• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Unifying quantum heat transfer and superradiant signature in a nonequilibrium collective-qubit system:A polaron-transformed Redf ield approach*

    2019-05-11 07:32:48XuinChen陳許敏andChenWang王晨
    Chinese Physics B 2019年5期
    關鍵詞:王晨

    Xu-M in Chen(陳許敏) and ChenWang(王晨)

    1DepartmentofPhysics,Hangzhou DianziUniversity,Hangzhou 310018,China

    2DepartmentofPhysics,Zhejiang NormalUniversity,Jinhua321004,China

    (Received 27December2018;revisedmanuscript received 7 February 2019;published online4 April2019)

    Keywords:quantum transport,heat conduction,phonons or vibrational states in low-dimensional structures

    1.Introduction

    Understanding themechanism of nonequilibrium quantum transport in low dimensional systems is a long-standing challenge,which has been extensively investigated from solid-state physics,[1]quantum thermodynamics,[2]molecular electronics[3]to quantum biology.[4]In particular,quantum thermal transport,where the particle and heat f lows are modulated by the temperature bias,has triggered the emergence of phonics.[5–7]Phonons have been successfully utilized to fabricate various functional devices,such as thermal diode,memory,and transistor.[8–11]In analogy to phonics,quantum heat transfermediated by the spin(e.g.,anharmonic molecule or qubit)has also been intensively analyzed in a sim ilar way,which leads to the realization of quantum spinthermal transistor,[12,13]spin heatengine,[14–16]and nonequilibrium spin network.[17,18]

    As a genericmodel to describe quantum heat transfer at the nanoscale,the nonequilibrium spin-bosonmodel(NESB)is composed of a two-level-system(TLS)that is coupled to two thermalbaths,[19]whichwasoriginally proposed to study the quantum dissipation.[20–22]Many approaches have been explored to investigate the underlying mechanism of heat transfer in the NESB.[23–34]Analytically,the Redf ield scheme is properly introduced to investigate the sequential process in theweak spin–bath interaction regime,where two thermal baths show additive contributions to the heat transfer.[14,35]However,the Redf ield approach breaks down in the strong spin–bath interaction regime,where themultiphonon excitations should be involved to characterize the nonequilibrium heat-exchange.Then,the nonequilibrium noninteracting blip approximation(NIBA)can be applied to study baths induced nonadditive and cooperative transfer processes.[23,36–39]However,bothmethodsare found tohave theirown limitations;i.e.,the Redf ield approach is unable to capture themulti-phonon processes in the strong coupling regime,and the heat current based on thenonequilibrium NIBA schemedoesnotshow linear proportion to the coupling strength in the weak coupling regime.[38]Recently,the nonequilibrium polaron-transformed Redf ield equation(NE-PTRE)was proposed to successfully unify the steady stateheatcurrent in the NESB.[32,40,41]However,an exploration of the NE-PTRE to studymore nonequilibrium spin systems is lacking butisurgently required for the spin-based quantum heat transfer.This paper aims to f ill this gap by applying the NE-PTRE to analyze the heat transfer in the collective-qubitmodel.

    Recently,a superradiantsignatureof quantum heat transfer has been discovered in the collective-qubit system with weak qubit–bath interaction.[42,43]The steady state superradiance describes the effect that qubits collectively exchange energy with thermal baths,resulting in the current scaling as J~N2s,with Nsthe number of qubits.In sharp contrast,the superradiantheat transfer vanishes in the strong coupling regime based on the nonequilibrium NIBA under the Marcusapproximation.[44]Hence,the steady state behavior of the collective-qubit system is signif icant distinct from each other in lim iting interaction regimes.It is consequently demanding to analyze the heat transfer feature from weak to strong couplings from aunif ied perspective.

    To address these problems,we extend the NE-PTRE combined with full counting statistics(FCS)[45,46]to investigate quantum heat transfer in the collective-qubit system.The counting-f ield dependent NE-PTRE successfully unif ies the currentand f luctuations(e.g.,heat current,currentnoise,skewness),with the incoherent picture in the weak quit–bath coupling lim itand themulti-phonon excited transfer picture in thestrong coupling lim it.Moreover,superradiantheattransfer is investigated at large temperaturebias,[42]and thedisappearance of the superradiant signature is explained by enlarging thenumberofqubitsbeyond theweak qubit–bath interaction.

    This paper is organized as follows.In Section 2,the collective-qubitmodel and the NE-PTRE are described.In Section 3,FCS isbrief ly introduced and the counting-f ield dependentNE-PTRE isderived,which enablesus to analyze the steady stateheattransfer.In Section4,theheatcurrent,current noise,and skewness are all found to hold the unif ied features by extending theapplication of theNE-PTRE.In Section 5,we study the transition of superradiantheat transfer from weak to strong couplings,and explain the vanishingmechanism of superradiantsignaturewith large number of qubits.In the f inal section,we presenta concise summary.

    2.Nonequilibrium collective-qubit system

    2.1.M odel

    The nonequilibrium energy transfer in the collectivequbitsystem,which interactswith two thermalbaths,ismodeled as?H=?Hs+∑u=L,R(?Hub+?Vu).Thecollective-qubitmodel isdescribed as where the collective angular-momentum operators are?Ja=(a=x,y,z)withbeing the Paulioperator of the i-th qubit,Nsis thenumberofqubits,εandΔare the Zeeman splitting energy and the coherent tunneling strength of the angularmomentum operator,respectively.In the lim itof Ns=1,the Ham iltonian in Eq.(1)is reduced to the sem inalnonequilibrium spin-bosonmodel.[19,35]The u-th thermalbath iscomposed ofnoninteracting bosons,shown aswherecreates(annihilates)one phonon with frequencyωk.The system–bath interaction isgiven by

    where gk,uis the coupling strength between the angularmomentum and the u-th thermal bath,and is characterized by the spectral function Gu(ω)=4π∑k|gk,u|2δ(ω-ωk).In this paper,we select the spectral function having the super-Ohm ic form Gu(ω)=παuω3/ω2cexp(-ω/ωc),whereαuis the coupling strength andωcis the cutoff frequency of the thermal baths.The super-Ohm ic spectrum has been extensively considered to investigate the quantum dissipative dynam ics and transport in molecular electronics,[47–49]solidstate devices,[50]and light-harvesting complexes.[51,52]

    To analyze the multi-phonon involved energy transfer processes,we apply the canonical transformation?U=exp[i?Jz∑u?Bu]to the Ham iltonian?H as?H′=?U??H?U=?H′s+[53,54]where the collective phononmomentum is?Bu=2i.A fter the transformation,

    themodif ied system Ham iltonian isgiven by where the factorη=〈cos?B〉isspecif ied as

    2.2.Nonequilibrium polaron-transformed Red f ield equation

    Weapply theNE-PTRE to investigate thedynam icsof the collective-qubitmodel.The NE-PTRE,which is one type of thequantum masterequation,hasbeen successfully applied to unify the nonequilibrium energy transfer in the sem inal spinbosonmodel.[32,41]It isknown that themodif ied system–bath interaction disappears under the thermal average(〈?V′u〉=0).Hence,itmay be safe to perturb〈?V′u〉up to the second order to obtain the quantum master equation.Under the Born approximation,the density operator of thewhole system can be decomposed as?ρ(t)=?ρs(t)??ρb,where?ρs(t)is thedensity operatorof the qubitsand?ρb=e-∑u?Hub/kBTu/Trb{e-∑u?Hub/kBTu}is the density operatorof the bathsatequilibrium.The quantum masterequation in theMarkovian lim it isobtained as

    where the correlation functionsare with the phonon propagator in u-th thermal bath Qu(τ)=4∑k|gk,u/ωk|2[cosωkτ(2nk,u+1)-isinωkτ].Furthermore,in the eigen-basis?H′s|φn〉=En|φn〉,the dynam ical equation can be re-expressed as

    where the transition rate isΓa(ω)=∫∞0dτCa(τ)e-iωτand the element isρnn′=〈φn|?ρs(t)|φn′〉.The rateΓx(y)(Enm)describes that even(odd)number phonons are involved in the transfer processbetween thestates|φn〉and|φm〉.

    In the weak qubit–bath coupling lim it,the heat transfer is dom inated by the sequential process andη≈1.Thus,the correlation function Cy(τ)is reduced to Cy(τ)≈Δ2[∑uQu(τ)],and Cx(τ)≈0 by ignoring the high-order correlations. Accordingly,the lowest order of the transition rateΓ(1)y(ω)includes the termΔ2(QL(ω)+QR(ω)),with Qv(ω)=∫dτe-iωτQv(τ).Moreover,allof the off-diagonal elements of the qubits density matrix approach zero at the steady state(not shown here,which is quite sim ilar to the resultin Fig.1).Considering thecommutating relation[?H′s,?Jz]=-iΔ?Jy,thequantum masterequation in Eq.(8)after long time evolution issimplif ied as

    which isidentical to thedynamicalequation based on theRedf ield scheme(see Appendix A for the details).

    In the strong qubit–bath interaction lim it,the coherent tunneling ofqubits in Eq.(3)isdramatically suppressed(η≈0),and thecorrelation factorη2e-∑uQu(τ)vanishes.However,the other factorη2e∑uQu(τ)is kept f inite,which contributes to the quantum heat transfer.Hence,the correlation functions in Eq.(7)are reduced to Cx(τ)=Cy(τ)=(ηΔ)2[exp∑uQu(τ)].Consequently,themasterequation in Eq.(8)on the localbasis{|φn〉}with(ε?Jz-ξ?J2z)|φn〉=(εn-ξn2)|φn〉is changed to

    3.Fullcounting statisticsof heat current

    3.1.Thegeneral theory

    Full counting statistics is a two-time projection protocol tomeasure the current and f luctuations.[45,46]For the energy transfer in themulti-terminal setup,thegenerating function is generally given by[55]

    whereχuis the counting-f ield parameter to count the energy f low into the u-th bath with the Ham iltonian ?Hu, ?Hu(t)= ?U??Hu?U with the propagator ?U=e-i?Ht,and ?ρtot(0)is the initial density matrix of the whole system. Moreover,considering the modif ied propagator ?U{χu}(t)= ei∑uχu?Hu/2?U(t)e-i∑uχu?Hu/2,it can be reexpressed as ?U{χu}(t)=exp(-i?H{χu}t),with ?H{χu}=ei∑uχu?Hu/2?H e-i∑uχu?Hu/2.Hence,the generating function is re-expressed as

    After the long-time evolution,the cumulantgenerating function isobtained as

    Therefore,the n-th cumulantof heat current f luctuations into the u-th bath isgiven by Specif ically,the lowest cumulant is the steady state heat current

    3.2.Counting-f ield dependent NE-PTRE

    To count the heat f low into the right-hand thermal bath,we introduce the counting f ield parameters as?Hχ=ei?HRbχ/2?H e-i?HRbχ/2,[55]which results in

    where the system–bath interactionwith the counting f ield parameter isexpressed as

    withδR,R=1 andδL,R=0.Then,after the canonical transformation?H′χ=U?χ?HχUχwith transformation operator U=exp[i?Jz∑u?Bu(χ)]and themodif ied Hamiltonian isgiven by

    where the modif ied system–bath interaction with counting f ield parameter isgiven by

    By perturbing?V′u(χ)under the Born–Markov approximation,weobtain the second-orderquantum masterequation as where the correlation functionswith counting f ield parameter are In absence of the counting f ield parameter,the correlation functions are reduced to the standard version in Eq.(7).In the eigen-basis,the dynam ics of the density matrix elements can be specif ied as where the transition ratesare

    Ifwe reorganize the reduced densitymatrix of collectivequbit from thematrix form to the vector expression,the dynam icalequation in Eq.(21)isexpressed as where??(χ)is thesuperoperator to dom inate thesystem evolution.Then,the cumulantgenerating function at t-time isgiven by

    where|ρ(0)〉is the vector form of the initial system density matrix,and〈I|is the left-eigenvector of??as〈I|??=0,with the normalization relation〈I|ρχ=0(t)〉=1.Hence,heat current f luctuations at the steady state can be straightforwardly obtained by follow ing Eq.(14).4.Unif ied steady stateheat current

    Quantum heat transfer in the NESB has been successfully investigated based on the Redf ield and noninteractingblip approximation schemesin theweak and strongqubit–bath coupling lim its,respectively.However,the steady state heat currentwas found to be distinct from each other in a broad coupling regime.[38]Recently,the nonequilibrium polarontransformed Redf ield equation combined with full counting statisticswasproposed to unify theheatcurrentbetween these two lim iting approaches.[32,41]

    Here,we try to extend the counting-f ield dependent NE-PTRE to unify the heat transfer in the nonequilibrium collective-qubitmodel in Fig.1.At resonance(ε=0),we f irst analyze the steady state heat current in Figs.1(a)and 1(d).It clearly exhibits the turnover behavior,which unif ies the counterpartswithin theRedf ield and NIBAmethodsas the qubit–bath coupling strength approaches theweak and strong coupling lim its.Although we admit that to gain an analytical expression of theheatcurrentatarbitrary qubit–bath coupling is ratherdiff icult,itcan beobtained in lim iting regimes.Here,westudy theanalyticalexpression of thesteady stateheatcurrentwith Ns=2.Specif ically,in the weak interaction lim it,the heat current is analytically expressed as(see Eq.(A9)in Appendix A)

    J weak where the coeff icient

    which is linearly proportional to the qubit–bath coupling strength.The current in Eq.(25)is the special case of the general expression in Eq.(A9).It is found in Fig.1(a)that Jweakbecomes identical to the counterpart from NE-PTRE in theweak coupling lim it(e.g.,α=0.001).Moreover,itshould be noted that the current Jweakin Eq.(25)with Ns=2 has a sim ilar expression to the case in the standard NESB(Ns=1)in theweak coupling lim it,which are both proportional to the thermodynam ic bias(i.e.,J∝[nL(Δ)-nR(Δ)]).[23]

    While in the strong coupling limit,the dynamical equation in Eq.(19)with thenumberof qubits Ns=2 is reduced to the kinetic form(see Eq.(B4)in Appendix B)

    where the population is Pχn=〈1,n|?ρχ(t)|1,n〉with?Jz|1,n〉=n|1,n〉.The transition rate is

    Fig.1.Comparisons of steady state current f luctuations based on the NE-PTRE with counterpartswithin the Redf ield and NIBA schemes:(a)–(c)at resonance(ε=0)and(d)–(f)atoff-resonance(ε=1),by tuning qubit–bath coupling strengthα.Theother parametersare N s=2,Δ=1,ωc=6,T L=1.5,and T R=0.5.

    -1/2=1),then the rateκ±n(χ)is reduced to the standard NESB result(see Eq.(20)in Ref.[36]).Thus,the cumulantgenerating function atsteady state isgiven by

    whereκ±-1(χ)=κ?0(χ).Consequently,the heat current is given by

    where the f irst(second)term describes the process thatas the qubits release(gain)energyξ,the right-hand bath absorbs(emits)phonon energyωand the left-hand bath obtains(provides)the remaining energyξ-ω.Jstrongshows a similar structurewith the counterpart in the standard NESB,which is jointly contributed by the two thermalbaths.[36]Moreover,the expression of Jstrongcaptures the turnover feature of heat current in Figs.1(a)and 1(d)as shown by the dashed-blue lines with squares.Hence,we conclude that the steady state heat f lux is clearly unif ied in the nonequilibrium collective-qubit model.

    Next,we analyze the zero-frequency current noise and skewness in Figs.1(b),1(c),1(e),and 1(f).It is interesting to f ind that the results based on the NE-PTRE also perfectly bridge the limiting counterparts in theweak and strong coupling regimes,which may demonstrate the unif ication of current f luctuations in the extended spin-boson systems(e.g.,collective-qubit model). Moreover,the turnover behavior which is presented in the current is unraveled for the second and the third cumulants.A lthough notshown here,higher cumulantsof current f luctuationsalso show suchunif ied features.We should note that all above results are valid both at resonant and off-resonant conditions,which clearly exhibits that full counting statisticsof the heat current isgenerally unif ied within the NE-PTRE scheme.

    5.Suppression of superradiantheat transfer

    The superradiant effect,which describes that the system exhibits collective response under themodulation of the external f ield or thermalbath,hasbeen extensively investigated in quantum phase transition,[56,57]criticalheatengine,[58]and quantum transport.[42,43]In particular,quantum heat transfer in the nonequilibrium large-spin system shows the superradiant signature in the weak spin–bath coupling regime.[42]Specif ically,undera large temperaturebias(e.g.,TL?TR),the steady stateheatcurrent isexpressed as

    which follows the condition x/(1-x)?Ns.Itshould benoted thatequation(30)isa special case of the current in Eq.(A9)in Appendix A.However,with thestrong spin–bath interaction based on theNIBA schemecombinedwith theMarcusapproximation,itis found thatsuch superradianttransfervanishes.[44]Hence,we apply the NE-PTRE to clarify this apparent paradox.

    We f irst study the effect of the temperature biasΔT on the heat current in Fig.2(a)with spin-bath coupling strength α=0.01?{Δ,ωc},which is considered weak for the seminal spin-boson model(η≈1).It is found that the current shows monotonic enhancement by increasing bothΔT and Ns.Moreover,at large temperature bias(e.g.,TL=8 and TR=0.4),thecurrentbecomesnearly stablewith largenumber ofqubits,which isclearly exhibited in Fig.2(b)(e.g.,Ns=32).While for relatively small number of qubits(e.g.,Ns<20)in Fig.2(b),the superradiantsignature of heatcurrent isnumerically obtained as J∝Nγswithγ=2.0±0.1(forboth resonance and off-resonance).Thus,it is known that the expression of superradiantheatcurrent in Eq.(30)becomes invalid at large N s.

    Fig.2.Behaviors of steady state heat current J by tuning:(a)temperature biasΔT=T L-T R with T R=0.4,ε=0,andα=0.01;(b)the number of qubits N s with T L=8,T R=0.4,andα=0.01;(c)qubit–bath coupling strengthαwith T L=8,T R=0.4,andε=0.The other parametersareΔ=1 andωc=6.

    To exploit the origin,we plot the current as a function of the qubit–bath coupling strengthαfor different Nswith TL=8,TR=0.4,andε=0,as shown in Fig.2(c).It is shown that for small Ns(e.g.,Ns=8),the heat f lux exhibits approximately linear increasing behavior in theweak coupling regime(e.g.,α≤0.01).The heat f lux demonstrates the sequential transfer process,where a superradiantheat transfer is accordingly observed,which could be described by the Redf ield scheme.While the current shows distinct behavior for large Nsfrom that for small Nsin the same coupling regime.Forexample,thecurrent for Ns=32with thecoupling strength α=0.01 has already surpassed the turnover pointof the current,while the current for Ns=8 is almost linearly dependent on the coupling strength in the same coupling regime.It is known that the appearance of the turnover point of the current is the signif icant signature of themulti-phonons involved coherent transfer,as exploited in the nonequilibrium spin-bosonmodel.[32]Sinceηisnearly equal to 1 in these two casesand theheatcurrentshowsdifferent features in the same coupling regime,we conclude thatη≈1 doesnotnecessarily correspond to theweak coupling condition.Furthermore,the behavior of the current should be properly described by the NIBA scheme,which resultsin theabsenceofnonequilibrium superradiant signature.Therefore,the effect of superradiant heat transfer in the collective-qubitmodelw illbedramatically suppressed in the large Nsregime;i.e.it is an Ns-dependent phenomenon.

    6.Conclusion

    In summary,we investigate the quantum heat transfer in the nonequilibrium collective-qubit system by applying the nonequilibrium polaron-transformed Redf ield equation combined with full counting statistics.We f irstanalyze the effect ofqubit–bath coupling on the steady stateheatcurrent,which results in a turnoverbehaviorand issimilar to the counterpart in the nonequilibrium spin-boson model.Interestingly,the currentconsistently bridges the results in theweak and strong coupling lim its,which clearly demonstrates that the heat currentcan beunif ied in themulti-qubitscase.A lthough itshould beadmitted that thegeneralsolution of theheatcurrent isdiff icult to obtain even for Ns=2,the analyticalexpression can be still obtained in the weak and strong couplings based on the Redf ield(Eq.(25))and NIBA(Eq.(29))schemes,respectively.Moreover,the current noise and skewness are shown to be unif ied accordingly.A lthough not shown in the present paper,the unif ication of higher cumulants of heat current can also be observed.Therefore,we propose that full counting statisticsofheatcurrentatsteady state can beunif ied by using the NE-PTRE.

    Next,we study the superradiantheat transfer in the high temperature bias regime.It is found thatwith small number of qubits,the heat transfer is described by the sequential process under the Redf ield scheme.The heat current exhibitsan apparent signature of the steady state superradiance.While with the large number of qubits,the superradiant signature of the heat f lux vanishes.The corresponding physical process is described by the NIBA scheme becausemulti-phonons should be involved to contribute to the heat transfer.Therefore,we conclude that the superradiant transfer in the collective-qubitmodel isa size-dependentphenomenon,and itw illbe strongly suppressed by increasing the qubitsnumber.

    We believe that based on the counting-f ield dependent NE-PTRE,theunif ied featureofsteady stateheat transfermay be realized in amuch bigger fam ily of the quantum nonequilibrium system,such asaquantum spin-boson network.[18]

    Appendix A:Quantum thermal transfer within the Redf ield scheme

    The nonequilibrium collective-qubitsystem is expressed as?H=?Hs+∑v=L,R(?Hvb+?Vv),where the qubits Hamiltonian isgiven by the v-th thermal bath is,and the system–bath interaction is

    To count the energy f low into the right bath including the full counting statistics,the total Hamiltonian is changed to ?H(χ)=eiχ?HRb/2?H e-iχ?HRb/2=?Hs+∑v(?Hvb+?Vχv),where

    Considering theweak qubit–bath interaction,we directly perturb the system–bath interaction in Eq.(A3)up to the second order.Then,based on the Born–Markov approximation,the Redf ield equation isgiven by

    d?ρχ(t)d t =-i[?Hs,?ρχ(t)] (A4)-∑v∞0dτTrb{[?Vχv,[?Vχv(-τ),?ρχ(t)??ρb]χ]χ},with the commutating relation[?Aχ,?Bχ]χ=?Aχ?Bχ-?Bχ?A-χ.In the eigen-basis{|φn〉}with?Hs|φn〉=En|φn〉,the dynam ical equation of the system densitymatrix element isgiven by where the counting-f ield dependent density matrix element is,the transition rate is Gv(ω)=,and theBose–Einstein distribution function is nv(ω)=1/[exp(ω/kBTv)-1].

    At resonance(ε=0),it is found that the off-diagonalelements of the qubits system in eigen-space vanish at steady state in Figs.A1(a)–A1(c),in theabsenceof the counting f ield(χ=0).Hence,the steady state equation isgiven by

    Fig.A1.Dynam icsof theoff-diagonalelementsof the collectivequbits system Pij=〈φi|?ρs(t→∞)|φj〉(a)–(c)at resonance(ε=0)and(d)–(f)atoff-resonance(ε=1),with theeigen-solution?H s|φi〉=Ei|φi〉.The initialstate isgiven by?ρs(0)=|1,-1〉〈1,-1|.Theother parametersare N s=2,Δ=1,α=0.005,ωc=6,T L=1.5,and T R=0.5.

    Actually,the system Hamiltonian at resonance is?Hs=Δ?Jx,with the eigen-solution ?Hs|j,m〉x=Δm|j,m〉x(m=-Ns/2,-Ns/2+1,...,Ns/2).Thus,the coeff icient Jnmzcan be specif ied as-m(m±1).Consequently,the steady state population can be analytically obtained as

    with the coeff icient

    Finally,the steady stateheat f lux isgiven by

    where the current factor isexpressed as

    While at the off-resonantcondition(e.g.,ε=1),the offdiagonal elements after long time evolution also vanish,as shown in Figs.A1(d)–A1(f).Hence,the heatcurrent into the right thermalbath isgenerally expressed as

    Appendix B:Quantum thermal transfer within the NIBA schemeto obtain themodif ied Hamiltonian of thewholesystem?H′χ=?U?χ?Hχ?Uχas

    Themodif ied system Hamiltonian isgiven by where the renormalization energy isξ=The eigen-solution isgiven bywith En=εn-ξn2and n=-Ns/2,...,Ns/2.Themodif ied system–bath interaction isgiven by Hence,by perturbing?Vχ

    sbup to thesecond order,weobtain the quantum kinetic equation

    where the counting-f ield dependent population element is Pχn=〈φn|?ρχ(t)|φn〉and themodif ied transition ratesare

    where the coeff icient is j+n=Ns/2(Ns/2+1)-n(n+1),the energy gapΔn=En+1-En=ε-ξ(2n+1),and the correlation function in the frequency domain is with the renormalization factorηv=and the correlation phase In the absence of the counting-f ield parameter(χ=0),this modif ied kinetic equation is identical to the dynam ical equation in Eq.(10).Hence,the heat currentatsteady state isobtained as

    where the steady state population is given by Pnss=〈Ns/2,n|ρ?s(t→∞)|Ns/2,n〉.

    猜你喜歡
    王晨
    區(qū)塊鏈技術嵌入下數字政府成本會計系統構建
    MOMENTS AND LARGE DEVIATIONS FOR SUPERCRITICAL BRANCHING PROCESSES WITH IMMIGRATION IN RANDOM ENVIRONMENTS*
    Duality of Semi-infinite Programming via Augmented Lagrangian
    應用數學(2021年4期)2021-10-20 03:26:18
    Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system?
    X線與CT在下肢骨關節(jié)骨折中的診斷價值分析
    穿梭武漢疫情“火線”
    民生周刊(2020年8期)2020-04-20 11:18:24
    王晨
    寶藏(2018年1期)2018-04-18 07:39:20
    大學有機化學教學中學案的作用探討
    火車上蹭坐
    蹭座
    故事會(2015年11期)2015-05-14 15:24:30
    波多野结衣av一区二区av| 国产精品精品国产色婷婷| 欧美色视频一区免费| 精品欧美一区二区三区在线| av电影中文网址| 亚洲 欧美 日韩 在线 免费| 午夜免费观看网址| 高清毛片免费观看视频网站| av天堂久久9| 九色亚洲精品在线播放| 色综合亚洲欧美另类图片| 少妇裸体淫交视频免费看高清 | 啦啦啦 在线观看视频| 母亲3免费完整高清在线观看| 国产成人欧美在线观看| 国产亚洲精品综合一区在线观看 | 美女国产高潮福利片在线看| 涩涩av久久男人的天堂| 51午夜福利影视在线观看| 久9热在线精品视频| 久久人妻av系列| 9热在线视频观看99| 一级a爱片免费观看的视频| 天天添夜夜摸| 老司机午夜十八禁免费视频| 亚洲一区二区三区不卡视频| 国产又爽黄色视频| 久久人妻熟女aⅴ| 女人精品久久久久毛片| 久久久久国产精品人妻aⅴ院| 亚洲美女黄片视频| 免费高清在线观看日韩| 久久精品国产99精品国产亚洲性色 | 亚洲精品一卡2卡三卡4卡5卡| 久久欧美精品欧美久久欧美| 午夜亚洲福利在线播放| 亚洲国产中文字幕在线视频| 国产亚洲精品久久久久久毛片| 国产高清激情床上av| 国产精品久久久久久人妻精品电影| 少妇的丰满在线观看| 搡老熟女国产l中国老女人| 久久人人97超碰香蕉20202| 变态另类丝袜制服| 国内精品久久久久久久电影| 搞女人的毛片| 日本欧美视频一区| 国产亚洲精品久久久久5区| 后天国语完整版免费观看| 亚洲人成伊人成综合网2020| 亚洲一区高清亚洲精品| 久久久久国产一级毛片高清牌| 亚洲国产中文字幕在线视频| 亚洲欧美日韩高清在线视频| 亚洲专区字幕在线| 亚洲欧美日韩另类电影网站| 一区二区三区高清视频在线| 国产亚洲精品第一综合不卡| 国产av一区二区精品久久| 十八禁网站免费在线| 久久人妻福利社区极品人妻图片| 久久精品91无色码中文字幕| 国产精品美女特级片免费视频播放器 | 亚洲成国产人片在线观看| 欧美一级a爱片免费观看看 | 少妇 在线观看| 国产精品久久久久久精品电影 | 亚洲欧洲精品一区二区精品久久久| av免费在线观看网站| 黄色女人牲交| 亚洲人成电影免费在线| 欧美日韩精品网址| 久久精品国产亚洲av香蕉五月| 色播亚洲综合网| 国产单亲对白刺激| 黄色成人免费大全| 国产黄a三级三级三级人| 一级作爱视频免费观看| 亚洲av成人一区二区三| 免费看a级黄色片| 精品国产乱码久久久久久男人| 国产亚洲欧美98| 99国产精品一区二区三区| 丁香欧美五月| av视频在线观看入口| 成熟少妇高潮喷水视频| 国产亚洲av高清不卡| 午夜免费观看网址| 如日韩欧美国产精品一区二区三区| 夜夜躁狠狠躁天天躁| 少妇粗大呻吟视频| 国产精品av久久久久免费| 女人精品久久久久毛片| 国产精品98久久久久久宅男小说| 久久精品影院6| 99精品久久久久人妻精品| 久久国产亚洲av麻豆专区| 亚洲全国av大片| 亚洲精品粉嫩美女一区| 三级毛片av免费| 亚洲国产日韩欧美精品在线观看 | 狠狠狠狠99中文字幕| 校园春色视频在线观看| 久久久国产欧美日韩av| 桃红色精品国产亚洲av| 精品卡一卡二卡四卡免费| 亚洲av成人不卡在线观看播放网| 亚洲av熟女| 亚洲国产精品久久男人天堂| 午夜两性在线视频| 久久久精品欧美日韩精品| 久久草成人影院| 一边摸一边抽搐一进一出视频| av视频免费观看在线观看| 又大又爽又粗| 一区二区三区国产精品乱码| 成人三级黄色视频| 久久人妻熟女aⅴ| √禁漫天堂资源中文www| 一区二区三区激情视频| 日韩视频一区二区在线观看| 成人18禁在线播放| 91字幕亚洲| 国产成年人精品一区二区| 国产一区二区三区在线臀色熟女| 亚洲国产精品合色在线| 在线观看www视频免费| 美女大奶头视频| 91精品三级在线观看| 国产精品av久久久久免费| 一区在线观看完整版| √禁漫天堂资源中文www| 成人永久免费在线观看视频| 亚洲熟女毛片儿| 精品国产一区二区三区四区第35| 国产一区二区激情短视频| 一本久久中文字幕| 精品欧美一区二区三区在线| 日日摸夜夜添夜夜添小说| 久热爱精品视频在线9| 国产亚洲精品第一综合不卡| 亚洲av日韩精品久久久久久密| tocl精华| 亚洲第一电影网av| 女人爽到高潮嗷嗷叫在线视频| 一边摸一边做爽爽视频免费| 婷婷六月久久综合丁香| 狠狠狠狠99中文字幕| 婷婷丁香在线五月| 欧美国产精品va在线观看不卡| 97人妻精品一区二区三区麻豆 | 国产一区在线观看成人免费| 成在线人永久免费视频| 国产成人一区二区三区免费视频网站| 欧美最黄视频在线播放免费| 在线观看www视频免费| 丰满的人妻完整版| 精品国产乱码久久久久久男人| 99久久国产精品久久久| 黄片播放在线免费| 亚洲专区字幕在线| 免费在线观看影片大全网站| 午夜福利一区二区在线看| 女性生殖器流出的白浆| 免费看十八禁软件| 三级毛片av免费| 黄色丝袜av网址大全| 777久久人妻少妇嫩草av网站| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲狠狠婷婷综合久久图片| 一个人观看的视频www高清免费观看 | 99在线人妻在线中文字幕| 中亚洲国语对白在线视频| 首页视频小说图片口味搜索| 欧美最黄视频在线播放免费| 一二三四在线观看免费中文在| 亚洲成人精品中文字幕电影| 亚洲人成77777在线视频| 久久性视频一级片| 亚洲免费av在线视频| 咕卡用的链子| 国产精品99久久99久久久不卡| 日本五十路高清| 天堂动漫精品| 丝袜人妻中文字幕| 精品久久久久久成人av| 国产成+人综合+亚洲专区| 久久久久亚洲av毛片大全| 亚洲av成人av| 青草久久国产| 女同久久另类99精品国产91| 成年版毛片免费区| 巨乳人妻的诱惑在线观看| 免费观看人在逋| 中文字幕人妻熟女乱码| 脱女人内裤的视频| 久久久久久人人人人人| 欧美黄色片欧美黄色片| 亚洲七黄色美女视频| 黄色片一级片一级黄色片| 91大片在线观看| 亚洲国产精品合色在线| www.自偷自拍.com| 精品乱码久久久久久99久播| 久久中文字幕一级| 国产极品粉嫩免费观看在线| 成人18禁高潮啪啪吃奶动态图| 成人永久免费在线观看视频| 亚洲专区中文字幕在线| 一进一出好大好爽视频| 黑丝袜美女国产一区| 香蕉国产在线看| 成人三级做爰电影| 久久久久久久久中文| 国产精品亚洲一级av第二区| 亚洲成人精品中文字幕电影| 国产亚洲欧美在线一区二区| 国产色视频综合| √禁漫天堂资源中文www| 欧美 亚洲 国产 日韩一| 自线自在国产av| 啦啦啦 在线观看视频| 亚洲五月婷婷丁香| √禁漫天堂资源中文www| 午夜福利影视在线免费观看| 久久久久久人人人人人| 国产一卡二卡三卡精品| a级毛片在线看网站| 国产区一区二久久| 夜夜躁狠狠躁天天躁| 亚洲av成人不卡在线观看播放网| 人成视频在线观看免费观看| 级片在线观看| 老汉色∧v一级毛片| 国产成人精品在线电影| 精品久久蜜臀av无| 一级a爱视频在线免费观看| 亚洲国产看品久久| 高清毛片免费观看视频网站| 精品久久久久久久久久免费视频| 国产精品乱码一区二三区的特点 | 麻豆国产av国片精品| 免费观看精品视频网站| 精品卡一卡二卡四卡免费| 亚洲美女黄片视频| 免费看美女性在线毛片视频| 亚洲男人的天堂狠狠| 亚洲人成网站在线播放欧美日韩| 国产欧美日韩精品亚洲av| 一进一出抽搐动态| 亚洲色图综合在线观看| 少妇粗大呻吟视频| 国产精品av久久久久免费| 无人区码免费观看不卡| 一区二区三区国产精品乱码| 男女午夜视频在线观看| 90打野战视频偷拍视频| 免费不卡黄色视频| 色综合婷婷激情| 涩涩av久久男人的天堂| 国产高清有码在线观看视频 | 亚洲三区欧美一区| 日韩欧美三级三区| 久久香蕉激情| 女人爽到高潮嗷嗷叫在线视频| 久久人人精品亚洲av| 久久精品人人爽人人爽视色| 午夜福利视频1000在线观看 | 国产精品免费一区二区三区在线| 久久久久久久久久久久大奶| 女人精品久久久久毛片| 日本 欧美在线| 国产精品秋霞免费鲁丝片| 久久青草综合色| 日韩中文字幕欧美一区二区| 久久人人精品亚洲av| 色老头精品视频在线观看| 日韩精品免费视频一区二区三区| 亚洲精华国产精华精| 国产aⅴ精品一区二区三区波| 大型黄色视频在线免费观看| 欧美日韩乱码在线| 精品欧美一区二区三区在线| 午夜两性在线视频| 亚洲九九香蕉| √禁漫天堂资源中文www| 亚洲中文字幕一区二区三区有码在线看 | 纯流量卡能插随身wifi吗| 亚洲人成77777在线视频| www国产在线视频色| 老熟妇乱子伦视频在线观看| 国产精品久久久人人做人人爽| 一区二区三区精品91| 一级毛片女人18水好多| 好男人电影高清在线观看| 精品久久久久久久毛片微露脸| 在线av久久热| 成年版毛片免费区| 18禁国产床啪视频网站| 青草久久国产| 亚洲国产日韩欧美精品在线观看 | 亚洲av五月六月丁香网| 日韩欧美一区二区三区在线观看| 男人操女人黄网站| 欧美最黄视频在线播放免费| 国产精品久久久久久亚洲av鲁大| 亚洲九九香蕉| 丰满人妻熟妇乱又伦精品不卡| 国产视频一区二区在线看| 91精品三级在线观看| 国产精品美女特级片免费视频播放器 | 人人妻人人澡欧美一区二区 | 欧美日韩精品网址| 国产三级黄色录像| 可以免费在线观看a视频的电影网站| 精品不卡国产一区二区三区| 琪琪午夜伦伦电影理论片6080| 午夜成年电影在线免费观看| 女人被躁到高潮嗷嗷叫费观| 99国产精品免费福利视频| 午夜老司机福利片| 免费在线观看视频国产中文字幕亚洲| 久热这里只有精品99| 欧美色视频一区免费| 亚洲av片天天在线观看| 日本五十路高清| 亚洲人成77777在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品av麻豆狂野| 久久久久久免费高清国产稀缺| 亚洲成av片中文字幕在线观看| 给我免费播放毛片高清在线观看| √禁漫天堂资源中文www| 欧美激情久久久久久爽电影 | 日韩大码丰满熟妇| 午夜成年电影在线免费观看| www日本在线高清视频| 最好的美女福利视频网| 90打野战视频偷拍视频| 可以在线观看的亚洲视频| 久久人人爽av亚洲精品天堂| 在线观看免费视频日本深夜| 久久精品国产亚洲av香蕉五月| 亚洲av熟女| 在线av久久热| 女人爽到高潮嗷嗷叫在线视频| 人人妻,人人澡人人爽秒播| 国产精品日韩av在线免费观看 | 麻豆成人av在线观看| 国产精品香港三级国产av潘金莲| 亚洲av熟女| 国产精品久久电影中文字幕| 午夜激情av网站| 国产高清激情床上av| 人成视频在线观看免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 超碰成人久久| 黑人巨大精品欧美一区二区mp4| avwww免费| 变态另类丝袜制服| 中国美女看黄片| 亚洲国产精品久久男人天堂| www日本在线高清视频| 亚洲国产精品999在线| 少妇裸体淫交视频免费看高清 | 成人18禁在线播放| av免费在线观看网站| 国产不卡一卡二| 亚洲精品久久成人aⅴ小说| 一区福利在线观看| 午夜免费成人在线视频| 天堂动漫精品| 精品无人区乱码1区二区| 国产熟女xx| 乱人伦中国视频| 亚洲欧美一区二区三区黑人| 91麻豆av在线| 亚洲五月色婷婷综合| 亚洲国产看品久久| 中亚洲国语对白在线视频| 免费在线观看亚洲国产| 91精品国产国语对白视频| 人人妻,人人澡人人爽秒播| cao死你这个sao货| 可以在线观看的亚洲视频| 99久久综合精品五月天人人| 国产精品一区二区免费欧美| 熟妇人妻久久中文字幕3abv| 男女做爰动态图高潮gif福利片 | 欧美另类亚洲清纯唯美| 美女大奶头视频| 亚洲免费av在线视频| 国产欧美日韩一区二区三区在线| 日本一区二区免费在线视频| 欧美+亚洲+日韩+国产| 在线观看免费午夜福利视频| 欧美一区二区精品小视频在线| 成年人黄色毛片网站| 中文亚洲av片在线观看爽| 最近最新免费中文字幕在线| 午夜激情av网站| 夜夜爽天天搞| 久热爱精品视频在线9| 麻豆av在线久日| 国产精品1区2区在线观看.| 国产精品香港三级国产av潘金莲| 午夜福利,免费看| 91字幕亚洲| 国产私拍福利视频在线观看| 黄色视频,在线免费观看| 久久久久久国产a免费观看| 在线观看日韩欧美| 可以在线观看毛片的网站| 又紧又爽又黄一区二区| 欧美激情极品国产一区二区三区| 久久久久久亚洲精品国产蜜桃av| 老熟妇乱子伦视频在线观看| 欧美老熟妇乱子伦牲交| 午夜精品久久久久久毛片777| 成人永久免费在线观看视频| 日韩精品免费视频一区二区三区| 亚洲成av人片免费观看| 中文字幕av电影在线播放| 亚洲美女黄片视频| 中亚洲国语对白在线视频| 国产精品野战在线观看| 97碰自拍视频| 在线天堂中文资源库| 别揉我奶头~嗯~啊~动态视频| 97超级碰碰碰精品色视频在线观看| 性少妇av在线| 伦理电影免费视频| 999久久久国产精品视频| 女性生殖器流出的白浆| 日本vs欧美在线观看视频| 亚洲一区中文字幕在线| 18禁国产床啪视频网站| 日韩欧美一区视频在线观看| 91国产中文字幕| av电影中文网址| 丰满的人妻完整版| 中国美女看黄片| 久久国产亚洲av麻豆专区| 亚洲国产欧美日韩在线播放| 亚洲人成77777在线视频| 欧美另类亚洲清纯唯美| 亚洲一区二区三区色噜噜| 欧美黑人欧美精品刺激| 国产国语露脸激情在线看| 国产成+人综合+亚洲专区| 欧美午夜高清在线| 波多野结衣一区麻豆| 国产亚洲精品综合一区在线观看 | 午夜影院日韩av| cao死你这个sao货| 免费一级毛片在线播放高清视频 | 成人三级做爰电影| 男人舔女人下体高潮全视频| 日韩欧美国产在线观看| 成人国产一区最新在线观看| 欧美激情高清一区二区三区| 后天国语完整版免费观看| 日日爽夜夜爽网站| 伊人久久大香线蕉亚洲五| 淫秽高清视频在线观看| 首页视频小说图片口味搜索| 中文字幕高清在线视频| 亚洲av成人不卡在线观看播放网| 欧美av亚洲av综合av国产av| 国产精品久久久久久人妻精品电影| av天堂久久9| 91字幕亚洲| 国产三级黄色录像| 免费在线观看亚洲国产| 91九色精品人成在线观看| 999久久久国产精品视频| 亚洲视频免费观看视频| 国产精品自产拍在线观看55亚洲| 高清毛片免费观看视频网站| 国产成人免费无遮挡视频| 在线观看免费视频网站a站| 久久中文字幕人妻熟女| 狂野欧美激情性xxxx| 欧美不卡视频在线免费观看 | 国产单亲对白刺激| 在线观看免费视频网站a站| 性少妇av在线| 手机成人av网站| 动漫黄色视频在线观看| 美女高潮到喷水免费观看| 97超级碰碰碰精品色视频在线观看| 久热爱精品视频在线9| 91成年电影在线观看| 亚洲精品国产一区二区精华液| 大型黄色视频在线免费观看| 一边摸一边抽搐一进一小说| 50天的宝宝边吃奶边哭怎么回事| av中文乱码字幕在线| 制服诱惑二区| 曰老女人黄片| 精品国产乱码久久久久久男人| 日日夜夜操网爽| 宅男免费午夜| 精品日产1卡2卡| 亚洲成人久久性| 国产成人影院久久av| 在线观看舔阴道视频| 国产欧美日韩一区二区三| netflix在线观看网站| 国产精品免费视频内射| 中文字幕人成人乱码亚洲影| 免费观看人在逋| 久久热在线av| 中文字幕人成人乱码亚洲影| 国产极品粉嫩免费观看在线| 国产视频一区二区在线看| 黄色视频,在线免费观看| 色尼玛亚洲综合影院| 精品不卡国产一区二区三区| 极品教师在线免费播放| 日韩大尺度精品在线看网址 | 电影成人av| 亚洲av五月六月丁香网| 搡老妇女老女人老熟妇| 色综合婷婷激情| 变态另类丝袜制服| 国产成人av激情在线播放| 婷婷六月久久综合丁香| www.熟女人妻精品国产| 午夜福利免费观看在线| 国产精品1区2区在线观看.| 18禁黄网站禁片午夜丰满| 亚洲片人在线观看| 国产激情欧美一区二区| 国内毛片毛片毛片毛片毛片| 亚洲人成网站在线播放欧美日韩| 亚洲人成伊人成综合网2020| 婷婷六月久久综合丁香| 精品卡一卡二卡四卡免费| 亚洲精华国产精华精| 此物有八面人人有两片| 成人18禁在线播放| 日韩视频一区二区在线观看| 国产亚洲av高清不卡| 国产精品秋霞免费鲁丝片| 久久亚洲精品不卡| 亚洲中文日韩欧美视频| 在线观看午夜福利视频| 欧美日本亚洲视频在线播放| 久久人人爽av亚洲精品天堂| 日韩欧美免费精品| 夜夜看夜夜爽夜夜摸| 十分钟在线观看高清视频www| 午夜福利,免费看| 欧美 亚洲 国产 日韩一| 青草久久国产| 国产真人三级小视频在线观看| 亚洲色图综合在线观看| 啪啪无遮挡十八禁网站| 999久久久国产精品视频| 久久伊人香网站| 一个人免费在线观看的高清视频| 久久国产精品影院| av片东京热男人的天堂| 国产精品免费一区二区三区在线| 午夜福利影视在线免费观看| 国产色视频综合| 欧美在线黄色| 91精品国产国语对白视频| 色精品久久人妻99蜜桃| 欧美日本亚洲视频在线播放| 亚洲欧美日韩高清在线视频| 日韩av在线大香蕉| 男人舔女人的私密视频| 国产麻豆69| 99国产极品粉嫩在线观看| 操出白浆在线播放| 日本免费一区二区三区高清不卡 | 日韩精品中文字幕看吧| 19禁男女啪啪无遮挡网站| xxx96com| 亚洲自拍偷在线| 成年人黄色毛片网站| 国产精品99久久99久久久不卡| 丝袜美腿诱惑在线| 久久久久精品国产欧美久久久| 色在线成人网| 精品无人区乱码1区二区| 欧美+亚洲+日韩+国产| 十八禁人妻一区二区| 好看av亚洲va欧美ⅴa在| 97人妻天天添夜夜摸| 久久久久国内视频| 国产男靠女视频免费网站| 九色国产91popny在线| 少妇裸体淫交视频免费看高清 | 亚洲第一电影网av| 黑丝袜美女国产一区| 妹子高潮喷水视频| 亚洲avbb在线观看| 亚洲熟妇中文字幕五十中出| 午夜激情av网站| 亚洲免费av在线视频| 亚洲熟妇熟女久久| 国产精品98久久久久久宅男小说| 一级作爱视频免费观看| 免费av毛片视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲成av人片免费观看| av欧美777| av电影中文网址| 欧美日韩一级在线毛片| 久久精品国产清高在天天线| 757午夜福利合集在线观看| 国产极品粉嫩免费观看在线|