• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    MOMENTS AND LARGE DEVIATIONS FOR SUPERCRITICAL BRANCHING PROCESSES WITH IMMIGRATION IN RANDOM ENVIRONMENTS*

    2022-03-12 10:21:00ChunmaoHUANG黃春茂
    關(guān)鍵詞:王晨

    Chunmao HUANG (黃春茂)

    Department of Mathematics,Harbin Institute of Technology (Weihai),Weihai 264209,China E-mail:cmhuang@hitwh.edu.cn

    Chen WANG (王晨)

    School of Data and Computer Science,Sun Yat-sen University,Guangzhou 510006,China E-mail:wangch329@mail2.sysu.edu.cn

    Xiaoqiang WANG (王效強)?

    School of Mathematics and Statistics,Shandong University,Weihai 264209,China E-mail:xiaoqiang.wang@sdu.edu.cn

    Abstract Let (Zn) be a branching process with immigration in a random environment ξ,where ξ is an independent and identically distributed sequence of random variables.We show asymptotic properties for all the moments of Zn and describe the decay rates of the n-step transition probabilities.As applications,a large deviation principle for the sequence logZn is established,and related large deviations are also studied.

    Key words branching process with immigration;random environment;moments;harmonic moments;large deviations

    1 Introduction

    As an important extension of the Galton-Watson process,the branching process in a random environment (BPRE) has received extensive attention.Smith and Wilkerson[34]introduced the concept of independent and identically distributed (i.i.d.) environment variables into the Galton-Watson process and studied the certain or noncertain extinction.Athreya and Karlin[2,3]generalized the environment variables to a more common situation called a stationary and ergodic environment,and established some basic limit theorems.A lot of asymptotic properties and behaviours of BPRE-such as limit theorems,large deviations,survival probabilities,moments and convergence rates of martingales-have been studied;see for example[6,7,9,14,15,17,18,21,24,37].

    The model of the branching process with immigration in a random environment (BPIRE) extends BPRE by considering the in fluence of the immigration.Based on the original reproductive mechanism of BPRE,a certain number of alien populations join the original population at every generation.The initial conditions of the branching process can determine whether or not the population will become extinct over time.The immigration can actually also be used to prevent extinction.The latter overcomes some of the former’s limitations on variable restrictions.

    After BPIRE was proposed,some scholars devoted themselves to building their theoretical framework by studying its commonalities with BPRE;see the papers[4,11,12,25,33,36,38].However,the theoretical research on BPIRE is still lacking and the relevant theories are not yet mature,which limits some applications.For example,Bansaye[4]needed to base his work on some asymptotic properties of BPIRE when he studied cell contamination models.Among the studies on BPIRE,Wang and Liu[38]established the principles of large deviation and moderate deviation for supercritical BPIRE.Based on their work,our study completes the theory of moments and improves the condition of the large deviation principle of BPIRE.For branching processes with immigration and related topics,recent developments can be found in the papers[16,26,27,32,37,39];readers may refer to the references therein for more information.

    1.1 Description of the model and the notation

    Let us describe the model in detail.We consider a branching process with immigration in a random environment (BPIRE).The random environment,denoted by ξ=(ξn),is an i.i.d.sequence of random variables taking values in some measurable space Θ.Without loss of generality,we can suppose that ξ is de fined on the product space (ΘN,E?N,τ),where τ is the law of ξ and N={0,1,2,···}.Each realization of ξncorresponds to two probability distributions on N:one is the offspring distribution denoted by

    the other is the distribution of the number of immigrants denoted by

    In particular,we write pi=pi(ξ0) and hi=hi(ξ0) for brevity.The branching process (Zn) with immigration Y=(Yn) in the random environment ξ is de fined as follows:the process starts with Z0initial individuals,and Z0is independent of the environment ξ.Then

    where given the environment ξ,Z0,Xn,i(n=0,1,2,···,i=1,2,···) and Yn(n=0,1,2,···) are all independent of each other,Xn,ihas the distribution p (ξn) and Ynhas the distribution h (ξn).We write Xn=Xn,1for brevity.The random variable Xn,ican be regarded as the number of offspring of the i-th individual in the n-th generation and Ynas the amount of immigration in the (n+1)-th generation,so that Zn+1represents the total population of the (n+1)-th generation.If h0=1,there is no immigration and the process (Zn) forms the so-called branching process in a random environment (BPRE) which is what has been largely studied in the literature.To distinguish between BPRE and BPIRE,we useto denote the process BPRE without immigration Y,i.e.,

    It is clear that Zn≥.

    Let (Γ,Pξ) be the probability space on which the process is de fined when the environment ξ is given.The total probability space can be formulated as the product space (?!力∟,P),with P (dx,dξ)=Pξ(dx)τ(dξ).The probability Pξis usually called a quenched law,while the total probability P is usually called an annealed law.The quenched law Pξmay be considered to be the conditional probability of the annealed law P given ξ.Moreover,for k∈N*={1,2,···},denote Pk(·)=P (·|Z0=k) as the probability conditioned on{Z0=k}for the process starting with k initial individuals.The expectation with respect to Pξ(resp.P,Pk) will be denoted by Eξ(resp.E,Ek).

    For n∈N and t∈R,set

    Let F0=σ(ξ) and Fn=σ(ξ,Yl,Xl,i:0≤l<n,i≥1),(n≥1).It is known that under the probability Pξ(·|Z0=k),(Wn,F(xiàn)n) forms a nonnegative submartingale,and it converges almost surely (a.s.) to some limit W if Elogm0>0 and<∞,by[38,Theorem 3.2],while (,F(xiàn)n) is a nonnegative martingale and hence it naturally converges a.s.to a limit.

    Just as with the case of BPRE,the asymptotic behaviour of the process Zncan often be analysed with the help of the moments of Zn,or those of Wn.For a branching process in an i.i.d.environment,Huang and Liu studied the moments ofof positive orders in[22]and those of negative orders in[21].Wang and Liu generalized these results for a branching process with immigration in an i.i.d.environment in[38].Here,we want to investigate the annealed moments of Zn;namely,for s∈R.We remark that the quenched moments of Zncan be studied via the corresponding quenched moments of Wn,which was discussed in another paper by the authors[23].

    Let us briefly introduce the structure of this article.For the rest of Section 1,we summarize the main results and conclusions.First,based on the Lpconvergence of the submartingale Wnof BPIRE studied in[38],we show the asymptotic properties of the moments(see Theorem 1.1).Second,we describe the decay rates of the n-step transition probabilities (see Theorem 1.2) and those of the harmonic moments(see Theorem 1.5).Third,we show large deviations for logZn(see Theorems 1.7 and 1.8).Section 2 is devoted to the proof of Theorem 1.1.In Section 3,a sharp upper bound for harmonic moments is given to prepare for the proofs of Theorems 1.2 and 1.5.In Sections 4-6,the proofs of Theorems 1.2,1.5 and 1.8 are shown successively.

    1.2 Main results

    We first show the annealed convergence rates of the positive moments of Zn.

    Theorem 1.1(Moments) Let p>0,and assume that∈(1,∞).Then,

    Theorem 1.1 shows that under necessary moment conditions,has the same asymptotic properties asfor p>0.For BPRE,a similar result was shown in[21,Theorem 1.3].

    Next we consider the harmonic moments of Zn.From now on we will restrict things to the case that

    (H0) P (p0=0)=1 and P (p1=1)<1.

    The first condition means that each individual produces at least one child,and the second condition avoids the trivial case that everyone gives birth to just one child.Under (H0),we have Elogm0>0,which means that the process Znis supercritical.Moreover,it can be seen that Zn+1≥Zn,and hence Pξ(Zn→∞)=1 for almost all ξ.Furthermore,we introduce the following two assumptions:

    (H1) There exist constants δ>1 and A>A1>1 such that A1≤m0and m0(δ)≤Aδa.s.;

    (H2)‖p1‖∞=esssup p1<1.

    First proposed in[21],the assumptions (H1) and (H2) allow one to find the critical value for the existence of the harmonic moments of the limitfor BPRE (see[21,Theorem 1.4]):for r>0,

    We remark that the assumptions (H1) and (H2) are not essential for our results,and we need them just to make sure of the sufficiency of statement (1.5).In fact,the assumptions (H1) and (H2) can be replaced by the following statement:

    For i,j,n∈N*,denote

    as the n-step transition probability from i to j.Write pij=for brevity.For k∈N*and r>0,we set

    Let rkbe the solution of the equation γk=,with the convention that rk=∞if γk=0.The following theorem describes the decay rate of the n-step transition probabilityas well as that of the the probability generating function of Zn:

    Theorem 1.2Assume (H0).If γk>0,then the following assertions hold:

    (a) For any state j≥k,we have

    where qkk=1,and for j>k,qkj=0 if j is a non-accessible state,i.e.=0 for all l∈N*,while qkj∈(0,∞) is the solution of the recurrence relation

    if j is an accessible state,i.e.>0 for some l∈N*.

    (b) Let Gk,n(t)=be the probability generating function of Znunder the probability Pk.For all t∈[0,1),

    and Qk(t) satisfies the functional equation

    where f0(t)=andare the probability generating functions of X0and Y0,respectively,under the probability Pξ.

    (c) Under the assumptions (H1) and (H2),for any r>rk,we have the series<∞.In particular,the radius of convergence of the power series Qk(t) equals 1.

    Theorem 1.2 is a generalizationof[19,Theorem 2.3]for BPRE.Since there is no immigration in BPRE,we have h0=1 and γk=.Similar aspects of BPRE were also studied in[5,8].For the case of a deterministic environment,similar results were shown in[28,35].

    Corollary 1.3Assume (H0).If γk>0,then for j≥k,

    Corollary 1.3 is about the probability of staying bounded without extinction,which describes the asymptotic behaviour of Pk(Zn≤j) for BPIRE.For BPRE,Bansaye introduced the decay rate of Pk(Zn≤j) and gave an interpretation in a trajectory for the associated rare event{Zn=j}in[8];Grama et al.improved this result in[17].

    Theorem 1.2 can also be used to study the large deviations of Zn+1/Zn.This subject has attracted much interest;see for example[1,13,18,20,28,31,35].In particular,for classical Galton-Watson process,Athreya[1]showed that if p1mr>1 and E (X0+Y0)2r+δ<∞for some r≥1 and δ>0,then

    exists in[0,∞),where m=EX0.Liu and Zhang[28]generalized such a result to a branching process with immigration,with p1replaced by h0.For BPIRE,an associated result is established by applying Theorem 1.2 as follows:

    Corollary 1.4Assume (H0),(H1) and (H2).If<∞and<∞for some r>rk,then for every ε>0,there exists Ck(ε)∈[0,∞) such that

    For the case in a deterministic environment,since γ1=h0p1<min{h0,p1}for the case k=1,Corollary 1.4 is actually a generalization and improvement of the results in[1,28].

    In order to further obtain some results similar to those that were shown in[18,31,35]on the large deviations of Zn+1/Zn,we need to find an equivalence to describe the convergence rates of the annealed harmonic moments of Zn.On this subject,readers can refer to[31]for the classical Galton-Watson process,[35]for the branching process with immigration,and[18]for BPRE.In term of research methods,in[31,35],the authors divided the momentsinto three parts of integrals and then calculated the rates of each part by distinguishing three different cases according to the values of r.However,when the influence of the environment is taken into account,that classical method is no longer effective.For BPRE,a method of using a recurrence relation was adopted in[18].Following such an idea,we obtain the theorem below which describes precisely the decay rates of the harmonic moments.

    Recall that in the de finition (1.8),and rkis the solution of the equation γk=.For n∈N,set

    Theorem 1.5(Harmonic moments) Assume (H0),(H1) and (H2).Then,

    (a) For r>rk,

    (b) If Elog+Y0<∞,for r≤rk,

    Theorem 1.5 gives a complete description of the asymptotic behaviour of the harmonic momentsof BPIRE.For BPRE,Grama et al.showed that=C (k,r)∈(0,∞) for all r>0,where γk=(see[18,Theorem 2.1]).When r>rk,Theorem 1.5(a) coincides with the result of[18],but when r≤rk,instead of finding the precise limit as in[18],we just obtain (1.13) in Theorem 1.5(b),which also implies that the equivalent decay rate ofis an(k,r).In contrast with the result for BPRE,one should notice that for BPIRE,γk=becomes smaller,and hence rkbecomes larger.

    Using Theorem 1.5,we can get the decay rate of the probability Pk(Zn≤kn),where knis larger than k and may tend to infinity with a rate slower than the exponential rate eθn(θ>0).For BPRE,corresponding results can be found in[7,18].

    Corollary 1.6Assume (H0),(H1) and (H2).Let (kn) be a sequence of positive numbers satisfying≥k andlogkn=0.If γk>0,then

    To prove Corollary 1.6,one just needs to notice that for n large enough (such that k≤kn) and r>rk,Markov’s inequality yields

    Applying Theorem 1.2(a) and Theorem 1.5(a),we can obtain the conclusion.In particular,applying Corollary 1.6 with kn=j≥k leads tologPk(Zn≤j)=logγk,which means that the conclusion of Corollary 1.3 can also be deduced from Corollary 1.6.It is obvious,however,that the conditions of Corollary 1.3 are less than those of Corollary 1.6.If kntends to infinity with an exponential rate eθn(θ>0),we cannot reach (1.14) from Corollary 1.6.In this instance,one can expect thatlogPk(Zn≤kn)>logγkif the limit exists.

    Finally,we consider large deviations of logZn.Later we will particularly work on the lower and upper deviations Pk(Zn≤eθn) and Pk(Zn≥eθn) for θ>0.Let Λ(t)=(t∈R) and Λ*(x)=(x∈R) be its Fenchel-Legendre transform.It is clear that

    which implies that logΠnsatisfies a large deviation principle with the rate function Λ*(x),according to the classical large deviation theory.As logZn=logΠn+logWn,it is possible that logZnsatisfies the same large deviation principle as logΠnin the case where Wnconverges to a non-degenerate limit W.Let

    Since p0=0 a.s.,it is clear that χk(t)≥Λ(t),so that≤Λ*(x).Denote θk=Λ′(-rk),where Λ′(t)=is the derivative of the function Λ(t).We can calculate that

    The graphs of the functionsand Λ*(x) are shown in Figure 1.

    Figure 1 Graphs of the functions and Λ*(x)

    In particular,if γk=0(i.e.,rk=∞),we have χk(t)=Λ(t) and=Λ*(x).Noticing (1.16) and applying the G?rtner-Ellis theorem[10,p.53,Exercise 2.3.20],we immediately obtain the following large deviation principle for logZn:

    Theorem 1.7(Large deviation principle) Assume (H0),(H1) and (H2).If γk=0,<∞and<∞for all p>1,then for any measurable subset B of R,we have

    where B?denotes the interior of B,andits closure.

    The large deviation principle of logZnfor BPRE was proved by Huang and Liu in[21].Wang and Liu then extended that result to BPIRE[38,Theorem 7.2].Theorem 1.7 improves the condition of[38,Theorem 7.2].

    Remark 1.1The conclusion of Theorem 1.7 was also shown in[37,Theorem 7.2]under the condition that p1=0 a.s..Here we relax that condition to γk=0.It is clear that γk=0 means that p1=0 or h0=0 a.s..We remark that[38,Theorem 7.2]was proved by using the harmonic moments of W of BPRE[16,Theorem 2.1].In[17],the authors claimed that the assumptions (H1) and (H2) could be weakened.However,their proof was not correct,hence,in order to ensure[37,Theorem 7.2],the assumptions (H1) and (H2) have still been necessary up until now.However,as we have pointed out before,the assumptions (H1) and (H2) can be replaced by the statement (1.6).

    Under the conditions of Theorem 1.7,applying Theorem 1.7(by taking B=[θ,∞) and B=(-∞,θ],respectively),we can deduce the following results about the upper and lower deviations of logZn:

    However,the conditions of Theorem 1.7 seem a little strong for investigating the upper and lower deviations of logZn.For example,Theorem 1.7 requires the existence of the positive momentsandfor all p>1,but in general,in the case that the momentsandare finite for some p>1,it still can be expected that the upper deviations of logZnfor certain θ(but not for all θ>Elogm0) will be obtained.That is why,below,we investigate the upper and lower large deviations of logZnseparately without using Theorem 1.7.

    Theorem 1.8(Large deviations) Assume (H0).Then,

    Compared with (1.18) and (1.19),under weaker moment conditions and considering the case where γk=0 is possible,Theorem 1.8(a) reveals the upper deviations of logZnfor certain θ,and Theorem 1.8(b) shows the lower deviations of logZnfor all θ∈(0,Elogm0) with the rate functioninstead of Λ*.For BPRE,more precise properties about the upper and lower deviations of logZnwere shown in[5-7,18].

    Remark 1.2If<∞and<∞for all p>1,it can be seen that (1.20) holds for all θ>Elogm0;i.e.,(1.18) holds.Indeed,by Theorem 1.8(a),(1.20) holds for θ∈(Elogm0,Λ′(∞)).For θ≥Λ′(∞),we have that Λ*(θ)=∞.By Markov’s inequality and Theorem 1.1,we have

    which means that (1.20) also holds for θ≥Λ′(∞).For lower deviations,noticing that Pk(Zn≤eθn)=0 for θ≤0 and Λ′(-∞)≥0 under the condition (H0),we have

    for θ≤0.As there is no practical sense,we do not care about the case in which θ≤0.In particular,if γk=0,then=Λ*(θ),so under the conditions of Theorem 1.8(b),we see that (1.19) holds in the case γk=0.

    2 Proof of Theorem 1.1

    We introduce a change of measure.Denote the distribution of ξ0by τ0.Fix t∈R and de fine a new distributionas

    where m (x)=E[X0|ξ0=x]=.Consider the new BPIRE whose environment distribution is τ(t)=instead of τ=.The corresponding probability and expectation are denoted by P(t)=Pξ?τ(t),and E(t),respectively.

    To prove Theorem 1.1,we need a decomposition of the family tree.Assume that the whole family tree begins with initial ancestor particle k of generation 0,denoted by ?1,···,?k.For i∈{1,2,···,k},the ancestor particle ?iproducesnumber of progeny particles of generation 1,denoted by ?i1,?i2,···,,where=X0,i.At the same time,Y0immigrants join the family,denoted by 001,002,···,00Y0.All the new born particles and all the new immigrants form the first generation of the family.In general,the i-th particle of generation n,say u,produces Nuoffspring of generation n+1,denoted by u1,u2,···,uNu,where Nu=Xn,i;the new immigrants of generation n+1 are denoted by 0n1,0n2,···,0nYn.For a particle u,we denote bythe number of the n-th generation descendants originating from u.Let T be the shift operator that Tnξ=(ξn,ξn+1,···) if ξ=(ξ0,ξ1,···).If the environment is ξ and the particle u is of generation l,it is clear that the processforms a BPRE originating from a single initial particle with the random environment Tlξ,and.According to different origins,the population Zncan be decomposed as

    Proof of Theorem 1.1For the assertion (a),since p>1,notice that by (1.1) and by Jensen’s inequality,

    which implies that Ck,p≥kp.On the other hand,using the change of measure,we see that

    Now we consider the assertion (b).For the lower bound,we have

    3 Upper Bound for Harmonic Moments

    In this section,we shall show an upper bound for harmonic momentsfor r>0,which is useful for the proofs of Theorems 1.2 to 1.8.

    Lemma 3.1Let l≥1 be an integer.For different positive numbers α1,···,αl,set

    in which s1,···,sl∈{0,1,2,···}.Then there exists C (α1,···,αl)∈(0,∞) such that

    where α(l)=max{α1,···,αl}.

    ProofWe will prove the conclusion by induction on l.The conclusion is clearly valid when l=1.Now supposing that the conclusion is true for l=m for some m≥1,we shall prove that the conclusion is still valid for l=m+1.Due to the inductive hypothesis,there exists C (α1,···,αm)∈(0,∞) such that

    Without loss of generality,we can think that α1<α2<···<αm+1.In this case,α(m+1)=αm+1.Notice that

    We have

    Thanks to (3.2),we derive that

    Following arguments similar to the proof of[20,Theorem 1.4](by considering k initial ancestors instead of one),we can deduce the lemma below,which regards the critical value for the existence of the harmonic moments of the limitof BPRE originating from k initial ancestors.

    Lemma 3.2Assume (H0),(H1) and (H2).Let r>0.Then<∞if and only if<1.

    With the help of Lemmas 3.1 and 3.2,inspired by the method used in[17],we obtain the following lemma,which reveals that=O (an(k,r)) as n tends to in finity:

    Lemma 3.3Assume (H0),(H1) and (H2).If γk>0,then

    ProofFix k and r.Take an integer l≥0 large enough such that<cr,and then fix this l.Set bn(i)=.By the Markov property,it can be seen that for every integer 0≤i≤k+l,

    For An,noticing that the sequence (γk) is strictly decreasing,by Lemma 3.1 we obtain that

    4 Proof of Theorem 1.2

    Based on the upper bound offor r>0(see Lemma 3.3),in this section we give the proof of Theorem 1.2 and use Theorem 1.2 to prove Corollary 1.4.

    Proof of Theorem 1.2We first give the proof of the assertion (a).By the total probability formula and the Markov property,for j≥k,

    In other words,Qk(1)=∞,which means that the radius of convergence is ρ≤1.In order to prove ρ=1,we need to show that the series Qk(t) converges when|t|<1.For|t|<1,it is clear that|t|j≤j-rif j is large enough.Therefore,we know the convergence of Qk(t)=directly from the convergence of the series. □

    Proof of Corollary 1.4Denoteand A (j,ε)=.Applying the total probability formula,we obtain that

    By the formula (1.9) in Theorem 1.2(a) and the monotone convergence theorem,we have that

    Set Ck(ε)=.We shall prove that there exists C (r,ε)∈(0,∞) such that A (j,ε)≤C (r,ε) j-rfor all j,which implies that Ck(ε)<∞,by Theorem 1.2(c).It is easy to see that

    For the first term on the right hand side of (4.5),by Markov’s inequality,

    For the second term on the right hand side of (4.5),setting α=max{2r,r+1},by Markov’s inequality again,we get that

    By a consequence of the Marcinkiewicz-Zygmund inequality[29,Lemma 1.4],

    where Bα=2min{k1/2:k∈N,k≥α/2}is a constant depending only on α.Thus we have

    Combining (4.6) and (4.7) with (4.5),we see that A (j,ε)≤C (r,ε) j-rfor all j,where C (r,ε)=∈(0,∞). □

    5 Proof of Theorem 1.5

    In this section,we give the proof of Theorem 1.5.In Lemma 3.3,we have found an upper bound forfor r>0.In order to obtain the lower bound,we need the non-degeneracy of the limit of the submartingale Wn.

    Lemma 5.1Assume (H0).If Elog+Y0<∞and EX0log+X0<∞,then for any r>0,under the probability P(-r),Wnconverges a.s.to a limit W∈(0,∞),so that>0 for all k≥1 and s>0.

    ProofThe assumption (H0) implies that m0>1 with positive probability,so we have that

    Noticing (5.1) and that

    by[38,Theorem 3.2]we see that under the probability P(-r),Wnconverges a.s.to a limit W∈[0,∞).In addition,noticing (5.1) and that

    we deduce that under the probability P(-r),>0 a.s.according to the classic non-degenerate condition of BPRE (cf.[3]).As W≥,we have W>0 a.s.The proof is complete. □

    Proof of Theorem 1.5We first prove the assertion (a).For r>rk,we have an(k,r)=.By the Markov property,we can get that,which means that the sequenceis increasing.Thus,we have the limit

    By Theorem 1.2 and the monotone convergence theorem,

    Meanwhile,we can calculate that

    Combining (5.2) and (5.3) yields (1.12).

    We next prove the assertion (b).Let us first consider the case where r=rk.We have that γk=crand an(k,r)=.By Lemma 3.3,we see that

    For the inferior limit,since=1 and pkk=γk∈(0,1),there exists j>k such that pkj>0.By the Markov property,

    Using (5.5),and iterating,we obtain

    Thus

    Combining (5.4) and (5.6) leads to (1.13) for r=rk.It remains to deal with the case where r<rk.In this case,we have an(k,r)=.For the inferior limit of (1.13),by Lemma 5.1 and Fatou’s lemma,we see that

    The superior limit of (1.13) we distinguish into two cases:(i)γk>0;(ii)γk=0.For case (i),the superior limit is given by Lemma 3.3.For case (ii),we know from γk=0 that for any i,γi=0.By the Markov property,we have

    6 Proof of Theorem 1.8

    In this section,we focus on large deviations of logZn.For the lower deviations Pk(Zn≤eθn),we will show upper and lower bounds,respectively,in the two propositions below.

    Proposition 6.1Assume (H0),(H1) and (H2).Then,for θ<Elogm0,

    ProofBy Markov’s inequality,for s>0,

    Letting n tend to infinity and using (1.16),we get

    Notice that (6.1) holds for all s>0.Thus

    We calculate that

    Proposition 6.2Assume (H0) and (H1).If Elog+Y0<∞,then,for θ>0,

    ProofWe first prove that for all θ,

    Under (H0) and (H1),the function Λ′(t) is continuous and increasing everywhere.If θ≤Λ′(-∞) or θ≥Λ′(∞),then Λ*(θ)=∞and (6.4) holds naturally.Let θ∈(Λ′(-∞),Λ′(∞)).Then there exists tθsuch that Λ′(tθ)=θ.With the help of the change of measure,for ε>0 and η>0,

    Now let us prove (6.3).If γk=0,then=Λ*(θ),so (6.3) holds from (6.4).We next consider the case γk>0.Taking t∈[0,1),by the Markov property,we have

    Proof of Theorem 1.8The assertion (a) is derived from Theorem 1.1 and[21,Lemma 3.1](see also[29,Theorem 6.1]).For the assertion (b),the upper bound is from Proposition 6.1 and the lower bound is from Proposition 6.2. □

    Appendix

    In[18,Remark 2.4],the authors pointed out thatfor θ∈(0,Elogm0).Here,for the reader’s convenience,we prove this result in a different way,by a method of direct calculations.

    Lemma A.1Assume (H0) and (H1).For θ>0,

    ProofFor θ>0,denote gθ(s)=(s-1) logγk+.By setting s=1-t,we see that

    Noticing the fact that

    we calculate that

    猜你喜歡
    王晨
    區(qū)塊鏈技術(shù)嵌入下數(shù)字政府成本會計系統(tǒng)構(gòu)建
    Duality of Semi-infinite Programming via Augmented Lagrangian
    Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system?
    X線與CT在下肢骨關(guān)節(jié)骨折中的診斷價值分析
    穿梭武漢疫情“火線”
    民生周刊(2020年8期)2020-04-20 11:18:24
    Unifying quantum heat transfer and superradiant signature in a nonequilibrium collective-qubit system:A polaron-transformed Redf ield approach*
    王晨
    寶藏(2018年1期)2018-04-18 07:39:20
    大學(xué)有機化學(xué)教學(xué)中學(xué)案的作用探討
    火車上蹭坐
    蹭座
    故事會(2015年11期)2015-05-14 15:24:30
    韩国av在线不卡| 国产午夜精品论理片| videossex国产| 亚洲高清免费不卡视频| 天天躁日日操中文字幕| 99九九线精品视频在线观看视频| 男女边吃奶边做爰视频| 97在线视频观看| 免费av毛片视频| 免费av毛片视频| 亚洲av男天堂| 国产私拍福利视频在线观看| 国产精品国产三级国产av玫瑰| 久久99热这里只有精品18| 中文欧美无线码| 神马国产精品三级电影在线观看| 国产极品天堂在线| 嫩草影院新地址| 久久久欧美国产精品| 一级毛片aaaaaa免费看小| a级一级毛片免费在线观看| 国产色婷婷99| 成人美女网站在线观看视频| 国产精品麻豆人妻色哟哟久久 | 久久久久性生活片| 少妇人妻精品综合一区二区| 午夜激情欧美在线| 建设人人有责人人尽责人人享有的 | av天堂中文字幕网| 亚洲成色77777| 欧美最新免费一区二区三区| 大香蕉久久网| av天堂中文字幕网| 亚洲第一区二区三区不卡| 欧美最新免费一区二区三区| 高清午夜精品一区二区三区| 一级黄色大片毛片| 色网站视频免费| 亚洲av日韩在线播放| 国产免费福利视频在线观看| 国产女主播在线喷水免费视频网站 | 欧美高清性xxxxhd video| 国产91av在线免费观看| 亚洲精品乱码久久久v下载方式| 欧美成人免费av一区二区三区| 国产精品久久电影中文字幕| 直男gayav资源| 国产精品久久电影中文字幕| 亚洲不卡免费看| 一级爰片在线观看| 亚洲三级黄色毛片| 亚洲人成网站在线观看播放| 国产精品人妻久久久久久| 搞女人的毛片| 亚洲性久久影院| 亚洲国产精品合色在线| 熟女电影av网| 91午夜精品亚洲一区二区三区| 美女大奶头视频| 99久久中文字幕三级久久日本| АⅤ资源中文在线天堂| 久久久久久国产a免费观看| 日本爱情动作片www.在线观看| 国产精品久久视频播放| 久久久色成人| 国产麻豆成人av免费视频| 女人被狂操c到高潮| 成人亚洲精品av一区二区| 老女人水多毛片| 午夜免费男女啪啪视频观看| 色5月婷婷丁香| .国产精品久久| 久久热精品热| 26uuu在线亚洲综合色| 色吧在线观看| 99九九线精品视频在线观看视频| 男女视频在线观看网站免费| 亚洲最大成人手机在线| 久久精品夜色国产| 中文字幕免费在线视频6| 久久精品熟女亚洲av麻豆精品 | 午夜福利成人在线免费观看| 成人鲁丝片一二三区免费| 能在线免费观看的黄片| 欧美成人一区二区免费高清观看| 精品免费久久久久久久清纯| 国产在视频线精品| 日韩 亚洲 欧美在线| 晚上一个人看的免费电影| 国产久久久一区二区三区| 亚洲三级黄色毛片| 亚洲最大成人中文| 久久久国产成人精品二区| 高清毛片免费看| 天堂网av新在线| 国产免费男女视频| 你懂的网址亚洲精品在线观看 | 狂野欧美白嫩少妇大欣赏| 久热久热在线精品观看| 国产亚洲av片在线观看秒播厂 | 国产精品国产三级国产专区5o | 国产成人免费观看mmmm| 久久久精品94久久精品| 亚洲国产精品成人综合色| 国产亚洲av嫩草精品影院| 麻豆精品久久久久久蜜桃| 欧美高清性xxxxhd video| 成人一区二区视频在线观看| 国产成人一区二区在线| 久久人妻av系列| 大香蕉久久网| 一区二区三区高清视频在线| 只有这里有精品99| 99久国产av精品| 热99re8久久精品国产| 晚上一个人看的免费电影| 国产伦精品一区二区三区四那| 少妇熟女aⅴ在线视频| 国产乱人视频| 免费不卡的大黄色大毛片视频在线观看 | 国产三级在线视频| 国产精品,欧美在线| 综合色丁香网| 午夜爱爱视频在线播放| 午夜福利成人在线免费观看| 亚洲人成网站在线观看播放| 欧美区成人在线视频| 只有这里有精品99| 日韩三级伦理在线观看| 国产精品久久久久久av不卡| 久久国内精品自在自线图片| 少妇人妻精品综合一区二区| 日韩欧美国产在线观看| 欧美人与善性xxx| 男女啪啪激烈高潮av片| av免费在线看不卡| 视频中文字幕在线观看| 久久久久网色| 亚洲天堂国产精品一区在线| 欧美+日韩+精品| 日韩av不卡免费在线播放| 在线免费观看的www视频| 免费观看人在逋| 水蜜桃什么品种好| 国产 一区 欧美 日韩| 两性午夜刺激爽爽歪歪视频在线观看| 波野结衣二区三区在线| 黄片无遮挡物在线观看| 高清av免费在线| 欧美xxxx黑人xx丫x性爽| 免费看av在线观看网站| 丝袜喷水一区| 国语自产精品视频在线第100页| 日日啪夜夜撸| 长腿黑丝高跟| 丰满少妇做爰视频| 青春草国产在线视频| 国产又色又爽无遮挡免| 亚洲中文字幕日韩| 草草在线视频免费看| 嫩草影院新地址| 中文字幕精品亚洲无线码一区| 日韩欧美国产在线观看| 女人久久www免费人成看片 | 亚洲最大成人手机在线| 久久精品国产亚洲av天美| 两性午夜刺激爽爽歪歪视频在线观看| 22中文网久久字幕| 国产精品一区二区三区四区久久| 亚洲国产最新在线播放| 久久精品国产99精品国产亚洲性色| 亚洲三级黄色毛片| 美女脱内裤让男人舔精品视频| av国产免费在线观看| 综合色av麻豆| 午夜精品在线福利| 直男gayav资源| 亚洲欧美日韩东京热| 亚洲精品亚洲一区二区| 国产精品人妻久久久影院| 日韩av在线大香蕉| 久久久国产成人精品二区| 亚洲成av人片在线播放无| 日韩欧美 国产精品| 国产一区亚洲一区在线观看| 男女视频在线观看网站免费| 极品教师在线视频| 波多野结衣巨乳人妻| 夜夜看夜夜爽夜夜摸| 国产不卡一卡二| 综合色av麻豆| 国产精品久久久久久精品电影小说 | 国产黄色视频一区二区在线观看 | 精品久久久久久电影网 | 午夜精品一区二区三区免费看| 国产精品一区二区三区四区免费观看| 久久99精品国语久久久| 国产亚洲91精品色在线| 春色校园在线视频观看| 久99久视频精品免费| 亚洲人成网站在线播| 国产精品不卡视频一区二区| 大话2 男鬼变身卡| 亚洲av男天堂| 美女内射精品一级片tv| 国产69精品久久久久777片| 久久精品熟女亚洲av麻豆精品 | 精品人妻一区二区三区麻豆| 亚洲欧美成人精品一区二区| 午夜福利在线观看免费完整高清在| 日本色播在线视频| 成年女人永久免费观看视频| 国产精华一区二区三区| 亚洲图色成人| 特级一级黄色大片| 午夜日本视频在线| 精品久久国产蜜桃| 最近2019中文字幕mv第一页| 成人一区二区视频在线观看| 你懂的网址亚洲精品在线观看 | 99久国产av精品| 欧美人与善性xxx| 国产av在哪里看| 日本猛色少妇xxxxx猛交久久| 亚洲最大成人手机在线| 老师上课跳d突然被开到最大视频| 国产精品国产高清国产av| 国产三级在线视频| 淫秽高清视频在线观看| 在现免费观看毛片| 亚洲国产精品国产精品| 亚洲成色77777| 日韩欧美精品v在线| 色哟哟·www| 中文乱码字字幕精品一区二区三区 | 一二三四中文在线观看免费高清| 男人狂女人下面高潮的视频| 久久久久久久久久成人| 2021天堂中文幕一二区在线观| 久久久久久大精品| 欧美xxxx性猛交bbbb| 麻豆一二三区av精品| 日韩人妻高清精品专区| 国产精品一区二区三区四区久久| 久久国内精品自在自线图片| 国产大屁股一区二区在线视频| 日韩,欧美,国产一区二区三区 | 亚洲国产色片| 亚洲在线观看片| 亚洲第一区二区三区不卡| 亚洲精品乱久久久久久| 日本一二三区视频观看| 又黄又爽又刺激的免费视频.| 九九在线视频观看精品| 日本wwww免费看| 亚洲五月天丁香| 国产大屁股一区二区在线视频| 亚洲国产高清在线一区二区三| 亚洲av免费在线观看| 国产精品嫩草影院av在线观看| 波多野结衣巨乳人妻| 亚洲真实伦在线观看| av在线天堂中文字幕| 日本黄色片子视频| 亚洲最大成人中文| 久久这里只有精品中国| 好男人视频免费观看在线| 高清毛片免费看| 美女脱内裤让男人舔精品视频| 免费不卡的大黄色大毛片视频在线观看 | 亚洲一级一片aⅴ在线观看| 18禁裸乳无遮挡免费网站照片| 国产成人a区在线观看| 麻豆久久精品国产亚洲av| АⅤ资源中文在线天堂| 日韩 亚洲 欧美在线| 国产伦理片在线播放av一区| 欧美日韩精品成人综合77777| 少妇猛男粗大的猛烈进出视频 | 美女国产视频在线观看| 一级毛片我不卡| 亚洲在线自拍视频| 亚洲精品乱码久久久久久按摩| 噜噜噜噜噜久久久久久91| 国产乱来视频区| 内射极品少妇av片p| 少妇丰满av| 性插视频无遮挡在线免费观看| 在线播放国产精品三级| 天堂中文最新版在线下载 | 成人亚洲精品av一区二区| .国产精品久久| 亚洲精品色激情综合| 亚洲国产精品成人久久小说| 日韩一区二区视频免费看| 日本与韩国留学比较| 久久韩国三级中文字幕| 亚洲精品一区蜜桃| 欧美日韩一区二区视频在线观看视频在线 | 国国产精品蜜臀av免费| 国产成人aa在线观看| 91狼人影院| av国产免费在线观看| 欧美成人一区二区免费高清观看| 一级爰片在线观看| 在线观看av片永久免费下载| 国产视频首页在线观看| 亚洲av不卡在线观看| 国产精品一区二区在线观看99 | 午夜福利在线在线| 免费观看性生交大片5| 亚洲精品乱码久久久v下载方式| 你懂的网址亚洲精品在线观看 | 天堂网av新在线| 91久久精品电影网| 舔av片在线| 欧美另类亚洲清纯唯美| 免费av毛片视频| 女人十人毛片免费观看3o分钟| av线在线观看网站| 成年女人看的毛片在线观看| 床上黄色一级片| 国产精品一二三区在线看| 亚洲欧美日韩东京热| 色吧在线观看| 人妻少妇偷人精品九色| 国产伦理片在线播放av一区| 成人国产麻豆网| 国产精品嫩草影院av在线观看| 久久久欧美国产精品| 亚洲国产精品sss在线观看| av国产久精品久网站免费入址| 国产免费又黄又爽又色| 欧美一区二区精品小视频在线| 国产精品女同一区二区软件| 久久久久久久国产电影| 小说图片视频综合网站| 色哟哟·www| 午夜激情欧美在线| 亚洲国产精品合色在线| 97超视频在线观看视频| 51国产日韩欧美| 伊人久久精品亚洲午夜| 亚洲综合色惰| 久久精品夜色国产| 伊人久久精品亚洲午夜| 国产私拍福利视频在线观看| 狂野欧美白嫩少妇大欣赏| www.av在线官网国产| 久久人人爽人人爽人人片va| 蜜桃亚洲精品一区二区三区| 欧美区成人在线视频| 国国产精品蜜臀av免费| 国产v大片淫在线免费观看| 精品不卡国产一区二区三区| 长腿黑丝高跟| 99热这里只有是精品在线观看| 国产精品.久久久| 国产成人精品婷婷| 女人被狂操c到高潮| 在线观看66精品国产| 中文精品一卡2卡3卡4更新| 一级黄片播放器| 看免费成人av毛片| 亚洲国产欧洲综合997久久,| 99热这里只有是精品在线观看| av福利片在线观看| 亚洲国产欧美人成| 成年av动漫网址| 日韩av不卡免费在线播放| 久久韩国三级中文字幕| 亚洲国产精品国产精品| 国产高潮美女av| 久久99热这里只频精品6学生 | 亚洲,欧美,日韩| 99久久中文字幕三级久久日本| 成人av在线播放网站| 久久久a久久爽久久v久久| 国产三级中文精品| 亚洲aⅴ乱码一区二区在线播放| 夜夜爽夜夜爽视频| 深夜a级毛片| 国内精品宾馆在线| 国产免费男女视频| 亚洲18禁久久av| 欧美另类亚洲清纯唯美| ponron亚洲| 卡戴珊不雅视频在线播放| 麻豆一二三区av精品| 成人国产麻豆网| 热99re8久久精品国产| 99久久九九国产精品国产免费| 国产成人精品婷婷| 成人亚洲精品av一区二区| 成人毛片a级毛片在线播放| 丝袜美腿在线中文| 欧美潮喷喷水| 欧美bdsm另类| 国产真实乱freesex| 国语自产精品视频在线第100页| 国产成人福利小说| 日本三级黄在线观看| 国产高潮美女av| 色播亚洲综合网| 亚洲av中文字字幕乱码综合| 黄片wwwwww| 久99久视频精品免费| 伊人久久精品亚洲午夜| 变态另类丝袜制服| 蜜桃久久精品国产亚洲av| 日韩精品青青久久久久久| 欧美xxxx黑人xx丫x性爽| 91狼人影院| 亚洲av成人av| 午夜精品国产一区二区电影 | 久久99热这里只频精品6学生 | 亚洲av日韩在线播放| 少妇裸体淫交视频免费看高清| 观看免费一级毛片| 波多野结衣高清无吗| 丰满少妇做爰视频| 国产伦理片在线播放av一区| 亚洲熟妇中文字幕五十中出| 一级av片app| 国产高潮美女av| 亚洲高清免费不卡视频| kizo精华| 亚洲国产欧洲综合997久久,| 国产视频内射| 色网站视频免费| 亚洲av一区综合| 久久精品国产亚洲av天美| av在线蜜桃| 狠狠狠狠99中文字幕| 亚洲在线自拍视频| 成人三级黄色视频| 亚洲精品国产av成人精品| 91狼人影院| 亚洲国产欧美在线一区| 麻豆精品久久久久久蜜桃| 精品酒店卫生间| 久久精品影院6| 女人被狂操c到高潮| 成人亚洲欧美一区二区av| 激情 狠狠 欧美| 又爽又黄a免费视频| 午夜日本视频在线| 美女内射精品一级片tv| 国产欧美日韩精品一区二区| 欧美日韩在线观看h| 国内精品宾馆在线| 不卡视频在线观看欧美| 亚洲精品色激情综合| 欧美3d第一页| 我的老师免费观看完整版| videossex国产| 亚洲最大成人中文| 中文字幕熟女人妻在线| 天堂网av新在线| 免费av毛片视频| 久久久久久久国产电影| 人人妻人人澡欧美一区二区| 国产老妇伦熟女老妇高清| 最近中文字幕2019免费版| 国内揄拍国产精品人妻在线| 国产一区二区在线观看日韩| 非洲黑人性xxxx精品又粗又长| 欧美日韩一区二区视频在线观看视频在线 | 欧美zozozo另类| 日韩欧美在线乱码| 天堂√8在线中文| 亚洲精品一区蜜桃| 日韩精品有码人妻一区| 久久久国产成人精品二区| 亚洲精品亚洲一区二区| 好男人在线观看高清免费视频| 插逼视频在线观看| 国产精品久久久久久av不卡| 伊人久久精品亚洲午夜| 偷拍熟女少妇极品色| 亚洲欧美成人精品一区二区| 男女边吃奶边做爰视频| 午夜精品一区二区三区免费看| 亚洲av.av天堂| 成年av动漫网址| 国产一区二区在线观看日韩| 久久久国产成人精品二区| 日日啪夜夜撸| 国产麻豆成人av免费视频| 亚洲av日韩在线播放| 国产在视频线精品| av福利片在线观看| 女人十人毛片免费观看3o分钟| 搞女人的毛片| 视频中文字幕在线观看| 中文字幕av在线有码专区| 高清av免费在线| 黄色欧美视频在线观看| 丰满人妻一区二区三区视频av| 99久久人妻综合| 久久亚洲精品不卡| 亚洲av不卡在线观看| 国产精品无大码| 欧美丝袜亚洲另类| 寂寞人妻少妇视频99o| 欧美成人一区二区免费高清观看| 麻豆成人av视频| 国产精品精品国产色婷婷| 中文字幕av在线有码专区| 99在线人妻在线中文字幕| 久久久精品大字幕| 黑人高潮一二区| 最近最新中文字幕大全电影3| 99热网站在线观看| 精品久久久久久久久久久久久| 久久精品国产自在天天线| 国产69精品久久久久777片| 日日啪夜夜撸| 最近2019中文字幕mv第一页| 天天躁夜夜躁狠狠久久av| 一个人观看的视频www高清免费观看| 亚洲在久久综合| 精品免费久久久久久久清纯| 亚洲无线观看免费| 18禁在线播放成人免费| 亚洲欧美成人精品一区二区| 乱人视频在线观看| 久久久久久久久中文| 舔av片在线| 国产伦一二天堂av在线观看| 我要搜黄色片| 两性午夜刺激爽爽歪歪视频在线观看| 在线观看美女被高潮喷水网站| 国产又色又爽无遮挡免| 丰满乱子伦码专区| 国产又色又爽无遮挡免| 舔av片在线| 亚洲精华国产精华液的使用体验| 国产成人福利小说| 秋霞伦理黄片| 噜噜噜噜噜久久久久久91| 亚洲欧美成人精品一区二区| 噜噜噜噜噜久久久久久91| 亚洲无线观看免费| 日本爱情动作片www.在线观看| 黄色一级大片看看| 岛国在线免费视频观看| 国产精品一区二区三区四区免费观看| 日日摸夜夜添夜夜爱| 成年版毛片免费区| videossex国产| av.在线天堂| 国产淫片久久久久久久久| 日本免费一区二区三区高清不卡| 最近2019中文字幕mv第一页| 欧美又色又爽又黄视频| 男人狂女人下面高潮的视频| 亚洲成人中文字幕在线播放| 九九爱精品视频在线观看| 国产精品一及| 久久久a久久爽久久v久久| 又粗又硬又长又爽又黄的视频| 国产激情偷乱视频一区二区| a级毛片免费高清观看在线播放| 国产在线男女| 免费观看人在逋| 女人久久www免费人成看片 | 成年版毛片免费区| 久久久久九九精品影院| 国产精品一区二区性色av| 久久精品夜色国产| 黄片无遮挡物在线观看| 欧美极品一区二区三区四区| 国产真实伦视频高清在线观看| 精品久久久久久成人av| 亚洲伊人久久精品综合 | 男的添女的下面高潮视频| 三级毛片av免费| 欧美日韩在线观看h| 国产精品蜜桃在线观看| 少妇丰满av| 直男gayav资源| 又粗又硬又长又爽又黄的视频| 国产激情偷乱视频一区二区| 一级毛片久久久久久久久女| 黄色一级大片看看| 国模一区二区三区四区视频| 蜜臀久久99精品久久宅男| 天天躁日日操中文字幕| 插逼视频在线观看| 亚洲国产精品成人久久小说| 免费看a级黄色片| 一卡2卡三卡四卡精品乱码亚洲| 亚洲av.av天堂| 大又大粗又爽又黄少妇毛片口| 久久久精品94久久精品| 国产精品乱码一区二三区的特点| 男女视频在线观看网站免费| 大话2 男鬼变身卡| 色视频www国产| 国产精品av视频在线免费观看| 一级爰片在线观看| 丰满乱子伦码专区| 国产精品乱码一区二三区的特点| 最后的刺客免费高清国语| 麻豆久久精品国产亚洲av| 青春草国产在线视频| 亚洲美女视频黄频| 国产成人a区在线观看| 中国国产av一级| 黄色一级大片看看| 大香蕉97超碰在线| 国产精品国产三级专区第一集| 久久久久久久国产电影| 亚洲精品色激情综合|