• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient model building in active appearance model for rotated face

    2013-12-20 08:18:17JaehyunSoSanghunHanYoungtakKimHwanikChungYoungjoonHan

    Jaehyun So, Sanghun Han, Youngtak Kim, Hwanik Chung, Youngjoon Han

    (1. Department of Electronic Engineering, Soongsil University, Seoul 156-743, Korea; 2. Department of Computer Science, Kyungbok University, Pocheon 487-717, Korea)

    Efficient model building in active appearance model for rotated face

    Jaehyun So1, Sanghun Han1, Youngtak Kim1, Hwanik Chung2, Youngjoon Han1

    (1. Department of Electronic Engineering, Soongsil University, Seoul 156-743, Korea; 2. Department of Computer Science, Kyungbok University, Pocheon 487-717, Korea)

    This paper proposes the efficient model building in active appearance model (AAM) for the rotated face. Finding an exact region of the face is generally difficult due to different shapes and viewpoints. Unlike many papers about the fitting method of AAM, this paper treats how images are chosen for fitting of the rotated face in modelling process. To solve this problem, databases of facial rotation and expression are selected and models are built using Procrustes method and principal component analysis (PCA). These models are applied in fitting methods like basic AAM fitting, inverse compositional alignment (ICA), project-out ICA, normalization ICA, robust normalization inverse compositional algorithm (RNIC) and efficient robust normalization algorithm (ERN). RNIC and ERN can fit the rotated face in images efficiently. The efficiency of model building is checked using sequence images made by ourselves.

    active appearance model (AAM); Procrustes alignment; principal component analysis (PCA); inverse compositional alignment (ICA); project-out ICA; normalization ICA; robust normalization inverse compositional algorithm (RNIC); efficient robust normalization algorithm (ERN)

    CLD number: TP391.41 Document code: A

    Many people want to know what other people think. With the devolopment of computer technology, this problem has been solved by using various approaches such as image, sound and biometrical signal. However, the perfect method is not as useful as ever, and this problem has been challenged by many researchers for a long time. Now it is mainly solved by computer vision theory because facial expression can show the emotions of a person.

    In the early days, researchers focused on finding rectangular facial region like Viola and Jones's method[1]. However, this region includes unnecessary noises like background information. If many noises are in the region, facial expression can not be classified. To remove background, active appearance model (AAM)[2]was used to efficiently fit using model made by many training images. However, it is too dependent on texture error between current warped image and mean model, and it is slow because of complex calculation. To overcome this shortcoming, many fitting algorithms were proposed. Inverse compositional alignment(ICA)[3]makes computation minimum through making hessian image in pre-computation. Project-out ICA[4]considers appearance variation. Normalization fitting[4]is similar with project-out ICA. These methods have good performance but they can not efficiently fit in occluded face. So, robust normalization inverse compositional algorithm (RNIC)[5]was proposed to solve it using robust error function[6], but it is very slow because hessian images can not be made in pre-computation. Efficient robust normalization algorithm (ERN)[7]solves this problem by separating triangular regions made by Delaunay triangulation for pre-computing hessian images. In addition, nonlinear updation model was proposed[8]. But if model is made by bad images, fitting will fail. Therefore, the selection of training images is very important.

    AAM consists of a shape model and an appearance model. Each model has a mean model and eigenvectors. These factors will affect fitting performance of various faces. Thus, we need to learn how the selection of training images affects results.

    The rest of the paper is organized as follows. Section 1 describes AAM methods, including modeling and fitting methods (ICA, project-out ICA, normalization ICA, RNIC and ERN). Section 2 shows the experimental environments and results. A conclusion is given Finally.

    1 AAM

    1.1 Model building

    Each training image has landmarks of face manually made by people.Based on these landmarks,training images are aligned by Procrustes method[8]as

    Eq.(1) indicates points of the landmarks. Procrustes method aligns the images to the same position, the same scale and the same rotation. Finally, a mean model and eigenvectors are calculated by principal component analysis (PCA) using aligned images[1]. This model consists of shape model and appearance model and it can express various faces using the mean model and eigenvectors.

    Eqs.(2) and (3) are shape model and appearance model, respectively. Shape model can be expressed by a mean shape S0plus a linear combination of n shape vectors Si. Appearance model is similar with shape model. Each vector is calculated by PCA. Assume that eigenvectors include 95% information of all the images. Appearance model is similar with shape model. Each vector is calculated by PCA. Assume that eigenvectors include 95% information of all images. Fig.1 shows the model building process based on Japanese female facial expression (JAFFE) database.

    Fig.1 Flow of model building using JAFFE database

    1.2 Model fitting

    The goal of fitting is to minimize errors between current warped image and mean model, and it can be expressed by

    where /(W(X;P)) is current warped image by Piecewise Affine transformation[9].

    1) ICA

    Forward fitting can warp current image to model, but this approach includes complex computations for Jacobian and steepest decent(SD) image. ICA solves this problem as reversing model and image.

    Eq.(5) is Taylor series expansion of Eq.(4). And Eq.(6) is estimation of variation using Gauss-Newton method. H is hessian image of SD.

    2) Project-out ICA and normalization ICA

    Project-out ICA and fitting include appearance variation, which can be describe as

    The above-mentioned methods use the orthonormalization of appearance vectors. Gram-Schmidt process is useful to orthonomalization calculation.

    3) RNIC and ERN applied robust error function

    RNIC and ERN apply robust error function for immunity to outliers.

    where σ is scale parameter, which has effect on decision of outliers.

    Fig.2 presents the calculation process using robust error function between model and image.

    Fig.2 Calculation of robust error function between model and image

    2 Experiment for efficient model

    The goal of this paper is to learn which images are used for efficient model. We use the images from JAFFE database and the National Cheng-Kung University NCKU, as shown in Fig.3. JAFFE database includes various facial expressions and NCKU database includes various facial rotations. And image testing is made by ourselves.

    Fig.3 JAFFE(upper) and NCKU(lower) databases

    The role of each model is different. Shape model controls variation of facial shape. Appearance model controls variation of textures. If model is made by overfull images, fitting will fail. Therefore, model should be made using moderate amounts of training images. We conduct this experiment to know how the model affects fitting. Table 1 shows the experimental environment.

    Table 1 Experimental environment

    We manually make 68 points of facial landmarks and apply project-out ICA, RNIC and ERN as fitting algorithms. Texture features are gray and one channel. The tested images are about a rotated face, as shown in Fig.4. Robust error function uses Talwar function with 2.795 scale parameter[10].

    Fig.4 Tested images about rotated face

    We check the number of failures when fitting fails and high number of failures is better. Table 2 shows the results of the failed sequence.

    Table 2 Results of failed rotation

    If model is built by more training images, fitting performance will be better. However, the results of RNIC have a little difference, which shows that if training images do not include special shapes, good result can be expected, but if training images are not enough, fitting will fail.

    3 Conclusion

    We conduct an experiment about the rotated face based on AAM models. The more training images are used in model building, the better the rotated face is fit. Since the results of RNIC and ERN are good using JAFFE models (108 images and no rotation), the better results can be expected in case of rotation. Furthermore, project-out ICA can be expected if model is made using training images about the rotation. RNIC ane ERN are optimal for the occluded face. In case of occlusion, ICA does not fit.

    We will research the effect of many appearance vectors and the recognition of facial expression in case of rotation and occlusion in the future.

    [1] Viola P, Jones M. Robust real-time face detection. International Journal of Computer Vision, 2004, 57(2): 137.

    [2] Cootes T F, Edwards G J, Taylor C J. Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6): 681-685.

    [3] Baker S, Matthews I. Equivalence and efficiency of image alignment algorithms. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2001, 1: 1090-1097.

    [4] Baker S, Matthews I. Lucas-Kanade 20 years on: a unifying framework: part 1: the quantity approximated, the warp update rule, and the gradient descent approximation. International Journal of Computer Vision, 2004, 56(3): 221-255.

    [5] Baker S, Gross R, Matthews I. Lucas-Kanade 20 years on: a unifying framework: Part 3. Technical Report CMU-RI-TR-03-35, Carnegie Mellon University Robotics Institute, 2003.

    [6] Huber P. Robust statistics. John Wiley & Sons, USA, 1981.

    [7] Gross R, Matthews I, Baker S. Constructing and fitting active appearance models with occlusion. In: Proceedings of the 1st IEEE Workshop on Face Processing in Video (FPiV), 2004: 1-8.

    [8] Saragih J, Goecke R. A nonlinear discriminative approach to AAM fitting. In: Proceedings of the 11th IEEE Conference on Computer Vision( ICCV2007), Rio de Janeiro, Brazil, 2007: 1-8.

    [9] Cootes T F. Statistical models of appearance for computer vision. [2013-03-21]. http:∥www.isbe.man.ac.uk/bim/refs.html.

    [10] Theobald B, Matthews I, Baker S. Evaluating error functions for robust active appearance models. In: Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition (FGR06), Southampton, UK, 2006: 149-154.

    date: 2013-09-12

    Next-Generation Information Computing Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2012M3C4A7032182); The MSIP (Ministry of Science, ICT & Future Planning), Korea, under the ITRC (Information Technology Research Center) support program (NIPA-2013-H0301-13-2006) supervised by the NIPA(National IT Industry Promotion Agency)

    Youngjoon Han (young@ssu.ac.kr)

    1674-8042(2013)04-0346-03

    10.3969/j.issn.1674-8042.2013.04.010

    国产又黄又爽又无遮挡在线| 毛片一级片免费看久久久久 | 偷拍熟女少妇极品色| 99在线视频只有这里精品首页| 内地一区二区视频在线| 国产毛片a区久久久久| 亚洲乱码一区二区免费版| 国产av不卡久久| 两个人视频免费观看高清| 亚洲欧美日韩高清专用| 国内精品久久久久精免费| 国产白丝娇喘喷水9色精品| 波多野结衣高清无吗| 他把我摸到了高潮在线观看| 久久久久国内视频| 亚洲天堂国产精品一区在线| 网址你懂的国产日韩在线| 村上凉子中文字幕在线| 午夜亚洲福利在线播放| 极品教师在线视频| 两性午夜刺激爽爽歪歪视频在线观看| 搡老岳熟女国产| 国产精品精品国产色婷婷| 国产人妻一区二区三区在| 国产大屁股一区二区在线视频| 少妇高潮的动态图| 久久婷婷人人爽人人干人人爱| 国产黄色小视频在线观看| 老司机午夜十八禁免费视频| 国产精品99久久久久久久久| 午夜免费成人在线视频| 一级毛片久久久久久久久女| 特大巨黑吊av在线直播| 国产白丝娇喘喷水9色精品| 色噜噜av男人的天堂激情| 欧美一区二区亚洲| 夜夜夜夜夜久久久久| 精品久久久久久久人妻蜜臀av| av在线蜜桃| 欧美午夜高清在线| 久久午夜亚洲精品久久| 国产精品电影一区二区三区| 国产三级中文精品| 欧美性猛交╳xxx乱大交人| 18禁黄网站禁片午夜丰满| 欧美潮喷喷水| 亚洲精品一区av在线观看| 九九热线精品视视频播放| 麻豆国产av国片精品| 成人美女网站在线观看视频| 亚洲电影在线观看av| 国产私拍福利视频在线观看| 一本一本综合久久| 国产一级毛片七仙女欲春2| 深夜a级毛片| 天美传媒精品一区二区| 欧美另类亚洲清纯唯美| 老熟妇乱子伦视频在线观看| 少妇丰满av| 亚洲av第一区精品v没综合| 麻豆av噜噜一区二区三区| 国产亚洲精品综合一区在线观看| 亚洲成人精品中文字幕电影| 中文字幕熟女人妻在线| 老司机午夜福利在线观看视频| 欧美+日韩+精品| 2021天堂中文幕一二区在线观| 露出奶头的视频| 少妇人妻精品综合一区二区 | 久久婷婷人人爽人人干人人爱| 天天躁日日操中文字幕| 国产精品一区二区免费欧美| 日韩人妻高清精品专区| 久久久久久国产a免费观看| 国产人妻一区二区三区在| 国产伦精品一区二区三区四那| 12—13女人毛片做爰片一| 哪里可以看免费的av片| 国产人妻一区二区三区在| 麻豆一二三区av精品| 亚洲成人久久性| 国产欧美日韩精品亚洲av| 日韩亚洲欧美综合| 波多野结衣巨乳人妻| 91午夜精品亚洲一区二区三区 | 两人在一起打扑克的视频| 在线国产一区二区在线| 国产男靠女视频免费网站| 国产精品自产拍在线观看55亚洲| 亚洲一区高清亚洲精品| 天天一区二区日本电影三级| 丰满的人妻完整版| 青草久久国产| 中文字幕久久专区| 国产真实伦视频高清在线观看 | 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产高清在线一区二区三| 在线免费观看的www视频| 国产精华一区二区三区| 国产在线男女| 人人妻人人澡欧美一区二区| 一个人观看的视频www高清免费观看| 免费黄网站久久成人精品 | 成人性生交大片免费视频hd| 91九色精品人成在线观看| 精品久久久久久,| 搡老妇女老女人老熟妇| 天堂影院成人在线观看| 男人舔奶头视频| 18禁在线播放成人免费| 国产精品永久免费网站| 国产精品一区二区性色av| 国产黄a三级三级三级人| 国产午夜精品论理片| 大型黄色视频在线免费观看| 51午夜福利影视在线观看| 成熟少妇高潮喷水视频| 精品不卡国产一区二区三区| 午夜福利免费观看在线| 成人亚洲精品av一区二区| 国语自产精品视频在线第100页| 99久久精品热视频| 亚洲av免费高清在线观看| 看片在线看免费视频| 日本五十路高清| 超碰av人人做人人爽久久| 色综合欧美亚洲国产小说| 国语自产精品视频在线第100页| 美女黄网站色视频| av视频在线观看入口| 国产在视频线在精品| 在线天堂最新版资源| 一二三四社区在线视频社区8| 能在线免费观看的黄片| 在线十欧美十亚洲十日本专区| 国产蜜桃级精品一区二区三区| 91久久精品国产一区二区成人| www.熟女人妻精品国产| 国内精品美女久久久久久| 琪琪午夜伦伦电影理论片6080| 欧美色欧美亚洲另类二区| 黄色一级大片看看| 天堂动漫精品| 又爽又黄无遮挡网站| 白带黄色成豆腐渣| 欧美精品国产亚洲| 国产成人欧美在线观看| 一区二区三区激情视频| 欧美性猛交╳xxx乱大交人| 亚洲人成网站在线播| 精品国产亚洲在线| 制服丝袜大香蕉在线| 亚洲精品乱码久久久v下载方式| 999久久久精品免费观看国产| 久久久久久国产a免费观看| 国产精品伦人一区二区| 久久香蕉精品热| 色综合站精品国产| 久久精品国产亚洲av天美| 一区二区三区激情视频| 日本a在线网址| 尤物成人国产欧美一区二区三区| 久久欧美精品欧美久久欧美| 91久久精品国产一区二区成人| 国产精品一区二区免费欧美| 亚洲成人中文字幕在线播放| 国产淫片久久久久久久久 | 国产欧美日韩精品亚洲av| 97超级碰碰碰精品色视频在线观看| 欧美日韩瑟瑟在线播放| 亚洲av免费在线观看| 欧美xxxx性猛交bbbb| 成人高潮视频无遮挡免费网站| 香蕉av资源在线| 国产麻豆成人av免费视频| 欧美日韩国产亚洲二区| 高清日韩中文字幕在线| 亚洲成a人片在线一区二区| 日韩精品中文字幕看吧| 久久久久久久午夜电影| 99热这里只有精品一区| 精品人妻偷拍中文字幕| 搡老妇女老女人老熟妇| 丁香六月欧美| 他把我摸到了高潮在线观看| 狂野欧美白嫩少妇大欣赏| 日韩国内少妇激情av| 久久精品国产清高在天天线| 男人狂女人下面高潮的视频| 亚洲成人久久性| 嫩草影院新地址| 国产高清三级在线| 久久精品久久久久久噜噜老黄 | 国产免费一级a男人的天堂| 极品教师在线免费播放| 亚洲在线自拍视频| 国产不卡一卡二| 成年人黄色毛片网站| 99热精品在线国产| 国产欧美日韩一区二区三| 国产淫片久久久久久久久 | 亚洲性夜色夜夜综合| 国产成人啪精品午夜网站| 1000部很黄的大片| 天天躁日日操中文字幕| 国产成+人综合+亚洲专区| 亚洲综合色惰| 美女 人体艺术 gogo| 伦理电影大哥的女人| 十八禁网站免费在线| 欧美丝袜亚洲另类 | 国产蜜桃级精品一区二区三区| 狂野欧美白嫩少妇大欣赏| 黄色日韩在线| 国产一区二区在线av高清观看| 亚洲av不卡在线观看| 国产一级毛片七仙女欲春2| 一个人免费在线观看电影| 久久人妻av系列| 无遮挡黄片免费观看| 欧美乱妇无乱码| 天天一区二区日本电影三级| АⅤ资源中文在线天堂| 丰满人妻熟妇乱又伦精品不卡| 日韩免费av在线播放| 亚洲aⅴ乱码一区二区在线播放| 怎么达到女性高潮| 一a级毛片在线观看| 国产淫片久久久久久久久 | 在线观看美女被高潮喷水网站 | 精品一区二区免费观看| 婷婷丁香在线五月| 久久欧美精品欧美久久欧美| 亚洲欧美日韩高清专用| 国产亚洲精品久久久久久毛片| 深爱激情五月婷婷| a级一级毛片免费在线观看| avwww免费| 18禁黄网站禁片午夜丰满| 在线a可以看的网站| 一个人免费在线观看的高清视频| 精品久久久久久久久久久久久| 波多野结衣高清无吗| 日韩高清综合在线| 国产毛片a区久久久久| 色综合站精品国产| av黄色大香蕉| 少妇被粗大猛烈的视频| 97超级碰碰碰精品色视频在线观看| 日本黄色视频三级网站网址| 日本 欧美在线| 日日摸夜夜添夜夜添av毛片 | 国产精华一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 九九热线精品视视频播放| 国产色爽女视频免费观看| 国产男靠女视频免费网站| 男人和女人高潮做爰伦理| 少妇高潮的动态图| 最近中文字幕高清免费大全6 | 少妇熟女aⅴ在线视频| 国产国拍精品亚洲av在线观看| 99热这里只有精品一区| av国产免费在线观看| 成人av在线播放网站| 日本成人三级电影网站| 久久6这里有精品| 在线国产一区二区在线| 国产一区二区亚洲精品在线观看| 国产在视频线在精品| av国产免费在线观看| 狂野欧美白嫩少妇大欣赏| 夜夜看夜夜爽夜夜摸| 久久久久久久精品吃奶| 亚洲欧美日韩东京热| 亚洲av电影在线进入| 天堂网av新在线| 男女做爰动态图高潮gif福利片| 国产69精品久久久久777片| 不卡一级毛片| 久久久精品欧美日韩精品| 国产高清三级在线| 国产91精品成人一区二区三区| 久久精品国产99精品国产亚洲性色| 三级国产精品欧美在线观看| 俺也久久电影网| 欧美精品啪啪一区二区三区| 淫秽高清视频在线观看| 国产精品野战在线观看| 欧美精品国产亚洲| 欧美一级a爱片免费观看看| 最新中文字幕久久久久| 99热6这里只有精品| 久久精品91蜜桃| 老鸭窝网址在线观看| 欧美乱色亚洲激情| 国产精品精品国产色婷婷| 国产欧美日韩精品一区二区| 少妇的逼好多水| 中文字幕人妻熟人妻熟丝袜美| 一级a爱片免费观看的视频| 一进一出抽搐动态| 日韩人妻高清精品专区| 亚洲人成电影免费在线| 亚洲一区二区三区色噜噜| 性插视频无遮挡在线免费观看| 成人永久免费在线观看视频| 亚洲性夜色夜夜综合| 国产精品野战在线观看| 国产精品三级大全| 精品国内亚洲2022精品成人| 九色成人免费人妻av| 九色国产91popny在线| 色噜噜av男人的天堂激情| 最新在线观看一区二区三区| 人人妻,人人澡人人爽秒播| 欧美色视频一区免费| 精品不卡国产一区二区三区| 日韩高清综合在线| 亚洲成人免费电影在线观看| 男人的好看免费观看在线视频| 婷婷精品国产亚洲av| 欧美激情在线99| 久久久久免费精品人妻一区二区| a级毛片免费高清观看在线播放| 淫妇啪啪啪对白视频| 国产私拍福利视频在线观看| 国产色爽女视频免费观看| www.色视频.com| 色av中文字幕| eeuss影院久久| 两人在一起打扑克的视频| 亚洲精品亚洲一区二区| bbb黄色大片| 精品一区二区三区人妻视频| 久久久国产成人免费| 国产亚洲精品久久久久久毛片| 老鸭窝网址在线观看| 成人国产综合亚洲| 嫩草影院入口| 在线观看66精品国产| 日本 欧美在线| 亚洲色图av天堂| 丝袜美腿在线中文| 亚洲经典国产精华液单 | 人妻夜夜爽99麻豆av| 国产亚洲精品久久久com| 亚洲专区国产一区二区| 欧美xxxx黑人xx丫x性爽| 亚洲经典国产精华液单 | 12—13女人毛片做爰片一| 午夜精品在线福利| 91久久精品电影网| 精品熟女少妇八av免费久了| 男人舔奶头视频| 三级毛片av免费| 悠悠久久av| 欧美乱妇无乱码| 精品一区二区三区视频在线观看免费| 精品欧美国产一区二区三| 999久久久精品免费观看国产| 亚洲五月婷婷丁香| 亚洲精品在线美女| 一本一本综合久久| 精品人妻偷拍中文字幕| 在线看三级毛片| 自拍偷自拍亚洲精品老妇| 99热这里只有是精品在线观看 | 国产精品久久电影中文字幕| 亚洲片人在线观看| 精品人妻一区二区三区麻豆 | 夜夜看夜夜爽夜夜摸| 高清毛片免费观看视频网站| 久久精品91蜜桃| 亚洲成av人片免费观看| 麻豆久久精品国产亚洲av| 成年人黄色毛片网站| 欧美日韩黄片免| 禁无遮挡网站| 人妻夜夜爽99麻豆av| 久9热在线精品视频| 欧美日韩黄片免| 久9热在线精品视频| 91久久精品电影网| 亚洲欧美激情综合另类| 美女免费视频网站| 色尼玛亚洲综合影院| 久久久久久久久大av| 最近最新中文字幕大全电影3| 亚洲av.av天堂| 天堂影院成人在线观看| 欧美精品国产亚洲| 国产精品电影一区二区三区| 国产精品自产拍在线观看55亚洲| 亚洲欧美日韩东京热| 日韩av在线大香蕉| 在线观看66精品国产| 一本久久中文字幕| av在线蜜桃| 国产成人aa在线观看| 91午夜精品亚洲一区二区三区 | 国产成+人综合+亚洲专区| 性色av乱码一区二区三区2| 老司机深夜福利视频在线观看| 亚洲av第一区精品v没综合| 激情在线观看视频在线高清| 精品久久久久久久末码| 国产极品精品免费视频能看的| 给我免费播放毛片高清在线观看| 亚洲精品在线美女| 热99re8久久精品国产| 免费看a级黄色片| 一级av片app| 最新中文字幕久久久久| 观看免费一级毛片| 久久精品综合一区二区三区| 亚洲国产日韩欧美精品在线观看| 制服丝袜大香蕉在线| 黄色一级大片看看| 嫁个100分男人电影在线观看| 三级国产精品欧美在线观看| bbb黄色大片| 国产野战对白在线观看| 成人亚洲精品av一区二区| 久久久成人免费电影| 九色国产91popny在线| 99在线人妻在线中文字幕| 中文字幕高清在线视频| 精品免费久久久久久久清纯| 网址你懂的国产日韩在线| 99riav亚洲国产免费| 亚洲第一区二区三区不卡| 国产人妻一区二区三区在| 日本五十路高清| 如何舔出高潮| 国产精品,欧美在线| 噜噜噜噜噜久久久久久91| 色综合婷婷激情| 国产黄色小视频在线观看| 免费无遮挡裸体视频| 一本久久中文字幕| 日韩人妻高清精品专区| 亚洲第一欧美日韩一区二区三区| 亚洲综合色惰| a级一级毛片免费在线观看| 18禁在线播放成人免费| 国产精品98久久久久久宅男小说| 精品欧美国产一区二区三| 嫩草影视91久久| 首页视频小说图片口味搜索| 日韩欧美一区二区三区在线观看| 欧美潮喷喷水| 搡老妇女老女人老熟妇| 久久香蕉精品热| 成人av在线播放网站| 日本与韩国留学比较| 特大巨黑吊av在线直播| 在线免费观看的www视频| 天堂av国产一区二区熟女人妻| 成年女人永久免费观看视频| 成人永久免费在线观看视频| 成人无遮挡网站| 国产一级毛片七仙女欲春2| 美女 人体艺术 gogo| 美女免费视频网站| 十八禁国产超污无遮挡网站| or卡值多少钱| 一个人看的www免费观看视频| 亚洲av免费高清在线观看| 午夜福利在线在线| 精品99又大又爽又粗少妇毛片 | 嫁个100分男人电影在线观看| 国产爱豆传媒在线观看| 成人鲁丝片一二三区免费| 国产精品av视频在线免费观看| 午夜精品一区二区三区免费看| 噜噜噜噜噜久久久久久91| 少妇高潮的动态图| 久9热在线精品视频| 午夜影院日韩av| 国产精品久久电影中文字幕| 天堂√8在线中文| 国产精品不卡视频一区二区 | 九九在线视频观看精品| 少妇人妻精品综合一区二区 | 在线免费观看不下载黄p国产 | 亚洲国产精品成人综合色| 国产视频一区二区在线看| 别揉我奶头~嗯~啊~动态视频| 久久国产乱子伦精品免费另类| 在线播放国产精品三级| 国产一区二区在线av高清观看| 一个人看视频在线观看www免费| 日韩高清综合在线| 99国产极品粉嫩在线观看| 成熟少妇高潮喷水视频| 他把我摸到了高潮在线观看| 国产精品电影一区二区三区| 性色av乱码一区二区三区2| 欧美日韩综合久久久久久 | 狂野欧美白嫩少妇大欣赏| 日韩中字成人| 亚洲在线观看片| 一级毛片久久久久久久久女| 免费av不卡在线播放| 国产成人aa在线观看| 午夜福利欧美成人| 99热精品在线国产| 成人午夜高清在线视频| 欧美日韩黄片免| 性欧美人与动物交配| 国产精品免费一区二区三区在线| 国产精品野战在线观看| 99久久无色码亚洲精品果冻| 午夜福利高清视频| 校园春色视频在线观看| АⅤ资源中文在线天堂| 久久久久国产精品人妻aⅴ院| 日韩亚洲欧美综合| 亚洲精品成人久久久久久| 久久国产精品人妻蜜桃| 99国产综合亚洲精品| av福利片在线观看| 免费在线观看亚洲国产| 91麻豆精品激情在线观看国产| 看片在线看免费视频| 99久久无色码亚洲精品果冻| 亚洲专区中文字幕在线| 欧洲精品卡2卡3卡4卡5卡区| 国产三级黄色录像| 黄色一级大片看看| 国产精品美女特级片免费视频播放器| 精品国产三级普通话版| 赤兔流量卡办理| 免费人成视频x8x8入口观看| 亚洲专区中文字幕在线| 国产久久久一区二区三区| 亚洲18禁久久av| 国产精品亚洲美女久久久| 日本一二三区视频观看| 精品人妻视频免费看| 国产在线精品亚洲第一网站| 制服丝袜大香蕉在线| 不卡一级毛片| 老司机福利观看| 精品午夜福利在线看| 欧美激情国产日韩精品一区| 久久久色成人| 欧美bdsm另类| 小蜜桃在线观看免费完整版高清| 欧美成人一区二区免费高清观看| 此物有八面人人有两片| 丰满人妻熟妇乱又伦精品不卡| 一个人免费在线观看的高清视频| 亚洲最大成人中文| 国产淫片久久久久久久久 | 欧美色欧美亚洲另类二区| 国产私拍福利视频在线观看| 欧美乱色亚洲激情| 久久久国产成人免费| 男女下面进入的视频免费午夜| a级一级毛片免费在线观看| 亚洲精品影视一区二区三区av| 国产精品久久久久久亚洲av鲁大| 国产aⅴ精品一区二区三区波| 免费观看人在逋| 人妻夜夜爽99麻豆av| 精品久久久久久成人av| 国产精品爽爽va在线观看网站| 变态另类成人亚洲欧美熟女| 国产亚洲欧美98| 亚洲熟妇中文字幕五十中出| 老熟妇乱子伦视频在线观看| 亚洲人成伊人成综合网2020| 亚洲激情在线av| 搞女人的毛片| 麻豆国产av国片精品| 国产一区二区在线观看日韩| 成人精品一区二区免费| 俺也久久电影网| 97人妻精品一区二区三区麻豆| 啦啦啦观看免费观看视频高清| 亚洲七黄色美女视频| 中文字幕av成人在线电影| 国产在视频线在精品| 国产伦人伦偷精品视频| 麻豆久久精品国产亚洲av| 亚洲人成网站在线播| 亚洲狠狠婷婷综合久久图片| 亚洲成人免费电影在线观看| 91麻豆av在线| 国产一区二区亚洲精品在线观看| 女同久久另类99精品国产91| 亚洲精品456在线播放app | 免费在线观看成人毛片| 久久久久久久久久黄片| 伊人久久精品亚洲午夜| 国产麻豆成人av免费视频| 丰满人妻一区二区三区视频av| 伊人久久精品亚洲午夜| 国产成人av教育| 亚洲精品色激情综合| 亚洲最大成人中文| x7x7x7水蜜桃| www.999成人在线观看| 少妇高潮的动态图| 国产视频内射| 亚洲18禁久久av| .国产精品久久| 成年女人毛片免费观看观看9| 亚洲国产欧美人成| 夜夜看夜夜爽夜夜摸| 国产精品久久电影中文字幕| 深爱激情五月婷婷| 日韩免费av在线播放|