• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study of TSP based on self-organizing map

    2013-12-20 07:22:19SONGJinjuan宋錦娟BAIYanping白艷萍HUHongping胡紅萍
    關(guān)鍵詞:艷萍

    SONG Jin-juan (宋錦娟), BAI Yan-ping (白艷萍), HU Hong-ping (胡紅萍)

    (Department of Mathematics, North University of China, Taiyuan 030051, China)

    Study of TSP based on self-organizing map

    SONG Jin-juan (宋錦娟), BAI Yan-ping (白艷萍), HU Hong-ping (胡紅萍)

    (Department of Mathematics, North University of China, Taiyuan 030051, China)

    Self-organizing map (SOM) proposed by Kohonen has obtained certain achievements in solving the traveling salesman problem (TSP). To improve Kohonen SOM, an effective initialization and parameter modification method is discussed to obtain a faster convergence rate and better solution. Therefore, a new improved self-organizing map (ISOM) algorithm is introduced and applied to four traveling salesman problem instances for experimental simulation, and then the result of ISOM is compared with those of four SOM algorithms: AVL, KL, KG and MSTSP. Using ISOM, the average error of four traveling salesman problem instances is only 2.895 0%, which is greatly better than the other four algorithms: 8.51% (AVL), 6.147 5% (KL), 6.555% (KG) and 3.420 9% (MSTSP). Finally, ISOM is applied to two practical problems: the Chinese 100 cities-TSP and 102 counties-TSP in Shanxi Province, and the two optimal touring routes are provided to the tourists.

    self-organizing maps (SOM); traveling salesman problem (TSP); neural network

    CLD number: O221.1 Document code: A

    Traveling salesman problem (TSP), as a classical combination optimization problem, can be defined as a given graph G=(V; A), where V is a set of n vertices and A is a set of arcs between vertices, and each arc is associated with a nonnegative distance. TSP is to determine a minimum distance of the closed ring passing through each vertex once and only once[1,2]. As a typical NP-complete problem, TSP has vast practical applications in our life, such as vehicle routing[1], power-distribution network[3]and printed-circuit-board manufacturing[4,5]and so on, therefore, it has attracted great research attention.

    In recent years, some heuristic intelligent algorithms have been developed and applied to TSP in order to achieve a near-to-optimal solution of the problem in a relatively short period of time. Using heuristic algorithms, such as exhaustive search method, tabu search algorithm (TSA)[6], simulated annealing (SA)[7], genetic algorithm[8], ant colony system[9]and neural networks, etc., TSP is easier to be solved successfully. Self-organizing map (SOM) neural network[10,11], as a kind of Kohonen-type network, has also been used to solve TSP. So in this paper, firstly, we explain SOM modification procedure for TSP, then we introduce two parameter modification formulae and initialization methods of SOM put forword by Kohonen, and finally, we analyze the defects of basic SOM and put forword an improved SOM (ISOM) algorithm.

    1 SOM modification procedure for TSP

    SOM put forword by Kohonen belongs to a special class of neural networks, where each neuron competes with the others to get activated. In order to provide the readers a intuitive and specific description of SOM network procedure for TSP, this paper utilizes the following figure (Fig.1) to explain the association between learning network[12]and a geometrical representation of TSP solution.

    Fig.1 Schematic diagram of two-layer neural network and associated geometrical representation

    In Fig.1, [ci1,ci2] repesents the coordinates of city cias an input vector, and weights vj1and vj2can be defined as the coordinates of node vjlocated in the output layer. The network is initialized with small random connection weights and then cities are sequentially added to the network in a random order. The nodes in the output layer compete with each other for a given city based on Euclidian distance and then the winner node J is selected by

    where xiand yjdenote the coordinates of city i and output node j, respectively, and ‖·‖2is Euclidian distance. From the above formula, we can summarize that the winner node is the node with the minimum Euclidian distance to the existing city.

    Once the winner node for a given city is found, the weight vectors of the winner node and its neighbouring nodes are modified in order to get closer to this city according to the following formula:

    where f(σ,d)=exp(-d2/σ2) is a neighborhood function: α and σ are learning rate and neighborhood function variance, respectively; d=min{‖j-J‖,M-‖j-J‖} is the cardinal distance measured along the closed ring between nodes j and J, where ‖·‖ represents absolute value and M is the number of the output nodes.

    When the network is stable, each city can find its corresponding winner node. Furthermore, all the winner nodes form a closed ring, and after modified, the closed ring represents a touring route covering the selected cities and it is approximately optimal solution to TSP.

    2 Improvement on Kohonen SOM

    In SOM network, there are two adaptive parameters: learning rate α and neighborhood function variance σ, which are vital to solving TSP especially in routing length and processing time to achieve a reasonable and optimal solution.

    2.1 Parameter modification of ISOM

    The new parameter modification formulae proposed in this paper are presented as

    where k=0,1,2,…, is the number of iterations, T is a contant related to time, and we give the following initial values: kmax=200, T=10 000 and σ0=10. The modification of learing rate α and neighborhood function variance σ are illustrated in Fig.2 and Fig.3, respectively.

    Fig.2 Modified α in ISOM

    Fig.3 Modified σ in ISOM

    2.2 Initialization method of ISOM

    Firstly, we suggest that the number of selected output nodes be twice the number of cities (M=2n), and in the initialization stage, the neighbor length be limited to 40% of the output nodes (l=0.4M). Once a cycle is completed (that is when all n cities complete their inputs to the network), the neighboring length will decrease by 2%, which leads to a lower processing efficiency. Secondly, in order to prevent a node from being selected as the winner node for more than one city in each completed cycle of iterations, an inhibitory index is defined for each node, which puts the winner node aside from the competed, providing more opportunities for other nodes. And before each iteration, the sequence of n cities is always permutated randomly. Finally, it is suggested that the nodes initialization be on a rectangular frame located on the right of the n cities' centroid.

    3 Experimental results

    In order to verify the validity of ISOM algorithm, four examples obtained from general TSPLIB[13]are selected for experiments. Through experimental simulation, the improved algorithm are compared with Kohonen SOM. For each example, the experiment is conducted for 10 times, and then the best value, average value and relative error are calculated, respectively. The experimental results are shown in Table 1.

    Table 1 Experimental results' comparison of average values and relative errors of Kohonen SOM and ISOM

    The comparison of experimental results above shows that the average values obtained from the improved algorithm are greatly better, and the relative errors are much smaller than that of Kohonen SOM, so the improved algorithm introduced in this paper is an effective algorithm.

    The following Figs.4-7 are four experimental results with ISOM.

    Fig.4 Optimalroutinggraphofeil76Fig.5 OptimalroutinggraphofKroA200

    Fig.6 Optimalroutinggraphofrat195Fig.7 Optimalroutinggraphofpr136

    In order to further evaluate and verify the performance of ISOM, it is compared with other four basic heuristic methods, which are AVL (the procedure of Ange_niol, Vaubois and Le Texier[14]), KL-e global-KG[15]and MSTSP (modified SOM applied to the TSP[16]). The comparison results are shown in Table 2.

    It can be seen from Table 2 that, for each example of TSP, the experimental results of ISOM are greatly better than those of the other four algorithms. The average errors of four traveling salesman problem instances for five algorithms are: 8.51% (AVL), 6.147 5% (KL), 6.555 0% (KG), 3.420 9% (MSTSP) and 2.895 0% (ISOM), respectively.

    In order to deeply understand the convergence process in searching optimal solution, this paper takes st70 from TSPLIB as instance for conducting the experiments, and five figures are shown in the following: the initial condition of M nodes (Fig.8), intermediate iterations (Fig.9, Fig.10 and Fig.11) and final result (Fig.12), where “*” and “·” represent the cities and nodes located in output layer, respectively.

    Table 2 Comparison results of five algorithms

    Fig.8 InitialconditionofMnodesFig.9 Convergencein50th

    Fig.10 Convergencein100thFig.11 Convergencein150th

    Furthermore, Chinese 100 cities-TSP and 102 counties-TSP in Shanxi Province are selected as instances for conducting the experiments. Table 4 and 5 show the names of chinese 100 cities and the coordinates[17]of 102 counties in Shanxi Province, respectively.

    The experimental results will provide the tourists with two greatly optimized paths for their traveling in China and even in Shanxi Province.

    Firstly, for Chinese 100 cities-TSP, the results obtained by the proposed ISOM are compared with those of other five kinds of SOM algorithms: SKH[17], CGHNN[18], F-W[19], NCSOM[19]and ASOM[19]. The comparison results are shown in Table 3.

    Then, for the above two practical instances: the chinese 100 cities-TSP and 102 counties-TSP in Shanxi Province, the results obtained by proposed ISOM algorithm are compared with that of ant colony system (ACS) not only in optimal pathing values but also in time, which is shown in Table 6.

    Fig.12 Final result

    Table 3 Comparison results of SKH, CGHNN, F-W, nCSOM, ASOM and ISOM

    Table 4 Names of Chinese 100 cities

    Table 5 Coordinates of 102 counties in Shanxi Province

    Table 6 Comparison results of ISOM and ACS

    From Figs.13 and 14 it can be easily found that the proposed ISOM algorithm provides the tourists with a very optimal path for their traveling in China all follows:

    46—38—83—81—61—48—19—57—96—36—90—87—40—95—79—88—85—65—45—98—63—56—72—77—14—30—2—82—1—47—15—60—28—31—80—26—32—5—70—13—71—92—12—59—8—3—78—33—75—62—91—4—27—50—53—7—73—66—54—25—34—67—76—17—55—52—49—35—86—94—6—99—29—69—18—68—84—20—24—97—51—42—21—22—100—10—93—9—89—39—11—58—41—23—64—44—43—37—74—16.

    An optimal path in Shanxi Province is:

    58—59—60—50—51—52—54—61—83—87—84—86—85—96—100—99—95—94—90—98—4—68—97—93—71—72—73—70—69—67—34—37—12—35—36—38—9—6—13—7—8—10—11—66—64—65—74—62—63—44—16—14—15—43—42—41—22—21—28—19—20—24—17—18—32—23—33—29—30—31—81—27—26—25—40—45—39—3—1—5—2—92—46—47—91—102—101—49—48—88—79—80—82—75—77—78—76—55—53—56—57—89.

    Fig.13 Optimal routing graph of Chinese 100 cities-TSP

    Fig.14 Optimal routing graph of Shanxi's 102 counties-TSP

    The experimental results indicate that the proposed ISOM not only provides two convenient traveling routes for the tourists, but also saves them a lot of money, manpower, material resources and time. Therefore, the proposed ISOM algorithm has certain theoretical value and practical significance.

    4 Discussion and conclusion

    This paper proposes a new kind of ISOM based on Kohonen SOM. From the experimental results above it can be easily found that the neighborhood modification procedure of SOM to TSP becomes more reasonable and effective by improving learning rate and neighborhood function variance, which leads to an optimal solution of TSP. However, the proposed ISOM is only applied to Euclidean TSP, and it will be an interesting research topic whether it can solve non-Euclidean TSP[20].

    The combination of SOM network and other heuristic intelligent algorithms such as genetic algorithm (GA), SA, TSA and ACS will be described in solving TSP.

    [1] Laporte G. The vehicle routing problem: an overview of exact and approximate algorithms. European Journal of Operational Research, 1992,59 (3): 345-358.

    [2] Leung K S, JIN Hui-dong, XU Zong-ben. An expanding self-organizing neural network for the traveling salesman problem. Neurocomputing, 2004, 62: 267-292

    [3] Onoyama T, Maekawa T, Kubota S, et al. Intelligent evolutional algorithm for distribution network optimization. In: Proceedings of IEEE International Conference on Control and Applications, 2002, 2: 802-807.

    [4] Takashi S, Kenji M, Fujimura K, et al. Optimization of surface component mounting on the printed circuit board using SOM-TSP method. IEIC Technical Report, 1999, 98(673): 289-296.

    [5] Fujimura K, Fujiwaki S, Kwaw O C, et al. Optimization of electronic chip-mounting machine using SOM-TSP method with 5 dimensional data. In: Proceedings of International Conference on Info-tech and Info-net, Beijing, China, 2001, 4: 26-31.

    [6] Fiechter L. A parallel tabu search algorithm for large traveling salesman problem. Discrete Applied Mathematics, 1994, 51 (3): 243-267.

    [7] Van Laarhoven P J M, Aarts E H L. Simulated annealing: theory and applications. Kluwer Academic Publishers, Norwell, USA, 1987.

    [8] Goldberg D E. Genetic algorithms in search, optimization and machine learning. Addison-Wesley Publisher, Boston, USA, 1989.

    [9] Dorigo M, Gambardella L M. Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1997, 1 (1): 53-66.

    [10] Creput J C, Koukam A. A memetic neural network for the Euclidean traveling salesman problem. Neurocomputing, 2009, 72(4-6): 1250-1264.

    [11] Kohonen T. The self-organizing map. In: Proceedings of IEEE, 1990, 78 (9): 1464-1480.

    [12] Somhom S, Modares A, Enkawa T. A self-organising model for the travelling salesman problem. Journal of the Operational Research Society, 1997, 48 (9): 919-928.

    [13] TPSLIB. [2013-01-08]. http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/.

    [14] Angeniol B, la Croxi Vaubois C, Le Texier J Y. Self-organizing feature maps and the traveling salesman problem. Neural Networks, 1988, 1(4): 289-293.

    [15] Aras N, Oommen B J, Altinel I K. The Kohonen network incorporating explicit statistics and itsapplication to the traveling salesman problem. Neural Networks, 1999, 12 (9): 1273-1284.

    [16] ZHANG Wen-dong, BAI Yan-ping, HU Hong-ping. The incorporation of an efficient initialization method and parameter adaptation using self-organizing maps to solve the TSP. Applied Mathematics and Computation, 2006, 172 (1): 603-623.

    [17] Latitude and longitude query of Chinese cities. [2013-01-11]. http://www.ximizi.com/jingweidu.php.

    [18] Wang L. The neural network and combinatorial optimization. Doctor Thesis. Academy of Sciences, Beijing, 2000.

    [19] WU Ling-yun. The application for Neural networks in combinatorial optimization and DNA sequencing. Doctor Thesis. Department of Mathematics, Academy of Sciences, Beijing, 2002: 46-50.

    [20] Faigl J. On the performance of self-organizing maps for the non-Euclidean traveling salesman problem in the polygonal domain. Information Sciences, 2011, 181 (19): 4214-4229.

    date: 2013-07-28

    China Science Foundation (No.61275120)

    SONG Jin-juan (123976518@qq.com)

    1674-8042(2013)04-0353-08

    10.3969/j.issn.1674-8042.2013.04.012

    猜你喜歡
    艷萍
    Weighted norm inequalities for commutators of the Kato square root of second order elliptic operators on Rn
    基于JavaScript編程語言之 閉包技術(shù)在焦點輪播上的應(yīng)用
    中國新通信(2022年3期)2022-04-11 22:20:58
    A SPECTRAL METHOD FOR A WEAKLY SINGULAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATION WITH PANTOGRAPH DELAY*
    藏在毛衣里的愛
    新少年(2021年3期)2021-03-28 02:30:27
    春分
    NUMERICAL ANALYSIS FOR VOLTERRA INTEGRAL EQUATION WITH TWO KINDS OF DELAY?
    詠江石
    我的發(fā)現(xiàn)
    學(xué)吹泡泡
    可愛的小手套
    欧美一区二区精品小视频在线| 亚洲无线在线观看| 欧美精品国产亚洲| 亚洲国产欧美人成| 舔av片在线| 国产精品久久久久久av不卡| 午夜亚洲福利在线播放| 国产高清有码在线观看视频| 琪琪午夜伦伦电影理论片6080| 国产精品综合久久久久久久免费| 国产伦精品一区二区三区四那| 色尼玛亚洲综合影院| 非洲黑人性xxxx精品又粗又长| 老师上课跳d突然被开到最大视频| 亚洲欧美日韩东京热| av天堂在线播放| 亚洲精品粉嫩美女一区| 亚洲精品久久国产高清桃花| 观看免费一级毛片| 日韩欧美 国产精品| 日本精品一区二区三区蜜桃| 性色avwww在线观看| 欧美极品一区二区三区四区| 看十八女毛片水多多多| 久久精品国产亚洲av香蕉五月| 欧美zozozo另类| 免费看av在线观看网站| 亚洲欧美日韩东京热| 日韩欧美精品v在线| 欧美xxxx性猛交bbbb| 国产日本99.免费观看| 校园人妻丝袜中文字幕| 直男gayav资源| 欧美中文日本在线观看视频| av在线亚洲专区| 91午夜精品亚洲一区二区三区 | 亚洲aⅴ乱码一区二区在线播放| 亚洲人成伊人成综合网2020| 国产精品亚洲美女久久久| 男女啪啪激烈高潮av片| 黄色视频,在线免费观看| 精品无人区乱码1区二区| 中文字幕高清在线视频| 国产精品综合久久久久久久免费| 黄色视频,在线免费观看| 欧美色欧美亚洲另类二区| 人人妻人人看人人澡| 中文字幕av成人在线电影| 国产av不卡久久| 精品一区二区三区视频在线| 精品国内亚洲2022精品成人| 亚洲成人久久性| 国产精品一区二区三区四区久久| 国产成人aa在线观看| 啦啦啦韩国在线观看视频| 身体一侧抽搐| 少妇的逼好多水| 久9热在线精品视频| 成人美女网站在线观看视频| 欧美三级亚洲精品| 深夜精品福利| 无人区码免费观看不卡| 特级一级黄色大片| 搡女人真爽免费视频火全软件 | 午夜精品在线福利| 日韩大尺度精品在线看网址| 神马国产精品三级电影在线观看| 国产高清有码在线观看视频| 久久人妻av系列| 全区人妻精品视频| 成年女人永久免费观看视频| 乱系列少妇在线播放| 国产精品电影一区二区三区| 99国产极品粉嫩在线观看| 91久久精品国产一区二区三区| 国产成人aa在线观看| 在线国产一区二区在线| 无遮挡黄片免费观看| 观看美女的网站| 成人二区视频| 伊人久久精品亚洲午夜| 国内揄拍国产精品人妻在线| 美女cb高潮喷水在线观看| av在线老鸭窝| 99国产极品粉嫩在线观看| 国产精品女同一区二区软件 | 国产精品免费一区二区三区在线| 国产精品美女特级片免费视频播放器| 日韩欧美在线乱码| 美女免费视频网站| 毛片一级片免费看久久久久 | 天天躁日日操中文字幕| 久久久午夜欧美精品| 三级国产精品欧美在线观看| 搡女人真爽免费视频火全软件 | 日韩精品有码人妻一区| 国产91精品成人一区二区三区| 有码 亚洲区| 精品久久久久久久末码| 国产淫片久久久久久久久| 内地一区二区视频在线| 老师上课跳d突然被开到最大视频| 日日夜夜操网爽| 黄色配什么色好看| 身体一侧抽搐| 日本与韩国留学比较| 国产一区二区在线av高清观看| 欧美性感艳星| bbb黄色大片| 亚洲欧美精品综合久久99| 欧美最黄视频在线播放免费| 欧美日韩综合久久久久久 | 久久久久久大精品| 春色校园在线视频观看| 日韩av在线大香蕉| bbb黄色大片| 色尼玛亚洲综合影院| 国产精品99久久久久久久久| 悠悠久久av| 国产黄片美女视频| 久久久久国产精品人妻aⅴ院| 97碰自拍视频| 亚洲精品粉嫩美女一区| 俺也久久电影网| 亚洲欧美激情综合另类| 天堂av国产一区二区熟女人妻| 老司机深夜福利视频在线观看| 久久热精品热| 亚洲精品成人久久久久久| 嫩草影院精品99| 69av精品久久久久久| 一进一出抽搐动态| 国产在视频线在精品| 亚洲在线自拍视频| 99久久精品一区二区三区| 日韩一区二区视频免费看| av专区在线播放| 一个人看视频在线观看www免费| 日韩中文字幕欧美一区二区| 亚洲国产精品sss在线观看| 亚洲综合色惰| 久久精品国产亚洲av香蕉五月| 中文字幕熟女人妻在线| 色播亚洲综合网| 真人一进一出gif抽搐免费| 亚洲成人精品中文字幕电影| АⅤ资源中文在线天堂| 久久6这里有精品| 一边摸一边抽搐一进一小说| 一级黄片播放器| 日本三级黄在线观看| 亚洲va日本ⅴa欧美va伊人久久| 免费观看在线日韩| 亚洲av.av天堂| 中文字幕熟女人妻在线| 69av精品久久久久久| 国产精品久久久久久久久免| 高清在线国产一区| 欧美绝顶高潮抽搐喷水| 午夜福利在线在线| 黄色女人牲交| 久久精品综合一区二区三区| 精品久久久久久久末码| 亚洲欧美激情综合另类| 18+在线观看网站| 一区二区三区激情视频| 国产不卡一卡二| 国产一区二区亚洲精品在线观看| 国模一区二区三区四区视频| 亚洲成a人片在线一区二区| 国产激情偷乱视频一区二区| 特级一级黄色大片| 动漫黄色视频在线观看| 国产主播在线观看一区二区| 91久久精品国产一区二区成人| 亚洲人成伊人成综合网2020| 中文字幕av在线有码专区| 亚洲一区二区三区色噜噜| 一a级毛片在线观看| 精品人妻视频免费看| 有码 亚洲区| 99热这里只有是精品在线观看| 淫妇啪啪啪对白视频| 国内精品一区二区在线观看| 国产爱豆传媒在线观看| 草草在线视频免费看| 校园人妻丝袜中文字幕| 69人妻影院| 1024手机看黄色片| 高清在线国产一区| 亚洲国产高清在线一区二区三| 少妇人妻一区二区三区视频| 草草在线视频免费看| 在线观看午夜福利视频| 国产亚洲欧美98| 日本在线视频免费播放| 搡老熟女国产l中国老女人| 免费无遮挡裸体视频| 最新中文字幕久久久久| 欧美黑人欧美精品刺激| 免费大片18禁| 国产v大片淫在线免费观看| 国产亚洲精品综合一区在线观看| 熟女电影av网| 日日撸夜夜添| 亚洲欧美日韩高清专用| 亚洲图色成人| 变态另类成人亚洲欧美熟女| 亚洲自拍偷在线| 嫩草影院精品99| 成人性生交大片免费视频hd| 国产又黄又爽又无遮挡在线| 亚洲无线观看免费| 此物有八面人人有两片| a级毛片免费高清观看在线播放| 中国美女看黄片| 免费看av在线观看网站| 国产精品亚洲美女久久久| 亚洲 国产 在线| 国产精品国产三级国产av玫瑰| 亚洲黑人精品在线| 免费黄网站久久成人精品| 国内精品一区二区在线观看| 黄片wwwwww| 两个人视频免费观看高清| 一级av片app| 午夜免费男女啪啪视频观看 | 欧美日韩瑟瑟在线播放| 日本免费一区二区三区高清不卡| 亚洲美女视频黄频| 欧美成人性av电影在线观看| 成熟少妇高潮喷水视频| 赤兔流量卡办理| 免费看a级黄色片| 最近视频中文字幕2019在线8| 色视频www国产| 亚洲人成网站高清观看| 亚洲人成网站在线播放欧美日韩| 97人妻精品一区二区三区麻豆| 亚洲最大成人av| 国产麻豆成人av免费视频| 国产伦精品一区二区三区四那| 亚洲欧美日韩无卡精品| 岛国在线免费视频观看| 成熟少妇高潮喷水视频| 全区人妻精品视频| 欧美性猛交黑人性爽| 在线看三级毛片| 亚洲国产日韩欧美精品在线观看| 亚洲精品在线观看二区| 国产精品自产拍在线观看55亚洲| 51国产日韩欧美| 日韩欧美在线乱码| 村上凉子中文字幕在线| 国产精品自产拍在线观看55亚洲| 国产美女午夜福利| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品久久久久久噜噜老黄 | 欧美色欧美亚洲另类二区| 亚洲性久久影院| 亚洲美女视频黄频| 久久天躁狠狠躁夜夜2o2o| 男人狂女人下面高潮的视频| 三级男女做爰猛烈吃奶摸视频| 欧美一级a爱片免费观看看| 女的被弄到高潮叫床怎么办 | 精品国产三级普通话版| 99九九线精品视频在线观看视频| 美女cb高潮喷水在线观看| 天堂网av新在线| 动漫黄色视频在线观看| 日韩强制内射视频| 麻豆精品久久久久久蜜桃| 日韩欧美在线乱码| www日本黄色视频网| 亚洲欧美日韩卡通动漫| 精品人妻一区二区三区麻豆 | 亚洲午夜理论影院| 日本五十路高清| 69人妻影院| 欧美丝袜亚洲另类 | 久久久久久久午夜电影| xxxwww97欧美| 在线播放无遮挡| 亚洲成人中文字幕在线播放| 人妻少妇偷人精品九色| 九九在线视频观看精品| 嫩草影院入口| 亚洲欧美日韩东京热| 露出奶头的视频| 又黄又爽又刺激的免费视频.| 日韩精品有码人妻一区| 欧美极品一区二区三区四区| av国产免费在线观看| 免费在线观看成人毛片| 日韩一本色道免费dvd| 男插女下体视频免费在线播放| 少妇熟女aⅴ在线视频| 亚洲无线在线观看| 国产在线男女| 精品久久久久久久久av| 欧美潮喷喷水| 欧美精品国产亚洲| 黄色欧美视频在线观看| 五月玫瑰六月丁香| 淫妇啪啪啪对白视频| 色综合亚洲欧美另类图片| 亚洲欧美精品综合久久99| 日本五十路高清| 国产精品美女特级片免费视频播放器| 成人毛片a级毛片在线播放| 在线观看午夜福利视频| 国产老妇女一区| 色播亚洲综合网| 一个人看视频在线观看www免费| 淫秽高清视频在线观看| 午夜日韩欧美国产| 欧美性猛交黑人性爽| 亚洲在线观看片| eeuss影院久久| 欧美丝袜亚洲另类 | 亚洲av电影不卡..在线观看| 色噜噜av男人的天堂激情| 男人狂女人下面高潮的视频| 亚洲国产精品sss在线观看| 免费在线观看成人毛片| 国产av在哪里看| 成人av在线播放网站| 精品一区二区三区人妻视频| 成年人黄色毛片网站| 久久香蕉精品热| 久久午夜福利片| 人妻制服诱惑在线中文字幕| 69人妻影院| 搞女人的毛片| 嫩草影院精品99| 赤兔流量卡办理| 国产精品三级大全| 小蜜桃在线观看免费完整版高清| 琪琪午夜伦伦电影理论片6080| 精品国内亚洲2022精品成人| 国产一区二区在线av高清观看| 成人综合一区亚洲| 有码 亚洲区| 99热精品在线国产| 国产成人福利小说| 国产激情偷乱视频一区二区| 狂野欧美激情性xxxx在线观看| 国产精品野战在线观看| 亚洲无线在线观看| 久久久久免费精品人妻一区二区| 欧美日韩乱码在线| 国内精品一区二区在线观看| 国产精品久久久久久av不卡| 日本成人三级电影网站| 97热精品久久久久久| 亚洲专区国产一区二区| 免费搜索国产男女视频| 麻豆成人av在线观看| 精品久久久久久久末码| 国产精品久久久久久久电影| 国产精华一区二区三区| 变态另类成人亚洲欧美熟女| 男人的好看免费观看在线视频| av福利片在线观看| 日本一二三区视频观看| 国产极品精品免费视频能看的| 高清毛片免费观看视频网站| 精品一区二区三区人妻视频| 熟女人妻精品中文字幕| 亚洲 国产 在线| 狂野欧美白嫩少妇大欣赏| 又粗又爽又猛毛片免费看| 成人av在线播放网站| 国内少妇人妻偷人精品xxx网站| 人妻少妇偷人精品九色| 午夜福利在线在线| 国产精品伦人一区二区| 日韩精品有码人妻一区| 国产在视频线在精品| 91麻豆精品激情在线观看国产| 欧美国产日韩亚洲一区| 国产精品,欧美在线| 中文字幕人妻熟人妻熟丝袜美| 男女做爰动态图高潮gif福利片| 欧美国产日韩亚洲一区| 在线免费观看的www视频| 老女人水多毛片| 草草在线视频免费看| 一级av片app| 亚洲精品亚洲一区二区| 中文亚洲av片在线观看爽| 美女高潮喷水抽搐中文字幕| 老司机午夜福利在线观看视频| 日韩人妻高清精品专区| 午夜免费激情av| 国产伦一二天堂av在线观看| 免费电影在线观看免费观看| 日本撒尿小便嘘嘘汇集6| 99视频精品全部免费 在线| av在线天堂中文字幕| 精品日产1卡2卡| 老熟妇仑乱视频hdxx| a级毛片a级免费在线| 三级毛片av免费| 久久精品国产亚洲av涩爱 | 国产大屁股一区二区在线视频| 亚洲电影在线观看av| av在线天堂中文字幕| 国产成人a区在线观看| 2021天堂中文幕一二区在线观| 国内精品宾馆在线| 日韩,欧美,国产一区二区三区 | 国产成人aa在线观看| 国产三级中文精品| 亚洲一区高清亚洲精品| 婷婷色综合大香蕉| 日韩欧美国产在线观看| 亚洲内射少妇av| 日韩在线高清观看一区二区三区 | 99精品在免费线老司机午夜| 黄色视频,在线免费观看| 久久精品国产亚洲av涩爱 | 日本a在线网址| 国内精品一区二区在线观看| 久久久久九九精品影院| 国产一级毛片七仙女欲春2| 99在线视频只有这里精品首页| 97碰自拍视频| 老司机福利观看| 国产精品av视频在线免费观看| 国产综合懂色| 欧美一区二区国产精品久久精品| 在线免费观看的www视频| 久久久久精品国产欧美久久久| 亚洲美女视频黄频| 亚洲av电影不卡..在线观看| av福利片在线观看| 一个人看视频在线观看www免费| 国产精品av视频在线免费观看| 桃色一区二区三区在线观看| 不卡一级毛片| 欧美激情在线99| 九九爱精品视频在线观看| 大型黄色视频在线免费观看| 久久午夜福利片| 欧美激情国产日韩精品一区| 亚洲av日韩精品久久久久久密| 高清在线国产一区| 97人妻精品一区二区三区麻豆| 精品一区二区三区视频在线| 午夜福利在线观看免费完整高清在 | 天天一区二区日本电影三级| 最后的刺客免费高清国语| 国产免费一级a男人的天堂| 国产成人aa在线观看| 日韩欧美精品v在线| 日本三级黄在线观看| 99热只有精品国产| 日韩在线高清观看一区二区三区 | 18+在线观看网站| а√天堂www在线а√下载| h日本视频在线播放| 久久午夜亚洲精品久久| 午夜影院日韩av| 午夜福利成人在线免费观看| 国产精品久久久久久精品电影| 亚洲三级黄色毛片| 深爱激情五月婷婷| 欧美日韩综合久久久久久 | 中文亚洲av片在线观看爽| 国产精品一区www在线观看 | 精品人妻一区二区三区麻豆 | 两个人视频免费观看高清| 国产视频一区二区在线看| 久99久视频精品免费| 美女大奶头视频| 日韩欧美国产在线观看| 淫秽高清视频在线观看| 国产黄片美女视频| 成人性生交大片免费视频hd| 18禁黄网站禁片免费观看直播| 国产又黄又爽又无遮挡在线| 国产一区二区三区在线臀色熟女| h日本视频在线播放| 麻豆国产av国片精品| 人人妻,人人澡人人爽秒播| 欧美成人免费av一区二区三区| 亚洲一级一片aⅴ在线观看| 真人做人爱边吃奶动态| 免费人成视频x8x8入口观看| 成人av一区二区三区在线看| 干丝袜人妻中文字幕| 精品一区二区免费观看| 小蜜桃在线观看免费完整版高清| 色播亚洲综合网| 麻豆久久精品国产亚洲av| aaaaa片日本免费| 久久亚洲精品不卡| 99久久精品一区二区三区| 91在线精品国自产拍蜜月| 国产老妇女一区| 少妇人妻精品综合一区二区 | 三级男女做爰猛烈吃奶摸视频| 简卡轻食公司| 在线观看一区二区三区| 窝窝影院91人妻| 午夜亚洲福利在线播放| 午夜福利在线观看免费完整高清在 | 露出奶头的视频| 免费无遮挡裸体视频| 久久久色成人| 亚洲成人中文字幕在线播放| 欧美一级a爱片免费观看看| 国产精品女同一区二区软件 | 免费在线观看成人毛片| 丰满的人妻完整版| 亚洲精华国产精华液的使用体验 | 日日干狠狠操夜夜爽| 国产午夜福利久久久久久| 麻豆av噜噜一区二区三区| 国产91精品成人一区二区三区| 精品久久久久久久人妻蜜臀av| 亚洲aⅴ乱码一区二区在线播放| 国产免费一级a男人的天堂| 中出人妻视频一区二区| 深夜精品福利| 亚洲,欧美,日韩| 99久久精品国产国产毛片| 亚洲美女黄片视频| 亚洲人成网站高清观看| 日本爱情动作片www.在线观看 | 国产一区二区在线av高清观看| 亚洲无线观看免费| 国产亚洲av嫩草精品影院| 色在线成人网| 久久久久久久亚洲中文字幕| 国产伦人伦偷精品视频| 国产精品一区二区性色av| 亚洲欧美精品综合久久99| 免费高清视频大片| 亚洲国产精品合色在线| 能在线免费观看的黄片| 在线观看一区二区三区| 午夜视频国产福利| 毛片一级片免费看久久久久 | 亚洲四区av| 91av网一区二区| 中文字幕久久专区| 欧美激情在线99| 国产乱人视频| 99久久成人亚洲精品观看| 我要看日韩黄色一级片| 日本黄色视频三级网站网址| 夜夜夜夜夜久久久久| 88av欧美| 一个人看视频在线观看www免费| 真人一进一出gif抽搐免费| 欧美bdsm另类| 国产精品野战在线观看| 欧美xxxx黑人xx丫x性爽| av在线观看视频网站免费| 午夜久久久久精精品| 超碰av人人做人人爽久久| 日本-黄色视频高清免费观看| 久久久国产成人精品二区| 天堂√8在线中文| 网址你懂的国产日韩在线| 国产美女午夜福利| 高清日韩中文字幕在线| 国产免费男女视频| 在线免费十八禁| 亚洲美女视频黄频| 韩国av一区二区三区四区| 久久九九热精品免费| 少妇被粗大猛烈的视频| 天堂av国产一区二区熟女人妻| 欧美成人一区二区免费高清观看| 亚洲美女黄片视频| 国产久久久一区二区三区| 深夜精品福利| 又黄又爽又刺激的免费视频.| 免费av不卡在线播放| 最近最新免费中文字幕在线| 亚洲国产高清在线一区二区三| 精品一区二区三区视频在线| 久久久午夜欧美精品| 色av中文字幕| 高清日韩中文字幕在线| 国产精品野战在线观看| 男女之事视频高清在线观看| 日本成人三级电影网站| 无人区码免费观看不卡| 欧美bdsm另类| 免费在线观看日本一区| 午夜亚洲福利在线播放| 一区二区三区激情视频| 99热这里只有是精品在线观看| 国产伦精品一区二区三区视频9| 老师上课跳d突然被开到最大视频| 国产精品日韩av在线免费观看| 18+在线观看网站| 成人午夜高清在线视频| 一区二区三区激情视频| 久久久久性生活片| 丰满的人妻完整版| 级片在线观看| 女生性感内裤真人,穿戴方法视频| 亚洲欧美日韩东京热| 成年人黄色毛片网站| 少妇人妻一区二区三区视频| 亚洲av成人精品一区久久| 免费观看人在逋| 午夜福利在线观看免费完整高清在 | 色5月婷婷丁香|