β+1,we rewrite (4.7) as

    Since|?(ηW)|2≤2(η2|?W|2+|?η|2W2),we can rewrite the first inequality (when β-1) of (4.8) as

    The next proof is similar to that of Lemma 4.1.Hence,for any 0<r<τ≤1,we obtain that

    If we can show that there exists some q0>0 such that,for any 0<μ<1,

    where C depends on n,σ and μ,then the desired result will be obtained from (4.10) after finitely many iterations (Moser’s iteration).

    In order to establish (4.11),we turn to the second inequality of (4.8).It follows from the H?lder’s inequality and the Sobolev inequality that

    Therefore,by Lemma 2.2,the H?lder’s inequality and (4.13),we get that

    where Wx,rdenotes the weighted averageof W in Qr(x).Hence,we see that W∈BMO (t1-2σ,Q1).Then,by similar arguments to those of the John-Nirenberg type lemma in[10],we can show that≤C for any μ<1.Recalling the definition of W,we obtain the estimate (4.11),and consequently establish the desired result. □

    Lemma 4.3Let U∈H0be a weak solution of (3.1) in D.Then,for any x0∈?′D∩?′′D and any 0<R≤R0,there exist positive constants C and α depending on n,σ,p,R0andsuch that

    ProofLet x0∈?′D∩?′′D.By the uniform cone condition,we know that|Q2R(x0)D|≥ξ|Q2R(x0)|for some R1>0,some ξ>0,and any Q2R(x0) with R≤R1.

    We may assume,without loss of generality,that R≤.Writing

    Then M4-U is a nonnegative solution of the equations

    while U-m4is a nonnegative solution of the equations

    Since Ω satisfies a uniform exterior cone condition,we know that Q2R(x0)D contains a uniform exterior cone∩Q2R(x0).Then we can apply Lemma 4.2 to the functions M4-U and U-m4in Q4R(x0) by taking q=1,and obtain that

    By addition,we obtain that

    where γ=1-1/C<1 and where C depends on n,σ,p and R0.

    Then the desired result follows from Lemma 8.23 in[7]. □

    Theorem 4.4Let U∈H0be a weak solution of (3.1) in D.Then there exist constants κ,α0such that,for any x0∈?′D and R>0,we have that

    where C,α both depend on n,σ,p and α0.

    ProofIt is easy to obtain (4.15) from Lemma 4.3.From the H?lder continuity at the boundary?′′D,one can con firm Theorem 2.4.6(Dirichlet boundary problem) in[6].Combining the interior H?lder estimate of Proposition 2.6 in[8]with the boundary H?lder estimate (4.15) on?′D,we can obtain our result. □

    5 Weak Maximum Principle in Unbounded Domains

    In this section,we mainly prove the weak maximum principle in unbounded domains.That is,we will consider the domain C×[0,R0]?Rn+1,where C=D×R?Rnis an unbounded cylinder,and assume that C×[0,R0]satisfies a uniform exterior cone condition.We note that the diameter of C(k,k+2)only depends on n and diam (D),i.e.diam (C(k,k+2)) is independent of k and can be denoted by diam (C(k,k+2))=C (n,diam (D)).Therefore,the diameter of the domain C×[0,R0]satisfies diam (C×[0,R0])=C (n,R0,diam (D)).

    Lemma 5.1There are constants 0<ε0,δ<1 such that,if U (x,t) satisfies

    ProofLet U+(x,t) be the solution of

    By the weak maximum principle (Lemma 3.2 and Theorem 3.3),we have that

    where C depends only on n,σ,R0and diam (D).

    By Theorem 4.4,there exists C0depending only on n,σ and D such that

    We apply the weak Harnack inequality (Proposition 2.6) in[8]to (1+Cε0-U+) in×(0,R0),and we obtain,for some η>0,that

    Remark 5.2To prove Lemma 5.1,one key is the weak maximum principle.If we use the weak maximum principle (Theorem 3.4),the result in Lemma 5.1 also holds.

    Now we use Lemma 5.1 to prove the weak maximum principle in unbounded domains C×[0,R0].

    Theorem 5.3(Weak maximum principle) Suppose that U (x,t) is bounded from above,and that U (x,t)∈H (t1-2σ,C×(0,R0)) satisfies

    Then we have that

    where C depends only on n,σ,R0and diam (D).

    Therefore,we only need to prove that

    Suppose that U (x,t)≤M since U is bounded from above.Also,let B=.In order to apply Lemma 5.1,we consider the function

    Then,by iteration,we have,for any k∈Z and t∈[0,R0],that

    By applying Theorem 3.3,for any y∈[k-1,k+1]and t∈[0,R0]with k∈Z,we have that

    Corollary 5.4Suppose that U (x,t) is bounded from above,and that U (x,t)∈H (t1-2σ,C+×(0,R0)) satisfies

    Then we have that

    where C depends only on n,σ,R0and diam (D).

    6 Boundary Harnack Inequality

    In this section,we mainly prove the boundary Harnack inequalities in bounded domains.The method of proofs mainly follows the idea of Lemma 4.9 in[2].The boundary Harnack inequality and a comparison theorem are crucial for the proof of our theorems.

    Let ψ(x′) be a Lipschitz function in Rn-1(n≥2) with a Lipschitz constant,such that

    For r>0,denote

    Fix R0≥1,Qr×(-R0,R0)?Rn×R and Qr×(0,R0)?Rn×R+.Assume,for any X=(x,t)∈?(Qr×(-R0,R0)),that there exists X0=(x0,t0)∈Qr×(-R0,R0) such that|X-X0|<Cr and Br/C(X0)?Qr×(-R0,R0),where C>1,0<r<r0are constants.

    Lemma 6.1(Boundary Harnack inequality) Suppose that U∈H (t1-2σ,Q4r×(0,R0)) satisfies

    Then we have that

    where C depends only on n,σ and.

    ProofBy scaling,we assume that r=1.For some A>0 to be determined later,set

    The function VA(x,t) satisfies

    We consider the even extension of VAacross{t=0}on Q4,defined by

    Denote by LAthe operator

    We introduce the solution h±Aof

    These solutions are obtained from the solutions of the Dirichlet problem (Theorem 2.2) in[6].Hence,we have that

    By the weak maximum principle (for the Dirichlet problem also holds;see of Remark 4.2 in[2]),we have that

    then according to Remark 1 in[5],we have that

    Therefore,we obtain that

    Using (6.2) and (6.3),we have that

    Therefore,(6.4) and (6.5) lead immediately to the desired result:

    Lemma 6.2(Comparison theorem) Suppose that Ui∈H (t1-2σ,Q4r×(0,R0)),i=1,2,satisfy

    Then we have that

    ProofSimilarly,we use the same method as to that of Lemma 6.1 and combine with the boundary Harnarck inequality in[5]to obtain our conclusion.Here,we omit the proof. □

    7 The Exponential Decay of Bounded Solutions

    In this section,we first prove the existence and uniqueness of a bounded solution in unbounded domains;this plays an important role in proving the structure theorem.Then we show that the exponential decay of bounded solutions.

    Proof of Theorem 1.1First,we consider the equations in the bounded domain:

    Here N∈Z+.By Proposition 2.4 in[8],for this problem (7.1),there exists a unique solution UN(x,t)∈H (t1-2σ,C(-N,N)×(0,R0)).By Theorem 3.3,we have that

    where CNdepends only on n,σ,R0and N.

    We will prove that there exists a constant C0>0 not depending on N such that

    For convenience,we denote M=.

    For any ξ satisfying-N+1≤ξ≤N-1,it is clear that C(ξ-1,ξ+1)×(0,R0)?C(-N,N)×(0,R0).By using arguments similar to that in the proof of Theorem 5.3 in C(ξ-1,ξ+1)×(0,R0),we get that

    Then we obtain

    We have,furthermore,that

    For any (x,t)∈C(-N,-N+1)×(0,R0),by Theorem 3.3 again,we have that

    where C2=+C1depending only on n,σ,R0and diam (D).

    For any (x,t)∈C(N-1,N)×(0,R0),similarly,we have that

    Therefore,for any (x,t)∈C(-N,N)×(0,R0),we have that

    where C3=max{C2,},which depends only on n,σ,R0and diam (D).That is,from the definition of M,we have that M≤(1-δ) M+.Thus we obtain

    where C0=,which depends only on n,σ,R0and diam (D).

    Then,by Theorem 4.4,there exists a constant C*>0 depending only on n,σ,D such that

    Thus,for any bounded domain C[-l,l]×[0,R0]with l>0,there exists a subsequence of{UN(x,t)}which uniformly converges in C[-l,l]×[0,R0]by the Arzela-Ascoli theorem.Without loss of generality,we assume that there exists a function U (x,t) such that UN(x,t) uniformly converges to U (x,t) in C0(C×(0,R0)).Therefore,U (x,t) is bounded in C×(0,R0) and satisfies (1.4) in the weak sense.By Theorem 5.3,we know that U is the desired unique bounded solution. □

    Next,we give a proof of the exponential decay of bounded solutions (Theorem 1.2) with general b.

    Proof of Theorem 1.2Assume that=B.Since U is bounded from above,Corollary 5.4 leads to that

    Applying Lemma 5.1,there exists a constant δ∈(0,1) such that

    Similarly,we have that

    By induction,we obtain

    Therefore,we have the following estimate for (x,t)=(x′,y,t)∈C+×[0,R0]:

    where α=-ln (1-δ)>0.Since B=,we have,for any (x,t)∈C+×[0,R0],that

    8 The Structure Theorems of Solutions

    In this section,we show that the structure theorems of solutions with inhomogeneous term b.In the case of b=0,since we have proved the weak maximum principle in unbounded domains (Theorem 5.3) and the boundary Harnack inequalities for the mixed boundary problem (Lemma 6.1 and Lemma 6.2),we can classify all positive solutions and consider the asymptotic behaviors of the solutions to get the proof of Theorem 1.4.The details of the proofs for these results are very similar to those of[1,15,16],so we are not going to give them.Here,we only give the proof of the structure Theorem 1.5.

    Proof of Theorem 1.5Applying Theorem 1.1,we take V such that V is the unique bounded solution of the following problem:

    Then we know that there exists a constant C>0 such that U-V>-C and U-V satisfies

    Since U-V is bounded below,by applying Theorem 5.3,we obtain U-V≥0.

    Thus,either U≡V or U-V>0.If U=V,then our conclusion clearly holds (taking p=q=0).If U-V>0,by applying Theorem 1.4,we derive that there exist W∈S+,Z∈Ssuch that U-V=pW+qZ;that is,U=V+pW+qZ,where V is the bounded solution.Therefore,we obtain our conclusion:

    Here S0={V}is the unique bounded solution of the problem (1.4). □

    AcknowledgementsThe author would like to take this opportunity to express gratitude to her advisors,Professor Chunqin Zhou and Lihe Wang,for their constant encouragements,inspiring discussions and helpful suggestions,without which this work would be impossible to be carried out.

    老司机在亚洲福利影院| 中国国产av一级| 51午夜福利影视在线观看| 久久国产精品大桥未久av| 午夜精品国产一区二区电影| 天天躁日日躁夜夜躁夜夜| 国产精品久久久久久精品电影小说| 一二三四在线观看免费中文在| 精品国产超薄肉色丝袜足j| 欧美亚洲日本最大视频资源| 成人av一区二区三区在线看 | 18在线观看网站| 午夜精品久久久久久毛片777| 99久久精品国产亚洲精品| 精品久久久久久电影网| av片东京热男人的天堂| 亚洲国产欧美在线一区| 国产高清国产精品国产三级| 国产1区2区3区精品| av不卡在线播放| 秋霞在线观看毛片| 天天躁夜夜躁狠狠躁躁| 久久国产精品男人的天堂亚洲| 中文字幕人妻丝袜一区二区| 亚洲男人天堂网一区| 久久精品国产亚洲av香蕉五月 | 久久久国产成人免费| 在线观看免费日韩欧美大片| 91av网站免费观看| 国内毛片毛片毛片毛片毛片| 免费在线观看完整版高清| 国产在线一区二区三区精| 婷婷成人精品国产| 热re99久久精品国产66热6| av免费在线观看网站| 美国免费a级毛片| 亚洲av片天天在线观看| 我的亚洲天堂| 久久热在线av| 国产成人免费无遮挡视频| 亚洲专区字幕在线| 欧美日韩国产mv在线观看视频| av线在线观看网站| 岛国在线观看网站| 国精品久久久久久国模美| 国产人伦9x9x在线观看| 国产亚洲欧美精品永久| 色婷婷av一区二区三区视频| 日韩三级视频一区二区三区| 久久毛片免费看一区二区三区| 午夜影院在线不卡| 十八禁高潮呻吟视频| 午夜视频精品福利| 欧美日韩精品网址| 高清欧美精品videossex| 国产亚洲精品一区二区www | 国产精品秋霞免费鲁丝片| www.熟女人妻精品国产| 亚洲国产精品成人久久小说| 在线观看一区二区三区激情| 亚洲七黄色美女视频| 一本—道久久a久久精品蜜桃钙片| 9191精品国产免费久久| 韩国精品一区二区三区| 五月开心婷婷网| 一区二区av电影网| 国产成人a∨麻豆精品| 亚洲伊人色综图| 一个人免费在线观看的高清视频 | 国产精品一二三区在线看| 久久久精品免费免费高清| 一级片免费观看大全| tocl精华| 一级,二级,三级黄色视频| 1024视频免费在线观看| 色精品久久人妻99蜜桃| 成人亚洲精品一区在线观看| 1024香蕉在线观看| 自线自在国产av| 亚洲少妇的诱惑av| 人妻人人澡人人爽人人| 在线观看舔阴道视频| 亚洲欧美精品综合一区二区三区| 欧美日韩精品网址| 成年人午夜在线观看视频| 成年人午夜在线观看视频| 高清欧美精品videossex| 久久综合国产亚洲精品| 91大片在线观看| 中国国产av一级| 亚洲国产欧美网| 色婷婷久久久亚洲欧美| 午夜免费观看性视频| 母亲3免费完整高清在线观看| 国产精品欧美亚洲77777| 午夜两性在线视频| 十八禁网站免费在线| 亚洲一卡2卡3卡4卡5卡精品中文| 免费在线观看日本一区| 纯流量卡能插随身wifi吗| 老司机影院毛片| av又黄又爽大尺度在线免费看| 老司机影院成人| 人妻 亚洲 视频| 久久精品成人免费网站| 色婷婷av一区二区三区视频| 正在播放国产对白刺激| 精品一区在线观看国产| 国产av国产精品国产| 又黄又粗又硬又大视频| 丝袜在线中文字幕| 嫩草影视91久久| 美女中出高潮动态图| 国产精品二区激情视频| 少妇裸体淫交视频免费看高清 | 制服人妻中文乱码| 午夜免费鲁丝| 午夜免费鲁丝| 亚洲精品国产av成人精品| 中文字幕精品免费在线观看视频| 欧美国产精品va在线观看不卡| 一边摸一边抽搐一进一出视频| av免费在线观看网站| 欧美日韩黄片免| 美女中出高潮动态图| 国产在线免费精品| 亚洲九九香蕉| 一区二区三区精品91| 中文字幕色久视频| 国产成人av激情在线播放| 免费日韩欧美在线观看| 狠狠精品人妻久久久久久综合| 91字幕亚洲| 无遮挡黄片免费观看| 自线自在国产av| videos熟女内射| 国产不卡av网站在线观看| 一二三四社区在线视频社区8| 高清黄色对白视频在线免费看| 久久香蕉激情| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩大片免费观看网站| 欧美大码av| 精品久久久精品久久久| 一二三四在线观看免费中文在| 婷婷成人精品国产| 丁香六月天网| 涩涩av久久男人的天堂| 亚洲国产日韩一区二区| 国产亚洲精品久久久久5区| 免费看十八禁软件| 日韩大码丰满熟妇| 欧美日韩成人在线一区二区| 中文字幕人妻熟女乱码| 国产男女内射视频| 黄片播放在线免费| 女人爽到高潮嗷嗷叫在线视频| 秋霞在线观看毛片| 国产日韩欧美亚洲二区| 国产免费av片在线观看野外av| 国产精品自产拍在线观看55亚洲 | 亚洲国产欧美日韩在线播放| 97在线人人人人妻| 少妇被粗大的猛进出69影院| 高清视频免费观看一区二区| 欧美精品人与动牲交sv欧美| 国产成人一区二区三区免费视频网站| 老司机福利观看| 久久青草综合色| 9色porny在线观看| 一级a爱视频在线免费观看| 韩国精品一区二区三区| 亚洲成人国产一区在线观看| 久久人妻熟女aⅴ| 日本一区二区免费在线视频| 爱豆传媒免费全集在线观看| 亚洲欧洲精品一区二区精品久久久| 91精品伊人久久大香线蕉| 国产精品久久久久成人av| 精品少妇一区二区三区视频日本电影| 亚洲精品第二区| 国产深夜福利视频在线观看| 啦啦啦免费观看视频1| 男女床上黄色一级片免费看| 国产伦人伦偷精品视频| 在线观看免费午夜福利视频| 在线观看舔阴道视频| 欧美变态另类bdsm刘玥| 18禁黄网站禁片午夜丰满| 亚洲午夜精品一区,二区,三区| 99re6热这里在线精品视频| 少妇人妻久久综合中文| av免费在线观看网站| 大香蕉久久网| 91麻豆av在线| 亚洲国产欧美日韩在线播放| 日本a在线网址| 黄片播放在线免费| 无遮挡黄片免费观看| 国产成人影院久久av| 亚洲中文日韩欧美视频| h视频一区二区三区| 国产熟女午夜一区二区三区| 老司机深夜福利视频在线观看 | 日本av手机在线免费观看| 极品少妇高潮喷水抽搐| 久久久久久久久久久久大奶| 免费在线观看日本一区| 久久国产精品男人的天堂亚洲| 久久精品亚洲av国产电影网| 黑人操中国人逼视频| av欧美777| 黄色片一级片一级黄色片| 亚洲va日本ⅴa欧美va伊人久久 | 成人国产av品久久久| 国产深夜福利视频在线观看| 国产精品 国内视频| 亚洲成人手机| 久久久欧美国产精品| 免费不卡黄色视频| 亚洲五月色婷婷综合| 久久精品人人爽人人爽视色| 日本猛色少妇xxxxx猛交久久| 成年av动漫网址| 亚洲av欧美aⅴ国产| 日日摸夜夜添夜夜添小说| av欧美777| 日韩大码丰满熟妇| 久久精品国产综合久久久| 啦啦啦免费观看视频1| av福利片在线| 高清欧美精品videossex| 日韩制服丝袜自拍偷拍| 国产在线视频一区二区| 汤姆久久久久久久影院中文字幕| 成人国产av品久久久| 国产黄频视频在线观看| 国产男女内射视频| 曰老女人黄片| 日本五十路高清| 久久精品人人爽人人爽视色| 久久精品久久久久久噜噜老黄| 亚洲精品av麻豆狂野| 色播在线永久视频| 建设人人有责人人尽责人人享有的| 丝袜在线中文字幕| 精品视频人人做人人爽| 欧美日韩亚洲综合一区二区三区_| 一本色道久久久久久精品综合| 一本综合久久免费| 搡老岳熟女国产| 超色免费av| 亚洲精品久久午夜乱码| 女人被躁到高潮嗷嗷叫费观| 亚洲av电影在线进入| 欧美另类亚洲清纯唯美| 一区二区三区激情视频| 人人妻人人澡人人爽人人夜夜| 色婷婷av一区二区三区视频| 侵犯人妻中文字幕一二三四区| 一二三四社区在线视频社区8| 亚洲欧美成人综合另类久久久| 亚洲精品国产av成人精品| 青春草视频在线免费观看| 最新的欧美精品一区二区| 9色porny在线观看| 超碰97精品在线观看| 精品人妻熟女毛片av久久网站| 麻豆国产av国片精品| 脱女人内裤的视频| 纯流量卡能插随身wifi吗| 欧美日韩中文字幕国产精品一区二区三区 | 老司机影院毛片| 国产成人一区二区三区免费视频网站| 色婷婷久久久亚洲欧美| 亚洲成av片中文字幕在线观看| 麻豆国产av国片精品| 久久国产亚洲av麻豆专区| 乱人伦中国视频| 一个人免费在线观看的高清视频 | 热99国产精品久久久久久7| videos熟女内射| cao死你这个sao货| 国产高清国产精品国产三级| 亚洲精品中文字幕在线视频| 国产精品一区二区免费欧美 | 色视频在线一区二区三区| 国产成人系列免费观看| 18禁黄网站禁片午夜丰满| 丰满饥渴人妻一区二区三| 国产福利在线免费观看视频| 在线观看舔阴道视频| 亚洲成av片中文字幕在线观看| 欧美国产精品一级二级三级| 国产成人系列免费观看| 国产麻豆69| 每晚都被弄得嗷嗷叫到高潮| 一级,二级,三级黄色视频| 亚洲欧美清纯卡通| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲国产欧美在线一区| 十八禁高潮呻吟视频| 最黄视频免费看| 一边摸一边做爽爽视频免费| 亚洲一码二码三码区别大吗| 无限看片的www在线观看| 久久精品人人爽人人爽视色| 成人影院久久| 飞空精品影院首页| 性高湖久久久久久久久免费观看| 日韩一卡2卡3卡4卡2021年| 亚洲国产欧美网| 成年av动漫网址| 亚洲av欧美aⅴ国产| 国产精品欧美亚洲77777| 不卡av一区二区三区| 精品国产一区二区三区四区第35| 亚洲精华国产精华精| xxxhd国产人妻xxx| 91字幕亚洲| 高清黄色对白视频在线免费看| 亚洲avbb在线观看| 国产亚洲一区二区精品| 日韩三级视频一区二区三区| 国产成人免费观看mmmm| 岛国在线观看网站| a级片在线免费高清观看视频| 91国产中文字幕| 在线观看免费高清a一片| 在线观看人妻少妇| 亚洲国产欧美一区二区综合| 国产精品一区二区在线不卡| 12—13女人毛片做爰片一| 视频区欧美日本亚洲| 亚洲精品乱久久久久久| 亚洲三区欧美一区| www.av在线官网国产| 国产激情久久老熟女| 天天影视国产精品| 国产97色在线日韩免费| 韩国精品一区二区三区| 日本一区二区免费在线视频| 中文字幕制服av| 国产一区二区三区av在线| 国产精品一二三区在线看| 18在线观看网站| 久热爱精品视频在线9| 最近最新中文字幕大全免费视频| av不卡在线播放| 免费观看av网站的网址| 又黄又粗又硬又大视频| 香蕉丝袜av| 女人爽到高潮嗷嗷叫在线视频| 精品久久久久久久毛片微露脸 | 欧美黑人欧美精品刺激| 亚洲情色 制服丝袜| 在线永久观看黄色视频| 高清在线国产一区| 国产精品久久久人人做人人爽| 欧美另类亚洲清纯唯美| avwww免费| 婷婷丁香在线五月| 欧美av亚洲av综合av国产av| 十分钟在线观看高清视频www| 男女午夜视频在线观看| 少妇人妻久久综合中文| 极品少妇高潮喷水抽搐| 久久久久久亚洲精品国产蜜桃av| 亚洲成人免费av在线播放| 性少妇av在线| 99久久人妻综合| 人人妻人人澡人人看| 成人国产一区最新在线观看| 免费在线观看黄色视频的| 亚洲全国av大片| 国产成人一区二区三区免费视频网站| 日韩欧美国产一区二区入口| 免费不卡黄色视频| 国产亚洲av片在线观看秒播厂| 在线av久久热| 免费少妇av软件| 老司机午夜福利在线观看视频 | 亚洲成av片中文字幕在线观看| 国产成人av激情在线播放| 中文字幕人妻丝袜一区二区| xxxhd国产人妻xxx| 国产精品九九99| 中文字幕av电影在线播放| 女性生殖器流出的白浆| 国产免费视频播放在线视频| 在线天堂中文资源库| 日日夜夜操网爽| 女人高潮潮喷娇喘18禁视频| 日韩熟女老妇一区二区性免费视频| 可以免费在线观看a视频的电影网站| 一级毛片精品| av线在线观看网站| 精品免费久久久久久久清纯 | 国产91精品成人一区二区三区 | 少妇人妻久久综合中文| 久热爱精品视频在线9| 国产精品自产拍在线观看55亚洲 | 性色av乱码一区二区三区2| 日本猛色少妇xxxxx猛交久久| 91字幕亚洲| 超色免费av| 亚洲欧美清纯卡通| 久久毛片免费看一区二区三区| 国产成人一区二区三区免费视频网站| 一级黄色大片毛片| 成年美女黄网站色视频大全免费| 精品国产乱子伦一区二区三区 | 午夜精品久久久久久毛片777| 国产成人精品久久二区二区免费| 久久影院123| 丰满饥渴人妻一区二区三| 免费女性裸体啪啪无遮挡网站| 中国国产av一级| 午夜免费成人在线视频| 日本av免费视频播放| 欧美精品亚洲一区二区| 妹子高潮喷水视频| 国产精品成人在线| 肉色欧美久久久久久久蜜桃| 国产精品亚洲av一区麻豆| 欧美精品亚洲一区二区| 久久久国产精品麻豆| av一本久久久久| 精品人妻一区二区三区麻豆| 久久性视频一级片| 不卡av一区二区三区| 日韩,欧美,国产一区二区三区| √禁漫天堂资源中文www| 国产一区二区三区综合在线观看| 亚洲国产中文字幕在线视频| 老司机靠b影院| 这个男人来自地球电影免费观看| 99国产精品一区二区三区| 日韩,欧美,国产一区二区三区| 欧美大码av| 啦啦啦免费观看视频1| 亚洲av国产av综合av卡| 国产精品秋霞免费鲁丝片| 亚洲人成电影免费在线| 人妻人人澡人人爽人人| 久热这里只有精品99| 狠狠狠狠99中文字幕| 日本撒尿小便嘘嘘汇集6| 男男h啪啪无遮挡| 国产片内射在线| 天天影视国产精品| 成人国语在线视频| 99久久人妻综合| 操出白浆在线播放| 超碰97精品在线观看| 国产精品 国内视频| 免费在线观看视频国产中文字幕亚洲 | www.999成人在线观看| 成人影院久久| 日韩精品免费视频一区二区三区| 亚洲国产av影院在线观看| 亚洲欧美日韩另类电影网站| 天天添夜夜摸| av在线播放精品| 亚洲视频免费观看视频| 成人三级做爰电影| 91成人精品电影| bbb黄色大片| 美女视频免费永久观看网站| 一级,二级,三级黄色视频| 超碰成人久久| 国产有黄有色有爽视频| 王馨瑶露胸无遮挡在线观看| 日韩三级视频一区二区三区| av在线播放精品| 国产一区二区激情短视频 | 高清黄色对白视频在线免费看| 99热全是精品| 视频区图区小说| 啦啦啦免费观看视频1| 成人18禁高潮啪啪吃奶动态图| 在线天堂中文资源库| 又黄又粗又硬又大视频| 精品免费久久久久久久清纯 | 麻豆av在线久日| 高清欧美精品videossex| 国产精品.久久久| 黄色怎么调成土黄色| 亚洲第一青青草原| 91大片在线观看| 久久精品熟女亚洲av麻豆精品| 成人国语在线视频| 亚洲少妇的诱惑av| 性少妇av在线| 新久久久久国产一级毛片| 亚洲伊人久久精品综合| 午夜免费成人在线视频| 少妇人妻久久综合中文| av视频免费观看在线观看| 亚洲精品久久午夜乱码| 久久人妻熟女aⅴ| 黄网站色视频无遮挡免费观看| 操出白浆在线播放| 天天影视国产精品| 两个人看的免费小视频| 免费高清在线观看日韩| 97精品久久久久久久久久精品| 久久久国产成人免费| 国产精品久久久av美女十八| 夫妻午夜视频| 国产欧美亚洲国产| 国产精品熟女久久久久浪| 久久性视频一级片| tube8黄色片| 欧美久久黑人一区二区| 成在线人永久免费视频| 黑人巨大精品欧美一区二区mp4| 久久性视频一级片| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品国产一区二区精华液| 日本黄色日本黄色录像| 久久久久网色| av福利片在线| 精品一品国产午夜福利视频| 免费一级毛片在线播放高清视频 | 男女国产视频网站| 人人妻人人澡人人爽人人夜夜| 欧美国产精品va在线观看不卡| 91国产中文字幕| 午夜福利视频在线观看免费| 欧美大码av| 国产av精品麻豆| 亚洲欧美精品综合一区二区三区| 午夜老司机福利片| 12—13女人毛片做爰片一| 精品福利永久在线观看| 中文字幕人妻熟女乱码| 热99国产精品久久久久久7| 狠狠婷婷综合久久久久久88av| 黄色a级毛片大全视频| 亚洲少妇的诱惑av| 欧美成狂野欧美在线观看| 久久久久国产精品人妻一区二区| videosex国产| 男女国产视频网站| 欧美激情 高清一区二区三区| 黄色a级毛片大全视频| 大陆偷拍与自拍| 少妇 在线观看| 制服诱惑二区| 成人av一区二区三区在线看 | 免费在线观看视频国产中文字幕亚洲 | 国产一区二区三区av在线| 不卡一级毛片| 久久久国产成人免费| 好男人电影高清在线观看| 操美女的视频在线观看| 女人高潮潮喷娇喘18禁视频| 久久久久国产一级毛片高清牌| 亚洲第一av免费看| 午夜成年电影在线免费观看| 丝袜在线中文字幕| 精品人妻熟女毛片av久久网站| 精品第一国产精品| 欧美激情 高清一区二区三区| 精品国产乱子伦一区二区三区 | 成人国产av品久久久| 中文字幕制服av| 99久久精品国产亚洲精品| 国产日韩欧美亚洲二区| 色综合欧美亚洲国产小说| 一区福利在线观看| 国产片内射在线| 亚洲精品美女久久久久99蜜臀| 亚洲色图综合在线观看| videosex国产| 无限看片的www在线观看| 亚洲av日韩在线播放| 老司机影院成人| 亚洲国产欧美一区二区综合| 在线观看www视频免费| 视频区图区小说| 97在线人人人人妻| 国产97色在线日韩免费| 亚洲第一av免费看| 欧美日韩亚洲国产一区二区在线观看 | 国产欧美日韩精品亚洲av| 脱女人内裤的视频| 一个人免费在线观看的高清视频 | h视频一区二区三区| 国产一区二区 视频在线| 精品少妇黑人巨大在线播放| 老司机午夜福利在线观看视频 | 最近最新中文字幕大全免费视频| 999久久久国产精品视频| 搡老乐熟女国产| 男女之事视频高清在线观看| 18禁观看日本| 久久影院123| 男女免费视频国产| 黑人巨大精品欧美一区二区蜜桃| 两个人看的免费小视频| 男女下面插进去视频免费观看| 老熟女久久久| 国产成人av激情在线播放| 欧美精品人与动牲交sv欧美| 国产日韩欧美亚洲二区| av国产精品久久久久影院| 亚洲精品日韩在线中文字幕| 搡老岳熟女国产| 亚洲成人手机| 如日韩欧美国产精品一区二区三区| 精品一品国产午夜福利视频| 女人爽到高潮嗷嗷叫在线视频| 99香蕉大伊视频|