• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient model building in active appearance model for rotated face

    2013-12-20 08:18:17JaehyunSoSanghunHanYoungtakKimHwanikChungYoungjoonHan

    Jaehyun So, Sanghun Han, Youngtak Kim, Hwanik Chung, Youngjoon Han

    (1. Department of Electronic Engineering, Soongsil University, Seoul 156-743, Korea; 2. Department of Computer Science, Kyungbok University, Pocheon 487-717, Korea)

    Efficient model building in active appearance model for rotated face

    Jaehyun So1, Sanghun Han1, Youngtak Kim1, Hwanik Chung2, Youngjoon Han1

    (1. Department of Electronic Engineering, Soongsil University, Seoul 156-743, Korea; 2. Department of Computer Science, Kyungbok University, Pocheon 487-717, Korea)

    This paper proposes the efficient model building in active appearance model (AAM) for the rotated face. Finding an exact region of the face is generally difficult due to different shapes and viewpoints. Unlike many papers about the fitting method of AAM, this paper treats how images are chosen for fitting of the rotated face in modelling process. To solve this problem, databases of facial rotation and expression are selected and models are built using Procrustes method and principal component analysis (PCA). These models are applied in fitting methods like basic AAM fitting, inverse compositional alignment (ICA), project-out ICA, normalization ICA, robust normalization inverse compositional algorithm (RNIC) and efficient robust normalization algorithm (ERN). RNIC and ERN can fit the rotated face in images efficiently. The efficiency of model building is checked using sequence images made by ourselves.

    active appearance model (AAM); Procrustes alignment; principal component analysis (PCA); inverse compositional alignment (ICA); project-out ICA; normalization ICA; robust normalization inverse compositional algorithm (RNIC); efficient robust normalization algorithm (ERN)

    CLD number: TP391.41 Document code: A

    Many people want to know what other people think. With the devolopment of computer technology, this problem has been solved by using various approaches such as image, sound and biometrical signal. However, the perfect method is not as useful as ever, and this problem has been challenged by many researchers for a long time. Now it is mainly solved by computer vision theory because facial expression can show the emotions of a person.

    In the early days, researchers focused on finding rectangular facial region like Viola and Jones's method[1]. However, this region includes unnecessary noises like background information. If many noises are in the region, facial expression can not be classified. To remove background, active appearance model (AAM)[2]was used to efficiently fit using model made by many training images. However, it is too dependent on texture error between current warped image and mean model, and it is slow because of complex calculation. To overcome this shortcoming, many fitting algorithms were proposed. Inverse compositional alignment(ICA)[3]makes computation minimum through making hessian image in pre-computation. Project-out ICA[4]considers appearance variation. Normalization fitting[4]is similar with project-out ICA. These methods have good performance but they can not efficiently fit in occluded face. So, robust normalization inverse compositional algorithm (RNIC)[5]was proposed to solve it using robust error function[6], but it is very slow because hessian images can not be made in pre-computation. Efficient robust normalization algorithm (ERN)[7]solves this problem by separating triangular regions made by Delaunay triangulation for pre-computing hessian images. In addition, nonlinear updation model was proposed[8]. But if model is made by bad images, fitting will fail. Therefore, the selection of training images is very important.

    AAM consists of a shape model and an appearance model. Each model has a mean model and eigenvectors. These factors will affect fitting performance of various faces. Thus, we need to learn how the selection of training images affects results.

    The rest of the paper is organized as follows. Section 1 describes AAM methods, including modeling and fitting methods (ICA, project-out ICA, normalization ICA, RNIC and ERN). Section 2 shows the experimental environments and results. A conclusion is given Finally.

    1 AAM

    1.1 Model building

    Each training image has landmarks of face manually made by people.Based on these landmarks,training images are aligned by Procrustes method[8]as

    Eq.(1) indicates points of the landmarks. Procrustes method aligns the images to the same position, the same scale and the same rotation. Finally, a mean model and eigenvectors are calculated by principal component analysis (PCA) using aligned images[1]. This model consists of shape model and appearance model and it can express various faces using the mean model and eigenvectors.

    Eqs.(2) and (3) are shape model and appearance model, respectively. Shape model can be expressed by a mean shape S0plus a linear combination of n shape vectors Si. Appearance model is similar with shape model. Each vector is calculated by PCA. Assume that eigenvectors include 95% information of all the images. Appearance model is similar with shape model. Each vector is calculated by PCA. Assume that eigenvectors include 95% information of all images. Fig.1 shows the model building process based on Japanese female facial expression (JAFFE) database.

    Fig.1 Flow of model building using JAFFE database

    1.2 Model fitting

    The goal of fitting is to minimize errors between current warped image and mean model, and it can be expressed by

    where /(W(X;P)) is current warped image by Piecewise Affine transformation[9].

    1) ICA

    Forward fitting can warp current image to model, but this approach includes complex computations for Jacobian and steepest decent(SD) image. ICA solves this problem as reversing model and image.

    Eq.(5) is Taylor series expansion of Eq.(4). And Eq.(6) is estimation of variation using Gauss-Newton method. H is hessian image of SD.

    2) Project-out ICA and normalization ICA

    Project-out ICA and fitting include appearance variation, which can be describe as

    The above-mentioned methods use the orthonormalization of appearance vectors. Gram-Schmidt process is useful to orthonomalization calculation.

    3) RNIC and ERN applied robust error function

    RNIC and ERN apply robust error function for immunity to outliers.

    where σ is scale parameter, which has effect on decision of outliers.

    Fig.2 presents the calculation process using robust error function between model and image.

    Fig.2 Calculation of robust error function between model and image

    2 Experiment for efficient model

    The goal of this paper is to learn which images are used for efficient model. We use the images from JAFFE database and the National Cheng-Kung University NCKU, as shown in Fig.3. JAFFE database includes various facial expressions and NCKU database includes various facial rotations. And image testing is made by ourselves.

    Fig.3 JAFFE(upper) and NCKU(lower) databases

    The role of each model is different. Shape model controls variation of facial shape. Appearance model controls variation of textures. If model is made by overfull images, fitting will fail. Therefore, model should be made using moderate amounts of training images. We conduct this experiment to know how the model affects fitting. Table 1 shows the experimental environment.

    Table 1 Experimental environment

    We manually make 68 points of facial landmarks and apply project-out ICA, RNIC and ERN as fitting algorithms. Texture features are gray and one channel. The tested images are about a rotated face, as shown in Fig.4. Robust error function uses Talwar function with 2.795 scale parameter[10].

    Fig.4 Tested images about rotated face

    We check the number of failures when fitting fails and high number of failures is better. Table 2 shows the results of the failed sequence.

    Table 2 Results of failed rotation

    If model is built by more training images, fitting performance will be better. However, the results of RNIC have a little difference, which shows that if training images do not include special shapes, good result can be expected, but if training images are not enough, fitting will fail.

    3 Conclusion

    We conduct an experiment about the rotated face based on AAM models. The more training images are used in model building, the better the rotated face is fit. Since the results of RNIC and ERN are good using JAFFE models (108 images and no rotation), the better results can be expected in case of rotation. Furthermore, project-out ICA can be expected if model is made using training images about the rotation. RNIC ane ERN are optimal for the occluded face. In case of occlusion, ICA does not fit.

    We will research the effect of many appearance vectors and the recognition of facial expression in case of rotation and occlusion in the future.

    [1] Viola P, Jones M. Robust real-time face detection. International Journal of Computer Vision, 2004, 57(2): 137.

    [2] Cootes T F, Edwards G J, Taylor C J. Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6): 681-685.

    [3] Baker S, Matthews I. Equivalence and efficiency of image alignment algorithms. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2001, 1: 1090-1097.

    [4] Baker S, Matthews I. Lucas-Kanade 20 years on: a unifying framework: part 1: the quantity approximated, the warp update rule, and the gradient descent approximation. International Journal of Computer Vision, 2004, 56(3): 221-255.

    [5] Baker S, Gross R, Matthews I. Lucas-Kanade 20 years on: a unifying framework: Part 3. Technical Report CMU-RI-TR-03-35, Carnegie Mellon University Robotics Institute, 2003.

    [6] Huber P. Robust statistics. John Wiley & Sons, USA, 1981.

    [7] Gross R, Matthews I, Baker S. Constructing and fitting active appearance models with occlusion. In: Proceedings of the 1st IEEE Workshop on Face Processing in Video (FPiV), 2004: 1-8.

    [8] Saragih J, Goecke R. A nonlinear discriminative approach to AAM fitting. In: Proceedings of the 11th IEEE Conference on Computer Vision( ICCV2007), Rio de Janeiro, Brazil, 2007: 1-8.

    [9] Cootes T F. Statistical models of appearance for computer vision. [2013-03-21]. http:∥www.isbe.man.ac.uk/bim/refs.html.

    [10] Theobald B, Matthews I, Baker S. Evaluating error functions for robust active appearance models. In: Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition (FGR06), Southampton, UK, 2006: 149-154.

    date: 2013-09-12

    Next-Generation Information Computing Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2012M3C4A7032182); The MSIP (Ministry of Science, ICT & Future Planning), Korea, under the ITRC (Information Technology Research Center) support program (NIPA-2013-H0301-13-2006) supervised by the NIPA(National IT Industry Promotion Agency)

    Youngjoon Han (young@ssu.ac.kr)

    1674-8042(2013)04-0346-03

    10.3969/j.issn.1674-8042.2013.04.010

    美女主播在线视频| av卡一久久| 哪个播放器可以免费观看大片| 91aial.com中文字幕在线观看| 成人免费观看视频高清| 赤兔流量卡办理| 精品亚洲成国产av| 成年人午夜在线观看视频| 少妇被粗大猛烈的视频| 欧美精品人与动牲交sv欧美| 欧美日韩综合久久久久久| 大香蕉久久网| 日本黄色日本黄色录像| tube8黄色片| 亚洲少妇的诱惑av| 国产黄色视频一区二区在线观看| 天美传媒精品一区二区| 丁香六月欧美| 国产精品免费大片| 91aial.com中文字幕在线观看| 中文字幕人妻熟女乱码| 国产极品天堂在线| 超色免费av| 一区二区三区精品91| 精品一区二区免费观看| 亚洲av成人精品一二三区| 电影成人av| 中文欧美无线码| 岛国毛片在线播放| 久久国产精品大桥未久av| 一级片免费观看大全| 亚洲一码二码三码区别大吗| 中文字幕另类日韩欧美亚洲嫩草| 国产免费福利视频在线观看| 人妻一区二区av| 亚洲国产精品国产精品| 日韩视频在线欧美| 亚洲av综合色区一区| 免费日韩欧美在线观看| 在线 av 中文字幕| 国产成人a∨麻豆精品| 中文欧美无线码| 美女大奶头黄色视频| 国产av精品麻豆| 久久亚洲国产成人精品v| 成年人午夜在线观看视频| 午夜福利视频精品| 啦啦啦视频在线资源免费观看| 天堂8中文在线网| 少妇被粗大猛烈的视频| 国产 一区精品| 一区二区三区精品91| 男女边摸边吃奶| 亚洲第一区二区三区不卡| 欧美激情 高清一区二区三区| www.自偷自拍.com| www.自偷自拍.com| 五月天丁香电影| av国产久精品久网站免费入址| 男女国产视频网站| 中国国产av一级| 国产亚洲欧美精品永久| 日韩中文字幕视频在线看片| 中国三级夫妇交换| 男女下面插进去视频免费观看| 人妻 亚洲 视频| 欧美最新免费一区二区三区| 日本色播在线视频| 国产视频首页在线观看| 咕卡用的链子| 免费在线观看视频国产中文字幕亚洲 | 在线观看一区二区三区激情| 久久久久久人妻| 狠狠精品人妻久久久久久综合| 如何舔出高潮| 久久久久久久大尺度免费视频| 一边摸一边做爽爽视频免费| 免费观看性生交大片5| 成年女人毛片免费观看观看9 | av在线播放精品| 少妇被粗大猛烈的视频| 国产极品天堂在线| 亚洲av成人精品一二三区| a级毛片在线看网站| 国产熟女欧美一区二区| 国产成人一区二区在线| 自线自在国产av| 超碰97精品在线观看| 热re99久久精品国产66热6| 我要看黄色一级片免费的| 亚洲国产欧美网| 久久ye,这里只有精品| 视频区图区小说| 亚洲av中文av极速乱| 丝袜人妻中文字幕| 天堂中文最新版在线下载| 精品国产一区二区三区久久久樱花| 欧美黑人欧美精品刺激| 80岁老熟妇乱子伦牲交| 91成人精品电影| 国产xxxxx性猛交| 亚洲第一av免费看| 久久人人97超碰香蕉20202| 亚洲色图综合在线观看| 国产av国产精品国产| 9色porny在线观看| 成人漫画全彩无遮挡| 国产av国产精品国产| 啦啦啦在线免费观看视频4| 大片免费播放器 马上看| 精品少妇久久久久久888优播| 国产极品粉嫩免费观看在线| 日韩大片免费观看网站| 夫妻午夜视频| 少妇的丰满在线观看| 久久精品久久久久久噜噜老黄| 黄片无遮挡物在线观看| 性高湖久久久久久久久免费观看| 亚洲中文av在线| 大陆偷拍与自拍| 午夜福利网站1000一区二区三区| 亚洲欧美成人综合另类久久久| 日韩av不卡免费在线播放| 在线天堂中文资源库| 成年人免费黄色播放视频| 亚洲欧美成人精品一区二区| 黄色 视频免费看| 我要看黄色一级片免费的| 18禁裸乳无遮挡动漫免费视频| 久久这里只有精品19| 多毛熟女@视频| 丝袜美足系列| 一级黄片播放器| 日日啪夜夜爽| 亚洲,欧美精品.| 制服丝袜香蕉在线| 成人国产麻豆网| 青青草视频在线视频观看| 热re99久久国产66热| 亚洲av综合色区一区| 国产免费又黄又爽又色| 日本黄色日本黄色录像| 久久av网站| 国产精品香港三级国产av潘金莲 | 亚洲精品国产av蜜桃| 日本欧美视频一区| 亚洲人成77777在线视频| 国产精品一区二区在线观看99| 日韩人妻精品一区2区三区| 波多野结衣一区麻豆| 啦啦啦在线观看免费高清www| 色播在线永久视频| 秋霞在线观看毛片| 巨乳人妻的诱惑在线观看| 日韩一区二区视频免费看| 精品酒店卫生间| 免费观看av网站的网址| 性高湖久久久久久久久免费观看| 制服丝袜香蕉在线| 久久99精品国语久久久| 久久这里只有精品19| 可以免费在线观看a视频的电影网站 | 两个人看的免费小视频| 美女国产高潮福利片在线看| 国产亚洲精品第一综合不卡| 99re6热这里在线精品视频| 一级片免费观看大全| 色综合欧美亚洲国产小说| 卡戴珊不雅视频在线播放| 丝袜脚勾引网站| 精品国产超薄肉色丝袜足j| 国产日韩欧美视频二区| 亚洲专区中文字幕在线 | 久久久国产精品麻豆| 人成视频在线观看免费观看| 精品一区二区三区四区五区乱码 | 色网站视频免费| 国产av码专区亚洲av| 久久精品亚洲av国产电影网| 欧美日韩一级在线毛片| 一边摸一边做爽爽视频免费| 最近2019中文字幕mv第一页| 国产亚洲一区二区精品| 人人妻,人人澡人人爽秒播 | 一级毛片我不卡| 天天躁夜夜躁狠狠躁躁| 18禁国产床啪视频网站| 亚洲成人av在线免费| 亚洲国产精品一区二区三区在线| 观看av在线不卡| 中国三级夫妇交换| 亚洲精品av麻豆狂野| av不卡在线播放| 不卡av一区二区三区| 国产精品久久久久久久久免| 亚洲国产欧美日韩在线播放| 考比视频在线观看| 国产av码专区亚洲av| 亚洲国产欧美一区二区综合| 午夜老司机福利片| 男女高潮啪啪啪动态图| 国产精品久久久久久精品电影小说| 乱人伦中国视频| 亚洲,欧美,日韩| 99精国产麻豆久久婷婷| 精品国产乱码久久久久久男人| 国产精品国产三级专区第一集| 各种免费的搞黄视频| 亚洲综合精品二区| 999久久久国产精品视频| 两个人免费观看高清视频| 久久毛片免费看一区二区三区| videosex国产| 啦啦啦 在线观看视频| av网站免费在线观看视频| 日韩大码丰满熟妇| 一边亲一边摸免费视频| 亚洲av电影在线观看一区二区三区| 日日爽夜夜爽网站| 免费黄色在线免费观看| 热re99久久精品国产66热6| 极品少妇高潮喷水抽搐| 大香蕉久久网| 欧美日韩福利视频一区二区| 男女国产视频网站| 五月天丁香电影| 日韩视频在线欧美| 亚洲欧美一区二区三区黑人| 亚洲国产欧美在线一区| 久久韩国三级中文字幕| 日韩欧美精品免费久久| 飞空精品影院首页| 一个人免费看片子| 亚洲第一青青草原| 亚洲国产精品一区二区三区在线| 亚洲国产av影院在线观看| 久久影院123| 欧美国产精品va在线观看不卡| 一个人免费看片子| 黑丝袜美女国产一区| 亚洲av成人精品一二三区| 在线观看免费高清a一片| 黄网站色视频无遮挡免费观看| 亚洲av电影在线进入| 国产人伦9x9x在线观看| avwww免费| 午夜福利网站1000一区二区三区| 又粗又硬又长又爽又黄的视频| 日本猛色少妇xxxxx猛交久久| 欧美人与性动交α欧美软件| 国产亚洲精品第一综合不卡| 蜜桃在线观看..| 在线精品无人区一区二区三| 香蕉丝袜av| 少妇被粗大猛烈的视频| 国产精品三级大全| 亚洲婷婷狠狠爱综合网| 在线观看www视频免费| 欧美变态另类bdsm刘玥| 中文欧美无线码| 一级毛片我不卡| 欧美97在线视频| 国产免费福利视频在线观看| 日本vs欧美在线观看视频| 美国免费a级毛片| 亚洲三区欧美一区| 午夜免费观看性视频| 久久精品国产亚洲av涩爱| av网站免费在线观看视频| 成人三级做爰电影| 午夜福利视频精品| 蜜桃国产av成人99| 99国产综合亚洲精品| av又黄又爽大尺度在线免费看| 午夜日韩欧美国产| 一个人免费看片子| 欧美xxⅹ黑人| 国产精品无大码| 日韩成人av中文字幕在线观看| 美女视频免费永久观看网站| 精品人妻熟女毛片av久久网站| 一区在线观看完整版| 色视频在线一区二区三区| 亚洲精品国产区一区二| 热99久久久久精品小说推荐| 男女边摸边吃奶| svipshipincom国产片| 亚洲三区欧美一区| 亚洲精品一二三| 欧美日韩成人在线一区二区| 国产精品一区二区在线不卡| 亚洲成人一二三区av| 老汉色av国产亚洲站长工具| 亚洲美女黄色视频免费看| 啦啦啦视频在线资源免费观看| av线在线观看网站| 欧美xxⅹ黑人| 亚洲国产精品一区三区| 激情视频va一区二区三区| 久久av网站| 国产熟女午夜一区二区三区| 久久久久国产一级毛片高清牌| 国产精品熟女久久久久浪| 国产一级毛片在线| 国产又爽黄色视频| 肉色欧美久久久久久久蜜桃| 十分钟在线观看高清视频www| 色视频在线一区二区三区| 水蜜桃什么品种好| 成人午夜精彩视频在线观看| 只有这里有精品99| 激情五月婷婷亚洲| 777久久人妻少妇嫩草av网站| 亚洲精华国产精华液的使用体验| 亚洲av中文av极速乱| 天堂8中文在线网| 美女视频免费永久观看网站| 国产伦理片在线播放av一区| 一级,二级,三级黄色视频| 9色porny在线观看| 一区二区三区激情视频| 日韩欧美一区视频在线观看| 最新的欧美精品一区二区| 国产亚洲欧美精品永久| 老司机深夜福利视频在线观看 | 免费高清在线观看日韩| 十分钟在线观看高清视频www| 少妇人妻精品综合一区二区| 少妇被粗大的猛进出69影院| 老鸭窝网址在线观看| 啦啦啦在线观看免费高清www| 老司机深夜福利视频在线观看 | 国产精品人妻久久久影院| 欧美日韩精品网址| 亚洲精品一二三| 1024视频免费在线观看| 国产1区2区3区精品| 久久久久久人妻| 黑丝袜美女国产一区| 最近最新中文字幕免费大全7| 女人爽到高潮嗷嗷叫在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲av日韩在线播放| 亚洲国产中文字幕在线视频| 少妇人妻精品综合一区二区| 午夜福利一区二区在线看| 欧美精品一区二区免费开放| av一本久久久久| 国产成人欧美| 久久毛片免费看一区二区三区| 美女大奶头黄色视频| 国产亚洲欧美精品永久| 国产日韩欧美视频二区| 免费看不卡的av| 一区二区三区精品91| 午夜激情久久久久久久| 曰老女人黄片| 搡老岳熟女国产| 欧美日韩成人在线一区二区| 国产亚洲欧美精品永久| 一级黄片播放器| 热99久久久久精品小说推荐| 只有这里有精品99| 中文字幕最新亚洲高清| 另类精品久久| 国产淫语在线视频| 十八禁人妻一区二区| 9色porny在线观看| 欧美 日韩 精品 国产| 国产午夜精品一二区理论片| 如日韩欧美国产精品一区二区三区| 校园人妻丝袜中文字幕| 国产精品一二三区在线看| 精品国产一区二区三区四区第35| 精品免费久久久久久久清纯 | 建设人人有责人人尽责人人享有的| 91精品三级在线观看| 国产精品成人在线| 久久 成人 亚洲| 精品亚洲乱码少妇综合久久| 纵有疾风起免费观看全集完整版| 中文字幕最新亚洲高清| 午夜福利视频在线观看免费| 亚洲精品久久久久久婷婷小说| 少妇猛男粗大的猛烈进出视频| 亚洲精品国产区一区二| 亚洲,欧美,日韩| 欧美日韩视频精品一区| 啦啦啦在线免费观看视频4| 涩涩av久久男人的天堂| 最近中文字幕2019免费版| 亚洲国产欧美在线一区| 一区二区三区乱码不卡18| 欧美97在线视频| 亚洲一区二区三区欧美精品| 日本爱情动作片www.在线观看| 国产成人系列免费观看| 日韩av在线免费看完整版不卡| 欧美少妇被猛烈插入视频| 午夜精品国产一区二区电影| 国产免费福利视频在线观看| 777久久人妻少妇嫩草av网站| 日韩av不卡免费在线播放| 亚洲精品成人av观看孕妇| 大香蕉久久成人网| 精品国产超薄肉色丝袜足j| 免费观看a级毛片全部| 晚上一个人看的免费电影| 中文欧美无线码| 丝袜脚勾引网站| 国产在线视频一区二区| 亚洲一区二区三区欧美精品| 日本wwww免费看| 咕卡用的链子| 18禁观看日本| 欧美最新免费一区二区三区| 熟女少妇亚洲综合色aaa.| 在线免费观看不下载黄p国产| 国产一区二区三区综合在线观看| 爱豆传媒免费全集在线观看| 丰满饥渴人妻一区二区三| 黄色视频不卡| 国产亚洲最大av| 午夜影院在线不卡| 少妇人妻久久综合中文| 久久人人97超碰香蕉20202| 久久天躁狠狠躁夜夜2o2o | 久久久久人妻精品一区果冻| 国产又爽黄色视频| 久久99精品国语久久久| 老司机深夜福利视频在线观看 | h视频一区二区三区| 亚洲激情五月婷婷啪啪| 咕卡用的链子| 成年人免费黄色播放视频| 亚洲欧洲精品一区二区精品久久久 | 另类精品久久| 国产男女超爽视频在线观看| 成人影院久久| 精品一区二区三卡| 少妇的丰满在线观看| 午夜精品国产一区二区电影| 男女下面插进去视频免费观看| av国产精品久久久久影院| 免费看不卡的av| 国产一区二区在线观看av| 国产 一区精品| 欧美人与性动交α欧美软件| av网站免费在线观看视频| 青春草国产在线视频| 少妇被粗大猛烈的视频| 天天躁狠狠躁夜夜躁狠狠躁| av一本久久久久| 精品人妻在线不人妻| 亚洲综合色网址| 在线观看人妻少妇| 99香蕉大伊视频| 晚上一个人看的免费电影| 日韩一本色道免费dvd| 男人添女人高潮全过程视频| 午夜福利在线免费观看网站| 丝袜美足系列| 十八禁网站网址无遮挡| 国产精品女同一区二区软件| 熟女av电影| 黄色毛片三级朝国网站| 久久精品国产亚洲av高清一级| 精品少妇一区二区三区视频日本电影 | 国产麻豆69| 精品国产一区二区三区四区第35| 久久人人爽av亚洲精品天堂| 午夜福利免费观看在线| 久久久久精品性色| 日本色播在线视频| 国产欧美日韩一区二区三区在线| 欧美人与性动交α欧美精品济南到| 亚洲欧美激情在线| 中文字幕人妻丝袜制服| 好男人视频免费观看在线| 亚洲久久久国产精品| 久久久久国产一级毛片高清牌| 97在线人人人人妻| 日本vs欧美在线观看视频| 嫩草影视91久久| 如日韩欧美国产精品一区二区三区| 国产精品嫩草影院av在线观看| 岛国毛片在线播放| 欧美久久黑人一区二区| avwww免费| 亚洲欧美成人综合另类久久久| 国产日韩欧美视频二区| 亚洲欧美精品自产自拍| 校园人妻丝袜中文字幕| 1024香蕉在线观看| 黑人猛操日本美女一级片| 日本黄色日本黄色录像| 热99国产精品久久久久久7| av在线观看视频网站免费| 久久精品国产a三级三级三级| 亚洲精品国产一区二区精华液| 中文字幕人妻丝袜一区二区 | 亚洲av欧美aⅴ国产| 国产乱来视频区| 久久性视频一级片| 少妇人妻精品综合一区二区| 天天添夜夜摸| 日本爱情动作片www.在线观看| 国产在线免费精品| 欧美精品av麻豆av| 在线观看一区二区三区激情| 一本—道久久a久久精品蜜桃钙片| 亚洲专区中文字幕在线 | 最近2019中文字幕mv第一页| 天天添夜夜摸| 9色porny在线观看| 亚洲第一青青草原| av天堂久久9| 久久狼人影院| 午夜激情久久久久久久| 亚洲国产毛片av蜜桃av| 日韩中文字幕视频在线看片| 亚洲精品自拍成人| 色综合欧美亚洲国产小说| 久久精品aⅴ一区二区三区四区| 国产99久久九九免费精品| 丝袜美腿诱惑在线| 秋霞在线观看毛片| 日本vs欧美在线观看视频| 另类亚洲欧美激情| 精品国产国语对白av| 亚洲一区二区三区欧美精品| 国产在线一区二区三区精| 一级毛片电影观看| 人人妻人人澡人人爽人人夜夜| 曰老女人黄片| 视频区图区小说| 精品人妻在线不人妻| 91精品国产国语对白视频| 欧美精品一区二区大全| 女的被弄到高潮叫床怎么办| 国产精品免费大片| 国产精品.久久久| 欧美精品亚洲一区二区| 日韩精品有码人妻一区| 精品国产一区二区三区四区第35| 亚洲国产欧美在线一区| 国产色婷婷99| 日本vs欧美在线观看视频| www.自偷自拍.com| 亚洲美女视频黄频| 女的被弄到高潮叫床怎么办| 国产一区二区三区av在线| 美女视频免费永久观看网站| 日本色播在线视频| 国产欧美日韩一区二区三区在线| 这个男人来自地球电影免费观看 | 老司机靠b影院| 免费人妻精品一区二区三区视频| 另类精品久久| 久久性视频一级片| 亚洲成人一二三区av| 男人操女人黄网站| 纯流量卡能插随身wifi吗| 99精品久久久久人妻精品| 中文字幕制服av| 色吧在线观看| 国产av一区二区精品久久| 亚洲欧洲日产国产| 精品少妇黑人巨大在线播放| 好男人视频免费观看在线| 国产福利在线免费观看视频| 侵犯人妻中文字幕一二三四区| 国产精品成人在线| 狠狠精品人妻久久久久久综合| 日本vs欧美在线观看视频| 丁香六月天网| 操美女的视频在线观看| 日韩精品免费视频一区二区三区| 久久久久久久久免费视频了| 大香蕉久久网| 国语对白做爰xxxⅹ性视频网站| 黄频高清免费视频| 日本欧美国产在线视频| 最近最新中文字幕大全免费视频 | 91精品伊人久久大香线蕉| 久久久国产精品麻豆| 9191精品国产免费久久| 欧美日韩综合久久久久久| 亚洲精品日本国产第一区| 日韩人妻精品一区2区三区| 国产亚洲一区二区精品| 精品国产乱码久久久久久小说| 亚洲av成人不卡在线观看播放网 | 色精品久久人妻99蜜桃| 男女午夜视频在线观看| 久久99热这里只频精品6学生| 日韩人妻精品一区2区三区| 国产日韩欧美亚洲二区| 日韩成人av中文字幕在线观看| 母亲3免费完整高清在线观看| av在线app专区| 色视频在线一区二区三区| 老鸭窝网址在线观看| videos熟女内射| 啦啦啦中文免费视频观看日本| 久久天躁狠狠躁夜夜2o2o | 国产成人精品久久久久久| 欧美日韩亚洲高清精品| 精品一区在线观看国产| 亚洲人成77777在线视频| 亚洲av综合色区一区| 国产成人免费观看mmmm| 赤兔流量卡办理| 黄色毛片三级朝国网站| 亚洲av国产av综合av卡|