• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    MOMENTS AND LARGE DEVIATIONS FOR SUPERCRITICAL BRANCHING PROCESSES WITH IMMIGRATION IN RANDOM ENVIRONMENTS*

    2022-03-12 10:21:00ChunmaoHUANG黃春茂
    關(guān)鍵詞:王晨

    Chunmao HUANG (黃春茂)

    Department of Mathematics,Harbin Institute of Technology (Weihai),Weihai 264209,China E-mail:cmhuang@hitwh.edu.cn

    Chen WANG (王晨)

    School of Data and Computer Science,Sun Yat-sen University,Guangzhou 510006,China E-mail:wangch329@mail2.sysu.edu.cn

    Xiaoqiang WANG (王效強)?

    School of Mathematics and Statistics,Shandong University,Weihai 264209,China E-mail:xiaoqiang.wang@sdu.edu.cn

    Abstract Let (Zn) be a branching process with immigration in a random environment ξ,where ξ is an independent and identically distributed sequence of random variables.We show asymptotic properties for all the moments of Zn and describe the decay rates of the n-step transition probabilities.As applications,a large deviation principle for the sequence logZn is established,and related large deviations are also studied.

    Key words branching process with immigration;random environment;moments;harmonic moments;large deviations

    1 Introduction

    As an important extension of the Galton-Watson process,the branching process in a random environment (BPRE) has received extensive attention.Smith and Wilkerson[34]introduced the concept of independent and identically distributed (i.i.d.) environment variables into the Galton-Watson process and studied the certain or noncertain extinction.Athreya and Karlin[2,3]generalized the environment variables to a more common situation called a stationary and ergodic environment,and established some basic limit theorems.A lot of asymptotic properties and behaviours of BPRE-such as limit theorems,large deviations,survival probabilities,moments and convergence rates of martingales-have been studied;see for example[6,7,9,14,15,17,18,21,24,37].

    The model of the branching process with immigration in a random environment (BPIRE) extends BPRE by considering the in fluence of the immigration.Based on the original reproductive mechanism of BPRE,a certain number of alien populations join the original population at every generation.The initial conditions of the branching process can determine whether or not the population will become extinct over time.The immigration can actually also be used to prevent extinction.The latter overcomes some of the former’s limitations on variable restrictions.

    After BPIRE was proposed,some scholars devoted themselves to building their theoretical framework by studying its commonalities with BPRE;see the papers[4,11,12,25,33,36,38].However,the theoretical research on BPIRE is still lacking and the relevant theories are not yet mature,which limits some applications.For example,Bansaye[4]needed to base his work on some asymptotic properties of BPIRE when he studied cell contamination models.Among the studies on BPIRE,Wang and Liu[38]established the principles of large deviation and moderate deviation for supercritical BPIRE.Based on their work,our study completes the theory of moments and improves the condition of the large deviation principle of BPIRE.For branching processes with immigration and related topics,recent developments can be found in the papers[16,26,27,32,37,39];readers may refer to the references therein for more information.

    1.1 Description of the model and the notation

    Let us describe the model in detail.We consider a branching process with immigration in a random environment (BPIRE).The random environment,denoted by ξ=(ξn),is an i.i.d.sequence of random variables taking values in some measurable space Θ.Without loss of generality,we can suppose that ξ is de fined on the product space (ΘN,E?N,τ),where τ is the law of ξ and N={0,1,2,···}.Each realization of ξncorresponds to two probability distributions on N:one is the offspring distribution denoted by

    the other is the distribution of the number of immigrants denoted by

    In particular,we write pi=pi(ξ0) and hi=hi(ξ0) for brevity.The branching process (Zn) with immigration Y=(Yn) in the random environment ξ is de fined as follows:the process starts with Z0initial individuals,and Z0is independent of the environment ξ.Then

    where given the environment ξ,Z0,Xn,i(n=0,1,2,···,i=1,2,···) and Yn(n=0,1,2,···) are all independent of each other,Xn,ihas the distribution p (ξn) and Ynhas the distribution h (ξn).We write Xn=Xn,1for brevity.The random variable Xn,ican be regarded as the number of offspring of the i-th individual in the n-th generation and Ynas the amount of immigration in the (n+1)-th generation,so that Zn+1represents the total population of the (n+1)-th generation.If h0=1,there is no immigration and the process (Zn) forms the so-called branching process in a random environment (BPRE) which is what has been largely studied in the literature.To distinguish between BPRE and BPIRE,we useto denote the process BPRE without immigration Y,i.e.,

    It is clear that Zn≥.

    Let (Γ,Pξ) be the probability space on which the process is de fined when the environment ξ is given.The total probability space can be formulated as the product space (?!力∟,P),with P (dx,dξ)=Pξ(dx)τ(dξ).The probability Pξis usually called a quenched law,while the total probability P is usually called an annealed law.The quenched law Pξmay be considered to be the conditional probability of the annealed law P given ξ.Moreover,for k∈N*={1,2,···},denote Pk(·)=P (·|Z0=k) as the probability conditioned on{Z0=k}for the process starting with k initial individuals.The expectation with respect to Pξ(resp.P,Pk) will be denoted by Eξ(resp.E,Ek).

    For n∈N and t∈R,set

    Let F0=σ(ξ) and Fn=σ(ξ,Yl,Xl,i:0≤l<n,i≥1),(n≥1).It is known that under the probability Pξ(·|Z0=k),(Wn,F(xiàn)n) forms a nonnegative submartingale,and it converges almost surely (a.s.) to some limit W if Elogm0>0 and<∞,by[38,Theorem 3.2],while (,F(xiàn)n) is a nonnegative martingale and hence it naturally converges a.s.to a limit.

    Just as with the case of BPRE,the asymptotic behaviour of the process Zncan often be analysed with the help of the moments of Zn,or those of Wn.For a branching process in an i.i.d.environment,Huang and Liu studied the moments ofof positive orders in[22]and those of negative orders in[21].Wang and Liu generalized these results for a branching process with immigration in an i.i.d.environment in[38].Here,we want to investigate the annealed moments of Zn;namely,for s∈R.We remark that the quenched moments of Zncan be studied via the corresponding quenched moments of Wn,which was discussed in another paper by the authors[23].

    Let us briefly introduce the structure of this article.For the rest of Section 1,we summarize the main results and conclusions.First,based on the Lpconvergence of the submartingale Wnof BPIRE studied in[38],we show the asymptotic properties of the moments(see Theorem 1.1).Second,we describe the decay rates of the n-step transition probabilities (see Theorem 1.2) and those of the harmonic moments(see Theorem 1.5).Third,we show large deviations for logZn(see Theorems 1.7 and 1.8).Section 2 is devoted to the proof of Theorem 1.1.In Section 3,a sharp upper bound for harmonic moments is given to prepare for the proofs of Theorems 1.2 and 1.5.In Sections 4-6,the proofs of Theorems 1.2,1.5 and 1.8 are shown successively.

    1.2 Main results

    We first show the annealed convergence rates of the positive moments of Zn.

    Theorem 1.1(Moments) Let p>0,and assume that∈(1,∞).Then,

    Theorem 1.1 shows that under necessary moment conditions,has the same asymptotic properties asfor p>0.For BPRE,a similar result was shown in[21,Theorem 1.3].

    Next we consider the harmonic moments of Zn.From now on we will restrict things to the case that

    (H0) P (p0=0)=1 and P (p1=1)<1.

    The first condition means that each individual produces at least one child,and the second condition avoids the trivial case that everyone gives birth to just one child.Under (H0),we have Elogm0>0,which means that the process Znis supercritical.Moreover,it can be seen that Zn+1≥Zn,and hence Pξ(Zn→∞)=1 for almost all ξ.Furthermore,we introduce the following two assumptions:

    (H1) There exist constants δ>1 and A>A1>1 such that A1≤m0and m0(δ)≤Aδa.s.;

    (H2)‖p1‖∞=esssup p1<1.

    First proposed in[21],the assumptions (H1) and (H2) allow one to find the critical value for the existence of the harmonic moments of the limitfor BPRE (see[21,Theorem 1.4]):for r>0,

    We remark that the assumptions (H1) and (H2) are not essential for our results,and we need them just to make sure of the sufficiency of statement (1.5).In fact,the assumptions (H1) and (H2) can be replaced by the following statement:

    For i,j,n∈N*,denote

    as the n-step transition probability from i to j.Write pij=for brevity.For k∈N*and r>0,we set

    Let rkbe the solution of the equation γk=,with the convention that rk=∞if γk=0.The following theorem describes the decay rate of the n-step transition probabilityas well as that of the the probability generating function of Zn:

    Theorem 1.2Assume (H0).If γk>0,then the following assertions hold:

    (a) For any state j≥k,we have

    where qkk=1,and for j>k,qkj=0 if j is a non-accessible state,i.e.=0 for all l∈N*,while qkj∈(0,∞) is the solution of the recurrence relation

    if j is an accessible state,i.e.>0 for some l∈N*.

    (b) Let Gk,n(t)=be the probability generating function of Znunder the probability Pk.For all t∈[0,1),

    and Qk(t) satisfies the functional equation

    where f0(t)=andare the probability generating functions of X0and Y0,respectively,under the probability Pξ.

    (c) Under the assumptions (H1) and (H2),for any r>rk,we have the series<∞.In particular,the radius of convergence of the power series Qk(t) equals 1.

    Theorem 1.2 is a generalizationof[19,Theorem 2.3]for BPRE.Since there is no immigration in BPRE,we have h0=1 and γk=.Similar aspects of BPRE were also studied in[5,8].For the case of a deterministic environment,similar results were shown in[28,35].

    Corollary 1.3Assume (H0).If γk>0,then for j≥k,

    Corollary 1.3 is about the probability of staying bounded without extinction,which describes the asymptotic behaviour of Pk(Zn≤j) for BPIRE.For BPRE,Bansaye introduced the decay rate of Pk(Zn≤j) and gave an interpretation in a trajectory for the associated rare event{Zn=j}in[8];Grama et al.improved this result in[17].

    Theorem 1.2 can also be used to study the large deviations of Zn+1/Zn.This subject has attracted much interest;see for example[1,13,18,20,28,31,35].In particular,for classical Galton-Watson process,Athreya[1]showed that if p1mr>1 and E (X0+Y0)2r+δ<∞for some r≥1 and δ>0,then

    exists in[0,∞),where m=EX0.Liu and Zhang[28]generalized such a result to a branching process with immigration,with p1replaced by h0.For BPIRE,an associated result is established by applying Theorem 1.2 as follows:

    Corollary 1.4Assume (H0),(H1) and (H2).If<∞and<∞for some r>rk,then for every ε>0,there exists Ck(ε)∈[0,∞) such that

    For the case in a deterministic environment,since γ1=h0p1<min{h0,p1}for the case k=1,Corollary 1.4 is actually a generalization and improvement of the results in[1,28].

    In order to further obtain some results similar to those that were shown in[18,31,35]on the large deviations of Zn+1/Zn,we need to find an equivalence to describe the convergence rates of the annealed harmonic moments of Zn.On this subject,readers can refer to[31]for the classical Galton-Watson process,[35]for the branching process with immigration,and[18]for BPRE.In term of research methods,in[31,35],the authors divided the momentsinto three parts of integrals and then calculated the rates of each part by distinguishing three different cases according to the values of r.However,when the influence of the environment is taken into account,that classical method is no longer effective.For BPRE,a method of using a recurrence relation was adopted in[18].Following such an idea,we obtain the theorem below which describes precisely the decay rates of the harmonic moments.

    Recall that in the de finition (1.8),and rkis the solution of the equation γk=.For n∈N,set

    Theorem 1.5(Harmonic moments) Assume (H0),(H1) and (H2).Then,

    (a) For r>rk,

    (b) If Elog+Y0<∞,for r≤rk,

    Theorem 1.5 gives a complete description of the asymptotic behaviour of the harmonic momentsof BPIRE.For BPRE,Grama et al.showed that=C (k,r)∈(0,∞) for all r>0,where γk=(see[18,Theorem 2.1]).When r>rk,Theorem 1.5(a) coincides with the result of[18],but when r≤rk,instead of finding the precise limit as in[18],we just obtain (1.13) in Theorem 1.5(b),which also implies that the equivalent decay rate ofis an(k,r).In contrast with the result for BPRE,one should notice that for BPIRE,γk=becomes smaller,and hence rkbecomes larger.

    Using Theorem 1.5,we can get the decay rate of the probability Pk(Zn≤kn),where knis larger than k and may tend to infinity with a rate slower than the exponential rate eθn(θ>0).For BPRE,corresponding results can be found in[7,18].

    Corollary 1.6Assume (H0),(H1) and (H2).Let (kn) be a sequence of positive numbers satisfying≥k andlogkn=0.If γk>0,then

    To prove Corollary 1.6,one just needs to notice that for n large enough (such that k≤kn) and r>rk,Markov’s inequality yields

    Applying Theorem 1.2(a) and Theorem 1.5(a),we can obtain the conclusion.In particular,applying Corollary 1.6 with kn=j≥k leads tologPk(Zn≤j)=logγk,which means that the conclusion of Corollary 1.3 can also be deduced from Corollary 1.6.It is obvious,however,that the conditions of Corollary 1.3 are less than those of Corollary 1.6.If kntends to infinity with an exponential rate eθn(θ>0),we cannot reach (1.14) from Corollary 1.6.In this instance,one can expect thatlogPk(Zn≤kn)>logγkif the limit exists.

    Finally,we consider large deviations of logZn.Later we will particularly work on the lower and upper deviations Pk(Zn≤eθn) and Pk(Zn≥eθn) for θ>0.Let Λ(t)=(t∈R) and Λ*(x)=(x∈R) be its Fenchel-Legendre transform.It is clear that

    which implies that logΠnsatisfies a large deviation principle with the rate function Λ*(x),according to the classical large deviation theory.As logZn=logΠn+logWn,it is possible that logZnsatisfies the same large deviation principle as logΠnin the case where Wnconverges to a non-degenerate limit W.Let

    Since p0=0 a.s.,it is clear that χk(t)≥Λ(t),so that≤Λ*(x).Denote θk=Λ′(-rk),where Λ′(t)=is the derivative of the function Λ(t).We can calculate that

    The graphs of the functionsand Λ*(x) are shown in Figure 1.

    Figure 1 Graphs of the functions and Λ*(x)

    In particular,if γk=0(i.e.,rk=∞),we have χk(t)=Λ(t) and=Λ*(x).Noticing (1.16) and applying the G?rtner-Ellis theorem[10,p.53,Exercise 2.3.20],we immediately obtain the following large deviation principle for logZn:

    Theorem 1.7(Large deviation principle) Assume (H0),(H1) and (H2).If γk=0,<∞and<∞for all p>1,then for any measurable subset B of R,we have

    where B?denotes the interior of B,andits closure.

    The large deviation principle of logZnfor BPRE was proved by Huang and Liu in[21].Wang and Liu then extended that result to BPIRE[38,Theorem 7.2].Theorem 1.7 improves the condition of[38,Theorem 7.2].

    Remark 1.1The conclusion of Theorem 1.7 was also shown in[37,Theorem 7.2]under the condition that p1=0 a.s..Here we relax that condition to γk=0.It is clear that γk=0 means that p1=0 or h0=0 a.s..We remark that[38,Theorem 7.2]was proved by using the harmonic moments of W of BPRE[16,Theorem 2.1].In[17],the authors claimed that the assumptions (H1) and (H2) could be weakened.However,their proof was not correct,hence,in order to ensure[37,Theorem 7.2],the assumptions (H1) and (H2) have still been necessary up until now.However,as we have pointed out before,the assumptions (H1) and (H2) can be replaced by the statement (1.6).

    Under the conditions of Theorem 1.7,applying Theorem 1.7(by taking B=[θ,∞) and B=(-∞,θ],respectively),we can deduce the following results about the upper and lower deviations of logZn:

    However,the conditions of Theorem 1.7 seem a little strong for investigating the upper and lower deviations of logZn.For example,Theorem 1.7 requires the existence of the positive momentsandfor all p>1,but in general,in the case that the momentsandare finite for some p>1,it still can be expected that the upper deviations of logZnfor certain θ(but not for all θ>Elogm0) will be obtained.That is why,below,we investigate the upper and lower large deviations of logZnseparately without using Theorem 1.7.

    Theorem 1.8(Large deviations) Assume (H0).Then,

    Compared with (1.18) and (1.19),under weaker moment conditions and considering the case where γk=0 is possible,Theorem 1.8(a) reveals the upper deviations of logZnfor certain θ,and Theorem 1.8(b) shows the lower deviations of logZnfor all θ∈(0,Elogm0) with the rate functioninstead of Λ*.For BPRE,more precise properties about the upper and lower deviations of logZnwere shown in[5-7,18].

    Remark 1.2If<∞and<∞for all p>1,it can be seen that (1.20) holds for all θ>Elogm0;i.e.,(1.18) holds.Indeed,by Theorem 1.8(a),(1.20) holds for θ∈(Elogm0,Λ′(∞)).For θ≥Λ′(∞),we have that Λ*(θ)=∞.By Markov’s inequality and Theorem 1.1,we have

    which means that (1.20) also holds for θ≥Λ′(∞).For lower deviations,noticing that Pk(Zn≤eθn)=0 for θ≤0 and Λ′(-∞)≥0 under the condition (H0),we have

    for θ≤0.As there is no practical sense,we do not care about the case in which θ≤0.In particular,if γk=0,then=Λ*(θ),so under the conditions of Theorem 1.8(b),we see that (1.19) holds in the case γk=0.

    2 Proof of Theorem 1.1

    We introduce a change of measure.Denote the distribution of ξ0by τ0.Fix t∈R and de fine a new distributionas

    where m (x)=E[X0|ξ0=x]=.Consider the new BPIRE whose environment distribution is τ(t)=instead of τ=.The corresponding probability and expectation are denoted by P(t)=Pξ?τ(t),and E(t),respectively.

    To prove Theorem 1.1,we need a decomposition of the family tree.Assume that the whole family tree begins with initial ancestor particle k of generation 0,denoted by ?1,···,?k.For i∈{1,2,···,k},the ancestor particle ?iproducesnumber of progeny particles of generation 1,denoted by ?i1,?i2,···,,where=X0,i.At the same time,Y0immigrants join the family,denoted by 001,002,···,00Y0.All the new born particles and all the new immigrants form the first generation of the family.In general,the i-th particle of generation n,say u,produces Nuoffspring of generation n+1,denoted by u1,u2,···,uNu,where Nu=Xn,i;the new immigrants of generation n+1 are denoted by 0n1,0n2,···,0nYn.For a particle u,we denote bythe number of the n-th generation descendants originating from u.Let T be the shift operator that Tnξ=(ξn,ξn+1,···) if ξ=(ξ0,ξ1,···).If the environment is ξ and the particle u is of generation l,it is clear that the processforms a BPRE originating from a single initial particle with the random environment Tlξ,and.According to different origins,the population Zncan be decomposed as

    Proof of Theorem 1.1For the assertion (a),since p>1,notice that by (1.1) and by Jensen’s inequality,

    which implies that Ck,p≥kp.On the other hand,using the change of measure,we see that

    Now we consider the assertion (b).For the lower bound,we have

    3 Upper Bound for Harmonic Moments

    In this section,we shall show an upper bound for harmonic momentsfor r>0,which is useful for the proofs of Theorems 1.2 to 1.8.

    Lemma 3.1Let l≥1 be an integer.For different positive numbers α1,···,αl,set

    in which s1,···,sl∈{0,1,2,···}.Then there exists C (α1,···,αl)∈(0,∞) such that

    where α(l)=max{α1,···,αl}.

    ProofWe will prove the conclusion by induction on l.The conclusion is clearly valid when l=1.Now supposing that the conclusion is true for l=m for some m≥1,we shall prove that the conclusion is still valid for l=m+1.Due to the inductive hypothesis,there exists C (α1,···,αm)∈(0,∞) such that

    Without loss of generality,we can think that α1<α2<···<αm+1.In this case,α(m+1)=αm+1.Notice that

    We have

    Thanks to (3.2),we derive that

    Following arguments similar to the proof of[20,Theorem 1.4](by considering k initial ancestors instead of one),we can deduce the lemma below,which regards the critical value for the existence of the harmonic moments of the limitof BPRE originating from k initial ancestors.

    Lemma 3.2Assume (H0),(H1) and (H2).Let r>0.Then<∞if and only if<1.

    With the help of Lemmas 3.1 and 3.2,inspired by the method used in[17],we obtain the following lemma,which reveals that=O (an(k,r)) as n tends to in finity:

    Lemma 3.3Assume (H0),(H1) and (H2).If γk>0,then

    ProofFix k and r.Take an integer l≥0 large enough such that<cr,and then fix this l.Set bn(i)=.By the Markov property,it can be seen that for every integer 0≤i≤k+l,

    For An,noticing that the sequence (γk) is strictly decreasing,by Lemma 3.1 we obtain that

    4 Proof of Theorem 1.2

    Based on the upper bound offor r>0(see Lemma 3.3),in this section we give the proof of Theorem 1.2 and use Theorem 1.2 to prove Corollary 1.4.

    Proof of Theorem 1.2We first give the proof of the assertion (a).By the total probability formula and the Markov property,for j≥k,

    In other words,Qk(1)=∞,which means that the radius of convergence is ρ≤1.In order to prove ρ=1,we need to show that the series Qk(t) converges when|t|<1.For|t|<1,it is clear that|t|j≤j-rif j is large enough.Therefore,we know the convergence of Qk(t)=directly from the convergence of the series. □

    Proof of Corollary 1.4Denoteand A (j,ε)=.Applying the total probability formula,we obtain that

    By the formula (1.9) in Theorem 1.2(a) and the monotone convergence theorem,we have that

    Set Ck(ε)=.We shall prove that there exists C (r,ε)∈(0,∞) such that A (j,ε)≤C (r,ε) j-rfor all j,which implies that Ck(ε)<∞,by Theorem 1.2(c).It is easy to see that

    For the first term on the right hand side of (4.5),by Markov’s inequality,

    For the second term on the right hand side of (4.5),setting α=max{2r,r+1},by Markov’s inequality again,we get that

    By a consequence of the Marcinkiewicz-Zygmund inequality[29,Lemma 1.4],

    where Bα=2min{k1/2:k∈N,k≥α/2}is a constant depending only on α.Thus we have

    Combining (4.6) and (4.7) with (4.5),we see that A (j,ε)≤C (r,ε) j-rfor all j,where C (r,ε)=∈(0,∞). □

    5 Proof of Theorem 1.5

    In this section,we give the proof of Theorem 1.5.In Lemma 3.3,we have found an upper bound forfor r>0.In order to obtain the lower bound,we need the non-degeneracy of the limit of the submartingale Wn.

    Lemma 5.1Assume (H0).If Elog+Y0<∞and EX0log+X0<∞,then for any r>0,under the probability P(-r),Wnconverges a.s.to a limit W∈(0,∞),so that>0 for all k≥1 and s>0.

    ProofThe assumption (H0) implies that m0>1 with positive probability,so we have that

    Noticing (5.1) and that

    by[38,Theorem 3.2]we see that under the probability P(-r),Wnconverges a.s.to a limit W∈[0,∞).In addition,noticing (5.1) and that

    we deduce that under the probability P(-r),>0 a.s.according to the classic non-degenerate condition of BPRE (cf.[3]).As W≥,we have W>0 a.s.The proof is complete. □

    Proof of Theorem 1.5We first prove the assertion (a).For r>rk,we have an(k,r)=.By the Markov property,we can get that,which means that the sequenceis increasing.Thus,we have the limit

    By Theorem 1.2 and the monotone convergence theorem,

    Meanwhile,we can calculate that

    Combining (5.2) and (5.3) yields (1.12).

    We next prove the assertion (b).Let us first consider the case where r=rk.We have that γk=crand an(k,r)=.By Lemma 3.3,we see that

    For the inferior limit,since=1 and pkk=γk∈(0,1),there exists j>k such that pkj>0.By the Markov property,

    Using (5.5),and iterating,we obtain

    Thus

    Combining (5.4) and (5.6) leads to (1.13) for r=rk.It remains to deal with the case where r<rk.In this case,we have an(k,r)=.For the inferior limit of (1.13),by Lemma 5.1 and Fatou’s lemma,we see that

    The superior limit of (1.13) we distinguish into two cases:(i)γk>0;(ii)γk=0.For case (i),the superior limit is given by Lemma 3.3.For case (ii),we know from γk=0 that for any i,γi=0.By the Markov property,we have

    6 Proof of Theorem 1.8

    In this section,we focus on large deviations of logZn.For the lower deviations Pk(Zn≤eθn),we will show upper and lower bounds,respectively,in the two propositions below.

    Proposition 6.1Assume (H0),(H1) and (H2).Then,for θ<Elogm0,

    ProofBy Markov’s inequality,for s>0,

    Letting n tend to infinity and using (1.16),we get

    Notice that (6.1) holds for all s>0.Thus

    We calculate that

    Proposition 6.2Assume (H0) and (H1).If Elog+Y0<∞,then,for θ>0,

    ProofWe first prove that for all θ,

    Under (H0) and (H1),the function Λ′(t) is continuous and increasing everywhere.If θ≤Λ′(-∞) or θ≥Λ′(∞),then Λ*(θ)=∞and (6.4) holds naturally.Let θ∈(Λ′(-∞),Λ′(∞)).Then there exists tθsuch that Λ′(tθ)=θ.With the help of the change of measure,for ε>0 and η>0,

    Now let us prove (6.3).If γk=0,then=Λ*(θ),so (6.3) holds from (6.4).We next consider the case γk>0.Taking t∈[0,1),by the Markov property,we have

    Proof of Theorem 1.8The assertion (a) is derived from Theorem 1.1 and[21,Lemma 3.1](see also[29,Theorem 6.1]).For the assertion (b),the upper bound is from Proposition 6.1 and the lower bound is from Proposition 6.2. □

    Appendix

    In[18,Remark 2.4],the authors pointed out thatfor θ∈(0,Elogm0).Here,for the reader’s convenience,we prove this result in a different way,by a method of direct calculations.

    Lemma A.1Assume (H0) and (H1).For θ>0,

    ProofFor θ>0,denote gθ(s)=(s-1) logγk+.By setting s=1-t,we see that

    Noticing the fact that

    we calculate that

    猜你喜歡
    王晨
    區(qū)塊鏈技術(shù)嵌入下數(shù)字政府成本會計系統(tǒng)構(gòu)建
    Duality of Semi-infinite Programming via Augmented Lagrangian
    Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system?
    X線與CT在下肢骨關(guān)節(jié)骨折中的診斷價值分析
    穿梭武漢疫情“火線”
    民生周刊(2020年8期)2020-04-20 11:18:24
    Unifying quantum heat transfer and superradiant signature in a nonequilibrium collective-qubit system:A polaron-transformed Redf ield approach*
    王晨
    寶藏(2018年1期)2018-04-18 07:39:20
    大學(xué)有機化學(xué)教學(xué)中學(xué)案的作用探討
    火車上蹭坐
    蹭座
    故事會(2015年11期)2015-05-14 15:24:30
    中文字幕最新亚洲高清| 视频区欧美日本亚洲| 国产亚洲av高清不卡| 天天一区二区日本电影三级 | 给我免费播放毛片高清在线观看| 变态另类丝袜制服| 国产91精品成人一区二区三区| 韩国精品一区二区三区| 精品国产亚洲在线| 一边摸一边做爽爽视频免费| 久久精品亚洲熟妇少妇任你| 国产精品电影一区二区三区| 亚洲男人的天堂狠狠| 极品人妻少妇av视频| 可以在线观看的亚洲视频| 成人手机av| 18禁裸乳无遮挡免费网站照片 | 久久久久久免费高清国产稀缺| 又黄又爽又免费观看的视频| 一级毛片高清免费大全| 日日夜夜操网爽| 国产精品一区二区在线不卡| 亚洲男人的天堂狠狠| 日韩欧美在线二视频| 亚洲av电影不卡..在线观看| 人妻久久中文字幕网| 十分钟在线观看高清视频www| 热99re8久久精品国产| 麻豆av在线久日| 18美女黄网站色大片免费观看| 啪啪无遮挡十八禁网站| 久久人妻熟女aⅴ| 亚洲av日韩精品久久久久久密| 长腿黑丝高跟| 久久精品aⅴ一区二区三区四区| 久久精品国产亚洲av香蕉五月| 午夜免费成人在线视频| 国产精品久久久久久亚洲av鲁大| 国产一级毛片七仙女欲春2 | 免费在线观看视频国产中文字幕亚洲| 丝袜美足系列| netflix在线观看网站| 女人爽到高潮嗷嗷叫在线视频| 亚洲 欧美一区二区三区| 两个人看的免费小视频| 熟女少妇亚洲综合色aaa.| 色av中文字幕| 中出人妻视频一区二区| 日本一区二区免费在线视频| 国产av又大| 一级,二级,三级黄色视频| 久久久国产成人免费| 国产97色在线日韩免费| www.精华液| 亚洲中文日韩欧美视频| 窝窝影院91人妻| 啦啦啦观看免费观看视频高清 | 美女午夜性视频免费| 最好的美女福利视频网| 大型黄色视频在线免费观看| 亚洲伊人色综图| 国产成人系列免费观看| 一区福利在线观看| 女生性感内裤真人,穿戴方法视频| 男女下面插进去视频免费观看| av网站免费在线观看视频| 成年人黄色毛片网站| 久久久国产成人免费| x7x7x7水蜜桃| 69精品国产乱码久久久| 国产av又大| 欧美日韩福利视频一区二区| 最新在线观看一区二区三区| av片东京热男人的天堂| 十分钟在线观看高清视频www| 大码成人一级视频| 大码成人一级视频| 可以免费在线观看a视频的电影网站| 欧美黄色淫秽网站| 伦理电影免费视频| 久久影院123| 久久人妻av系列| 免费一级毛片在线播放高清视频 | 色综合站精品国产| 国产精品日韩av在线免费观看 | 久久 成人 亚洲| 精品久久久久久久人妻蜜臀av | 好男人电影高清在线观看| 韩国精品一区二区三区| 女人高潮潮喷娇喘18禁视频| 999久久久精品免费观看国产| 悠悠久久av| 午夜福利高清视频| 纯流量卡能插随身wifi吗| 久久人人97超碰香蕉20202| 国产精品久久久av美女十八| 999久久久精品免费观看国产| 91在线观看av| 精品久久久精品久久久| 欧美不卡视频在线免费观看 | 精品一品国产午夜福利视频| 在线观看一区二区三区| 宅男免费午夜| 国产成年人精品一区二区| 啦啦啦 在线观看视频| 亚洲无线在线观看| 亚洲一码二码三码区别大吗| 免费人成视频x8x8入口观看| 啪啪无遮挡十八禁网站| 69精品国产乱码久久久| 黄片播放在线免费| 九色亚洲精品在线播放| 啦啦啦免费观看视频1| 久久久久久人人人人人| 日韩精品青青久久久久久| 乱人伦中国视频| 免费看a级黄色片| 亚洲国产毛片av蜜桃av| 日韩精品免费视频一区二区三区| 亚洲精品美女久久久久99蜜臀| 成在线人永久免费视频| 成人手机av| 亚洲一区高清亚洲精品| 非洲黑人性xxxx精品又粗又长| 免费久久久久久久精品成人欧美视频| 淫妇啪啪啪对白视频| 男男h啪啪无遮挡| 久久久久久久久中文| 又黄又爽又免费观看的视频| 亚洲精品国产区一区二| 久久人人精品亚洲av| 国产一卡二卡三卡精品| 免费人成视频x8x8入口观看| 日韩有码中文字幕| 校园春色视频在线观看| 91精品国产国语对白视频| 又黄又爽又免费观看的视频| 国产高清视频在线播放一区| 国产在线观看jvid| www.999成人在线观看| 免费女性裸体啪啪无遮挡网站| 日韩高清综合在线| 免费不卡黄色视频| 久久人人爽av亚洲精品天堂| 天天一区二区日本电影三级 | 啪啪无遮挡十八禁网站| 久久久精品国产亚洲av高清涩受| 国产成人啪精品午夜网站| 中文字幕高清在线视频| 亚洲三区欧美一区| 国产主播在线观看一区二区| 啦啦啦 在线观看视频| 国产亚洲精品久久久久5区| 国产精华一区二区三区| 成人国语在线视频| 日韩大尺度精品在线看网址 | 女生性感内裤真人,穿戴方法视频| 一级片免费观看大全| av片东京热男人的天堂| 国内精品久久久久精免费| 激情在线观看视频在线高清| 女人高潮潮喷娇喘18禁视频| 亚洲成av片中文字幕在线观看| 国产成人精品久久二区二区91| 给我免费播放毛片高清在线观看| 一卡2卡三卡四卡精品乱码亚洲| 色综合婷婷激情| 亚洲中文字幕日韩| 中文字幕人成人乱码亚洲影| 亚洲av成人av| 亚洲黑人精品在线| 亚洲免费av在线视频| 怎么达到女性高潮| 亚洲va日本ⅴa欧美va伊人久久| 妹子高潮喷水视频| 久热这里只有精品99| 一二三四社区在线视频社区8| 日本a在线网址| 制服诱惑二区| 可以免费在线观看a视频的电影网站| 亚洲欧美日韩高清在线视频| 日韩精品中文字幕看吧| 18禁观看日本| 国产私拍福利视频在线观看| 久久久国产精品麻豆| а√天堂www在线а√下载| 久久性视频一级片| 成年女人毛片免费观看观看9| 黄片播放在线免费| 国产激情欧美一区二区| 99国产精品一区二区三区| 身体一侧抽搐| 男人舔女人下体高潮全视频| videosex国产| 欧美成人一区二区免费高清观看 | av福利片在线| 欧美日韩亚洲国产一区二区在线观看| 精品国内亚洲2022精品成人| 亚洲专区字幕在线| 欧美亚洲日本最大视频资源| 久久亚洲精品不卡| 一个人免费在线观看的高清视频| 母亲3免费完整高清在线观看| 99久久国产精品久久久| 久久精品91无色码中文字幕| 国产精品久久久久久人妻精品电影| 一进一出抽搐动态| 国产激情久久老熟女| 亚洲av片天天在线观看| 在线观看免费视频日本深夜| 亚洲第一av免费看| 琪琪午夜伦伦电影理论片6080| 午夜福利在线观看吧| 日韩一卡2卡3卡4卡2021年| 午夜成年电影在线免费观看| 在线观看舔阴道视频| 黑人巨大精品欧美一区二区mp4| 女人高潮潮喷娇喘18禁视频| 国产一区二区在线av高清观看| 亚洲国产欧美一区二区综合| 很黄的视频免费| 黄片播放在线免费| 久热爱精品视频在线9| 91字幕亚洲| 两个人免费观看高清视频| 久久久国产精品麻豆| 中亚洲国语对白在线视频| 成人国语在线视频| 国产成人免费无遮挡视频| 麻豆成人av在线观看| 亚洲国产精品sss在线观看| 国产精品二区激情视频| 69av精品久久久久久| e午夜精品久久久久久久| 亚洲情色 制服丝袜| 久久久久久久久中文| 亚洲精品中文字幕在线视频| 亚洲视频免费观看视频| 满18在线观看网站| 久久这里只有精品19| 国产日韩一区二区三区精品不卡| 天天一区二区日本电影三级 | 精品国产乱码久久久久久男人| 精品欧美国产一区二区三| 熟女少妇亚洲综合色aaa.| 精品久久久精品久久久| 91字幕亚洲| 黄色视频不卡| 久久性视频一级片| 亚洲国产中文字幕在线视频| 美国免费a级毛片| 999久久久国产精品视频| 男女床上黄色一级片免费看| 国产精品久久久久久人妻精品电影| 中出人妻视频一区二区| 久久精品国产99精品国产亚洲性色 | 国产亚洲欧美在线一区二区| 黄片大片在线免费观看| 欧美另类亚洲清纯唯美| 欧美日本视频| 日韩精品青青久久久久久| АⅤ资源中文在线天堂| 亚洲五月婷婷丁香| 久久人妻av系列| 日韩精品中文字幕看吧| 91字幕亚洲| 国产一卡二卡三卡精品| 最近最新免费中文字幕在线| 日本三级黄在线观看| 一级毛片高清免费大全| 午夜精品国产一区二区电影| 一二三四社区在线视频社区8| 午夜精品在线福利| 色播在线永久视频| 日韩 欧美 亚洲 中文字幕| 久久久久久久久久久久大奶| 伦理电影免费视频| 女人被躁到高潮嗷嗷叫费观| 国产一区二区在线av高清观看| 女人被狂操c到高潮| 激情在线观看视频在线高清| 两个人免费观看高清视频| 在线观看免费日韩欧美大片| 国内精品久久久久精免费| 亚洲av成人一区二区三| 91字幕亚洲| 亚洲国产欧美一区二区综合| 人妻丰满熟妇av一区二区三区| 免费少妇av软件| 搡老妇女老女人老熟妇| 久久久国产成人精品二区| 女人爽到高潮嗷嗷叫在线视频| 亚洲少妇的诱惑av| 久久久久久国产a免费观看| 成人国语在线视频| 黑人巨大精品欧美一区二区mp4| 在线观看免费视频网站a站| 中亚洲国语对白在线视频| 成人18禁在线播放| 亚洲 欧美 日韩 在线 免费| 亚洲第一青青草原| av福利片在线| 成人永久免费在线观看视频| 日本五十路高清| 欧美黄色片欧美黄色片| 别揉我奶头~嗯~啊~动态视频| 9191精品国产免费久久| 啦啦啦免费观看视频1| 亚洲黑人精品在线| 黑人欧美特级aaaaaa片| 一进一出抽搐gif免费好疼| 嫩草影院精品99| 精品欧美国产一区二区三| 男男h啪啪无遮挡| 久久久国产欧美日韩av| 老鸭窝网址在线观看| 国产精品一区二区免费欧美| 国产精品久久久久久亚洲av鲁大| 免费女性裸体啪啪无遮挡网站| 久久伊人香网站| 色哟哟哟哟哟哟| 大陆偷拍与自拍| 很黄的视频免费| 美女国产高潮福利片在线看| 黄片小视频在线播放| 99精品久久久久人妻精品| 少妇熟女aⅴ在线视频| 99热只有精品国产| 少妇的丰满在线观看| 精品少妇一区二区三区视频日本电影| 国产一区二区在线av高清观看| 婷婷丁香在线五月| 精品国产国语对白av| 无遮挡黄片免费观看| 十八禁人妻一区二区| 真人做人爱边吃奶动态| 精品一品国产午夜福利视频| 日韩高清综合在线| 久久 成人 亚洲| av中文乱码字幕在线| 两个人视频免费观看高清| 亚洲精品国产一区二区精华液| 欧美精品啪啪一区二区三区| 国产xxxxx性猛交| 18禁美女被吸乳视频| 成人三级做爰电影| 九色亚洲精品在线播放| 男人舔女人下体高潮全视频| 久久久久久久久久久久大奶| 人人澡人人妻人| 丝袜在线中文字幕| 久久精品人人爽人人爽视色| 别揉我奶头~嗯~啊~动态视频| 欧美最黄视频在线播放免费| 欧美一区二区精品小视频在线| videosex国产| 欧美色欧美亚洲另类二区 | 久久久久久人人人人人| 69av精品久久久久久| 国产精品野战在线观看| 日本 av在线| 精品无人区乱码1区二区| 亚洲精品在线美女| 99国产综合亚洲精品| 最近最新中文字幕大全电影3 | 国产精品98久久久久久宅男小说| 国产av一区二区精品久久| www国产在线视频色| av免费在线观看网站| 精品乱码久久久久久99久播| 欧美色视频一区免费| 亚洲精品中文字幕一二三四区| 国产av一区二区精品久久| 精品熟女少妇八av免费久了| 黑人操中国人逼视频| 他把我摸到了高潮在线观看| 69精品国产乱码久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲国产精品999在线| 一本久久中文字幕| 一本大道久久a久久精品| 亚洲精品粉嫩美女一区| √禁漫天堂资源中文www| 韩国精品一区二区三区| 日韩大码丰满熟妇| 国产精品乱码一区二三区的特点 | 我的亚洲天堂| 美女大奶头视频| 别揉我奶头~嗯~啊~动态视频| 久久精品亚洲熟妇少妇任你| 欧美国产精品va在线观看不卡| 欧美中文日本在线观看视频| 国产aⅴ精品一区二区三区波| or卡值多少钱| 久久精品国产综合久久久| 午夜福利高清视频| 国产三级在线视频| 搡老岳熟女国产| 黄色视频不卡| 久久精品91无色码中文字幕| 国产单亲对白刺激| 日本在线视频免费播放| 级片在线观看| 国产成+人综合+亚洲专区| 久久久久久人人人人人| 亚洲男人天堂网一区| 亚洲人成电影观看| 校园春色视频在线观看| 在线观看舔阴道视频| 亚洲专区中文字幕在线| 色综合站精品国产| 久久香蕉激情| 日日摸夜夜添夜夜添小说| 黄网站色视频无遮挡免费观看| 在线观看一区二区三区| 夜夜爽天天搞| 成熟少妇高潮喷水视频| 国产精品乱码一区二三区的特点 | 国产高清激情床上av| 精品免费久久久久久久清纯| 国产激情久久老熟女| 国产亚洲精品久久久久久毛片| 久久天堂一区二区三区四区| 久久九九热精品免费| 九色国产91popny在线| 成人av一区二区三区在线看| 久久精品人人爽人人爽视色| 久久久精品国产亚洲av高清涩受| 精品久久久久久久人妻蜜臀av | 国产精品免费一区二区三区在线| 如日韩欧美国产精品一区二区三区| 午夜福利成人在线免费观看| 欧美国产精品va在线观看不卡| 亚洲成人国产一区在线观看| 亚洲一码二码三码区别大吗| 精品久久久久久成人av| 国产精品一区二区精品视频观看| 91麻豆精品激情在线观看国产| 波多野结衣一区麻豆| 亚洲av片天天在线观看| 精品久久久久久,| 亚洲国产欧美一区二区综合| 国产人伦9x9x在线观看| 精品一区二区三区视频在线观看免费| 国产一区二区激情短视频| 久久久久久亚洲精品国产蜜桃av| 午夜激情av网站| 日本精品一区二区三区蜜桃| 黄色片一级片一级黄色片| 久久久久国产精品人妻aⅴ院| 99精品欧美一区二区三区四区| 99久久精品国产亚洲精品| 一边摸一边抽搐一进一出视频| 免费av毛片视频| 国产成人av教育| 香蕉久久夜色| 免费av毛片视频| 在线观看日韩欧美| 亚洲国产日韩欧美精品在线观看 | 亚洲免费av在线视频| 国产亚洲精品久久久久久毛片| 中出人妻视频一区二区| 国产精品亚洲一级av第二区| 91成年电影在线观看| 欧美日韩亚洲国产一区二区在线观看| 女同久久另类99精品国产91| 亚洲熟妇中文字幕五十中出| 国产精品秋霞免费鲁丝片| 色老头精品视频在线观看| 日本精品一区二区三区蜜桃| 精品国产一区二区久久| 亚洲最大成人中文| 免费观看人在逋| 久久精品亚洲精品国产色婷小说| 国产精品自产拍在线观看55亚洲| 黑人操中国人逼视频| 亚洲成人国产一区在线观看| 操美女的视频在线观看| 精品少妇一区二区三区视频日本电影| 在线天堂中文资源库| 亚洲欧美精品综合久久99| 一边摸一边做爽爽视频免费| 国产成人精品在线电影| 亚洲男人的天堂狠狠| 免费在线观看影片大全网站| 精品国产乱码久久久久久男人| 欧美国产日韩亚洲一区| 身体一侧抽搐| 黄频高清免费视频| 久久久久久久午夜电影| 久久久久国产一级毛片高清牌| 亚洲 欧美 日韩 在线 免费| 亚洲av日韩精品久久久久久密| 亚洲第一欧美日韩一区二区三区| 国产乱人伦免费视频| 亚洲熟妇熟女久久| 熟女少妇亚洲综合色aaa.| 亚洲专区中文字幕在线| 亚洲精华国产精华精| 国产成人精品久久二区二区免费| av在线播放免费不卡| 一级作爱视频免费观看| 欧美 亚洲 国产 日韩一| 日本精品一区二区三区蜜桃| 操美女的视频在线观看| 激情视频va一区二区三区| 日韩欧美免费精品| 人人澡人人妻人| 啦啦啦免费观看视频1| 欧美日韩一级在线毛片| 国产精品1区2区在线观看.| 色综合站精品国产| 久久久久精品国产欧美久久久| 国产精品久久久久久亚洲av鲁大| 亚洲五月天丁香| 国产熟女xx| 欧美黄色片欧美黄色片| 成年女人毛片免费观看观看9| 日本黄色视频三级网站网址| 一个人免费在线观看的高清视频| 欧美久久黑人一区二区| 亚洲美女黄片视频| 亚洲人成电影免费在线| 黄色成人免费大全| 国产伦人伦偷精品视频| 国内精品久久久久精免费| 久久狼人影院| 日本一区二区免费在线视频| 午夜两性在线视频| 精品免费久久久久久久清纯| 一级毛片高清免费大全| 亚洲男人天堂网一区| 多毛熟女@视频| 村上凉子中文字幕在线| 久久香蕉激情| 亚洲欧美激情在线| 叶爱在线成人免费视频播放| 国产99久久九九免费精品| 男女做爰动态图高潮gif福利片 | 午夜成年电影在线免费观看| av中文乱码字幕在线| 69精品国产乱码久久久| 精品少妇一区二区三区视频日本电影| 免费女性裸体啪啪无遮挡网站| 黄色毛片三级朝国网站| 88av欧美| 国产aⅴ精品一区二区三区波| 久久狼人影院| 久久久国产成人精品二区| 12—13女人毛片做爰片一| 一本久久中文字幕| 一二三四在线观看免费中文在| 日本免费a在线| 亚洲国产欧美网| 国产三级黄色录像| 脱女人内裤的视频| 黄片小视频在线播放| 级片在线观看| 久久婷婷人人爽人人干人人爱 | 老熟妇仑乱视频hdxx| 久久九九热精品免费| 欧美成人午夜精品| 狠狠狠狠99中文字幕| av电影中文网址| 成在线人永久免费视频| 午夜日韩欧美国产| 国产一区二区激情短视频| 中文字幕久久专区| 宅男免费午夜| svipshipincom国产片| 国产又色又爽无遮挡免费看| 亚洲成国产人片在线观看| 91成人精品电影| 老司机午夜十八禁免费视频| 亚洲一区二区三区色噜噜| 亚洲五月婷婷丁香| 午夜两性在线视频| a在线观看视频网站| 九色亚洲精品在线播放| 亚洲一码二码三码区别大吗| 欧美国产精品va在线观看不卡| 免费观看人在逋| 亚洲一区二区三区不卡视频| 性色av乱码一区二区三区2| 亚洲午夜精品一区,二区,三区| 亚洲国产欧美一区二区综合| 欧美成人午夜精品| 国产熟女午夜一区二区三区| 久久婷婷成人综合色麻豆| 好男人在线观看高清免费视频 | 99国产精品一区二区三区| 国内毛片毛片毛片毛片毛片| 女人爽到高潮嗷嗷叫在线视频| 国产一区二区三区在线臀色熟女| 国内精品久久久久精免费| 亚洲熟妇中文字幕五十中出| 夜夜躁狠狠躁天天躁| 91精品三级在线观看| 欧美一级a爱片免费观看看 | 久久影院123| 日韩欧美三级三区| 午夜久久久久精精品| 日韩精品免费视频一区二区三区| 91麻豆av在线| av欧美777| 午夜福利成人在线免费观看| 国产真人三级小视频在线观看| 可以免费在线观看a视频的电影网站| 久久国产乱子伦精品免费另类| 国产精品亚洲av一区麻豆| 一级a爱片免费观看的视频| 国产区一区二久久| 精品久久久久久,| 国产亚洲欧美精品永久| 午夜福利一区二区在线看|