• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Surface stabilized cubic phaseof CsPb I3 and CsPbBr3 atroom tem perature*

    2019-05-11 07:36:46FengYang楊鳳CongWang王聰YuhaoPan潘宇浩XieyuZhou周諧宇
    Chinese Physics B 2019年5期

    Feng Yang(楊鳳),CongWang(王聰),Yuhao Pan(潘宇浩),Xieyu Zhou(周諧宇),

    Xianghua Kong(孔祥華),and Wei Ji(季威)?

    Beijing Key Laboratory ofOptoelectronic FunctionalMaterials&M icro-Nano Devices,DepartmentofPhysics,

    Renm in University ofChina,Beijing 100872,China

    (Received 11March 2019;revisedmanuscript received 21March 2019;published online4 April2019)

    Keywords:inorganic perovskite solar cell,thermal stability,surface energy,nanow ire,quantum dot,nanoplate

    1.Introduction

    Organic–inorganic hybridized perovskite solar cellshave recently attracted tremendous attention[1–11]because of its high power conversion eff iciency(PCE),[12]low cost,[4,6,13]and manufacturing feasibility.[1,14,15]While its PCE reaches 23.7%[12]only 9 years after the f irst reported 3.8%in 2009,[16,17]its thermal stability issue under ultraviolet light illum ination,[18]in moisture environment,[19]or at high temperatures[20]is still a challenge to the whole community.Organic–inorganic hybridize perovskite CH3NH3PbI3(MAPbI3)tends to dissociate into volatile NH3and CH3I gases[21]and PbI2[20,22]solid under thosementioned conditions.Unfortunately,PbI2has a larger bandgap compared with CH3NH3PbI3,which leads to largely reduced PCEs in perovskite solar cells.This instability wasbelieved to be one of themost challenging issues in commercialization of perovskitesolar cells.

    Efforts from allaspects,suchasnew ly designed cellarchitectures,substantially optimized morphology,or introduced protecting layers,have been exhaustively made to solve this issue,[13,24–27]amongwhich large-size inorganic cations[28,29]appear to play an active role.Itwas found thatmixing MA with larger cations,such as Cs+,can improve the photo-and thermal-stabilitiesof theperovskite solar cells.[29]Asa result,CsPbIxBr3-xorCsPbI3showsbetter thermalandmoisturestabilitieswith a reasonably high PCEof~10%[30–32]and a large open-circuit voltage of 1.23 V.[33]These pioneering attempts suggest another route to build practical solar cells that uses purely inorganic perovskites,like CsPb X3(X=I,Br).Another issue,however,arises that the cubic phase of inorganic perovskites,with moderate direct bandgaps of~1.7–2.0 eV and thus offering the highest performance of light absorption among allallotropes of CsPb X3,ismore stable athigher temperatureswhile their bulk form undergoes a transition to an orthorhombic phase(Pnma)at 578 K[34]for CsPbI3and 360 K[17]for CsPbBr3or to a tetragonal phase at 403 K[17]for CsPbBr3.The room temperature orthorhombic phase has amuch larger indirectbandgap,such as2.6 eV forCsPbI3,[34]compared with thatof the cubic phase,which,consequently,reduces the PCE,such as0.09%for CsPbI3,[35]and lightabsorption coeff icient.

    However,the stability of the cubic phase could be enhanced by downsizing its size to nanoscalewhere the surface energy dom inates,as illustrated by CsPbI3nanocrystals[36,37]or quantum dots[33]which maintained the cubic phase for months under ambient conditions.Here,we thus comprehensively investigated the roleof surface energy in tuning the cubic to orthorhombic phase transition using f irst-principles calculations.We considered the differences of surface energies of both the cubic and the orthorhombic phases.It turns out that the cubic phase has a higher total energy for its bulk but the surface energies of its solids are substantially lower than those of the orthorhombic phase.These competitive interactions thus lead to a reduced criticaltemperature for the cubic to orthorhombic phase transition if the surface ratio is enlarged.We have considered zero-,one-,and two-dimensional nanostructureswhile the bulk forms of both CsPbI3and CsPbBr3could be stabilized at room temperature if the crystal size is small enough.Given size and temperature dependent phase diagrams,we found characteristic sizes of 7.8–18.0 nm,3.0–10.0 nm,1.3–4.8 nm for0D(nanocrystal),1D(nanow ire)and 2D(nano-plates)CsPbI3,respectively,while the corresponding values are 14.0–71.9 nm,9.7–48.3 nm,and 5.4–24.6 nm for CsPbBr3.W ith the conf ined sizes smaller than these critical values,the cubic phase becomes themoststable phase at room temperature in CsPb X3nanostructures.These f indings offer a feasible route to stabilize the cubic phase and to utilize thesematerials in solar cellapplications.

    2.M ethods

    2.1.Density functional theory calculation

    Our density functional theory(DFT)calculations were performed using the generalized gradient approximation for the exchange–correlation potential,the projector augmented wavemethod,[38,39]and aplane-wavebasissetasimplemented in the Vienna ab-initio simulation package(VASP).[40,41]Van derWaals interactionswere considered by a pairw ise potential in the Grimme’s 10 form(D3)[42,43]with the Becke–Jonson(BJ)form[43]for the damping function(DFT-D3-BJ).Kinetic energy cutoffs for theplane-wavebasissetsweresetat600 eV and 400 eV forgeometry relaxationsand energy calculations,respectively.The shapes and volumes of each cellwere fully optim ized for bulk counterparts and all atoms were allowed to relax until the residual force on each atom was less than 0.01 eV/?A.AΓcentered 9×9×9 k-meshwasused for sampling the Brillouin zone(BZ)for the cubic phases of both materials,while k-meshes of 5×11×3 and 7×7×5 were adopted to sample the BZs of the orthorhombic phases for CsPbI3and CsPbBr3,respectively.

    2.2.Surfaceenergy

    For CsPbBr3,a tetragonalphaseemergesbetween the cubic and orthorhombic phases when the temperature is in a range from 360K to 403K.Forsimplicity,weonly considered the cubic and orthorhombic phases for CsPbBr3in thiswork,consistentwith the two phases discussed in CsPbI3.We considered nine surfaces for each CsPb X3in comparison of their surface energies,as shown in Fig.3 and Table 2.There are foursurfaces,which each containsCs,Pb,and Iatoms integer times those of a formula unit cell.They are the(001)surface of the cubic phasewith CsIand PbIterm inationson each of the surfaces,respectively[Cubic(001)-asym,Fig.3(a)],the(010)surfaceof theorthorhombic phase[Orth(010),Fig.3(b)],the I and Csco-term inated(001)surfaceof theorthorhombic phase[Orth(001)-CsI,Fig.3(c)],and the3Iterm inated(100)surface of theorthorhombic phase[Orth(100)-3I,Fig.3(d)].

    The surface energy is derived using ESurf=(ESlabnECsPbX3)/A,where ESlaband ECsPbX3are the total energies of the surface slab and the CsPb X3bulk unit cell,respectively,A is the area of the surface and n represents the number of formula unit cells that the slab contains.The surface energies of the rest surfaces are relevant to the chemical potentials of Cs,Pb,and I in forming them.In light of this,their surface energies are calculated using formula ESurf=(ESlab-Σniμi)/A,where nirepresents the number of atoms for the ithelement(Pb,I,Br,Cs)andμirepresents the chemical potentialof the ithelement.Here,the chemical potentials are not determ inative and are in ranges estimated usingμi=μelem+Δμiin thiswork,whereμelemis the chemical potentials of their elementary substances andΔμiis thus the chem ical potential difference of the element between in CsPb X3and in its elemental bulk counterpart.These differences satisfyΔμPb+3ΔμI/Br+ΔμCs=ΔμTot.Here,ΔμTotis the total chem ical potential variation of all these elements between in bulk CsPb X3and in their elementary substances,in otherwords,is the formation enthalpy.Asa consequence,the surface energiesmay have three extremes:ΔμPb=ΔμTot;3ΔμI/Br=ΔμTot;ΔμCs=ΔμTot.We summarized these results in Tables2 and 3.

    2.3.Transition temperatureand conf ined size

    Ata certain temperature,the stability of the cubic phase in ananostructurewascomparedwith theorthorhombic phase in the same nanostructure with conserved number of atoms.Here,the free energy determines the relative stability,which includes three energy terms

    The f irst term which sums up surface energies of all types of surfaces in one conf iguration is the total surface energy of the nanostructure.Here,i represents the type of surfaces and ANanorepresents the corresponding surface area.The second term is the bulk energy of the nanostructure,in which Vbulkrepresents the bulk volume in the nanostructure and Ebulkcorresponds to the volumetric energy density of the bulk phase.The totaland surface energies depend on the shape,size,and surface/bulk ratio of thenanostructures.In the last term,T and S represent temperatureand entropy,respectively.

    Two nanostructuresat thephase transition pointshare the same free energy FNano.Thus we can obtain the transition temperature by calculating the volume normalized difference(ΔENano)of the total surface energies and bulk energies between the two nanostructures

    Volume normalized difference of entropies(ΔS)of the cubic and orthorhombic phases were estimated to be 2.0×10-3meV/(K·?A3)forCsPbI3and 1.3×10-3meV/(K·?A3)for CsPbBr3,according to the experimental phase transition temperaturesofbulk CsPb X3.

    3.Resultsand discussion

    Figures 1(a)–1(d)show the atomic models of a CsPbI3crystal in the cubic and orthorhombic phases,respectively,while the associated lattice constants are summarized in Table 1. The cubic phase of CsPbI3[space group Pm-3m(No.221)]has higher symmetry in a smaller unit cellwith a lattice constant of 6.29?A.The orthorhombic phase[Pnma(No.62)]hasa larger cellsizewith a=10.46?A,b=4.79?A,and c=17.81?A.These theoretical values are highly comparablewith the experimental valueswith errors less than 0.5%.Figure 1(e)plots the total energies of these two phases as a function of cell volume,which indicates that the orthorhombic phase,with asmallerequilibrium volume,is0.29 eVmore stable than the cubic phase at the zero temperature lim it.The structure of the cubic phase of CsPbBr3is similar to that of CsPbI3(Fig.2(a)).The calculated lattice constant is 5.92?A,only 0.83%larger than the experimental value,while the orthorhombic phase of CsPbBr3is substantially different from thatof CsPbI3,as shown in Figs.2(b)–2(d).The theoretical lattice constants of the orthorhombic phase are a=8.05?A,b=8.42?A,c=11.81?A with an error of less than 2%in comparison with the experimental values.A lthough both orthorhombic phases of CsPbI3and CsPbBr3share the same Pnma(D2H-16)space group,their atom ic details do differ from each other.For CsPbI3,Pb2+ions are embedded in distorted iodine octahedra forming(Pb2I6)2-chains oriented along the y direction(Fig.1(b)),while Cs cations are f illed in the interstitial regions of these chains.Figure 1(d)clearly shows the cross-sectionofeach(Pb2I6)2-chain,inwhich each Pb atom is octahedrally coordinated by six Iatomsand these(Pb2I6)2-chainsare alternately titled to leftand rightsidesas arranged in a zig-zag pattern.

    Tab le1.Lattice parametersof bulk CsPbI3 and CsPbBr3 and relativeerrors comparingwith theexperimentalvalues.

    Fig.1.Schematicmodels and thermal stability of bulk CsPbI3 in cubic and orthorhombic phases.(a)Perspective view of the high temperature cubic phase bulk CsPbI3.(b)–(d)Side-and top-viewsof the low temperature orthorhombic phase bulk CsPbI3.Purple,gray and pink balls represent Cs,Pb and I atoms,respectively.(e)Thermal stability of bulk CsPbI3 in cubic(orange line)and orthorhombic(green)phases.

    In terms of CsPbBr3,each Pb is again octahedrally coordinated by six I atoms,however,no chain is formed and these(PbBr6)2-octahedra are continuously connected,and are slightly tilting,along all of the lattice directions forming a 3D framework,as shown in Figs.2(c)and 2(d).Table 1 summarizes the calculated lattice constants of both phases in CsPbI3and CsPbBr3,reasonably consistentwith the experimental values.The energetic difference between the cubic and orthorhombic phasesofCsPbBr3,i.e.,0.11 eV(Fig.2(e)),is smaller than that of CsPbI3,consistent with the nearly 200 K[17,34]lowered transition temperature for CsPbBr3.

    Fig.2.Schematicmodelsand thermalstability ofbulk CsPbBr3in cubic and orthorhombic phases.(a)Perspective view of the high temperature cubic phase bulk CsPbBr3.(b)–(d)Top-and side-views of the low temperature orthorhombic phase bulk CsPbBr3.Purple,gray and brown balls represent Cs,Pb and Bratoms,respectively.(e)Thermalstability of bulk CsPbBr3in cubic(orange line)and orthorhombic(green)phases.

    We further considered the surface energies of these phases.Energiesof the surfacesCubic(001)-asym(Fig.3(a)),Orth(010)(Fig.3(b)),Orth(001)-CsI(Fig.3(c)),and Orth(100)-3I(Fig.3(d))are independentof the chem ical potentials of the individual atoms.Among these surfaces,the f irsttwoarenon-polarand theothersarequasi-nonpolar.Their surfaceenergiesare9.6meV/?A2,16.0meV/?A2,13.1meV/?A2and 23.3meV/?A2,respectively(see Table 2).The f irst three surfaces were believed to bemost stable among all surfaces considered,although the Cs rich lim it of the Orth(001)-Cs(Fig.3(e))surface isa bitmore stable than the Orth(001)-CsI surface and the I-rich lim itof the Orth(100)-4I(Fig.3(f))surface is slightlymore stable than the Orth(010)surface.Here,we emphasize that the Cs rich lim it is very diff icult to reach and the surface energy of the Cs-def icient lim itof this surface isover100meV/?A2which is ratherhigh compared with other surfaces(see Table 2).A lthough the I-rich condition is relatively more feasible to reach,its energy is comparable with that of the Orth(010)within 1 meV and the stability rapidly decreases to over40meV under I-def icientconditions.In light of this,weexclude both Orth(001)-Csand Orth(100)-4Iin the follow ing discussion.

    Apparently,surfaces of the cubic phase are more stable than those of the orthorhombic phase,which,again,indicates that reduced dimensions down to nanoscale could stabilize the cubic phase at room temperature.There are two terminations of surface Cubic(001),namely Cubic(001)-PbIand Cubic(001)-CsI,whose energies are in ranges from-20.4meV/?A2(Irich,Cs def icient)to 59.4meV/?A2(I rich,Pb def icient)and-39.8 meV/?A2(I rich,Pb def icient)to 39.9 meV/?A2(I rich,Cs def icient),respectively.Therefore,theexactsurfaceenergy of oneof the surfaces iseven smaller than their averaged value of 9.6meV/?A2,which leads to underestimated surface stability of the cubic phase.In terms of cubic CsPbBr3,the CsPbBr3Cubic(001)-asym surfacewas used to consider the surface energy of cubic CsPbBr3,which gives an surface energy of 10.9 meV/?A2,slightly larger than thatof the cubic CsPbI3.Theorthorhombic phaseof CsPbBr3appears differently from that of cubic CsPbI3,forwhich,we used asymmetric(001)and(110)surfaces,see Figs.3(g)and 3(h),since the energies of these surfaces are independent of the chem ical potentials of the individualatoms.Interestingly,both surfaceshave the surfaceenergy of 13.9meV/?A2.

    Fig.3.Side views of surface conf igurations.(a)Surface(001)-asym of cubic CsPbI3 with the Pb,Iatoms and Cs,Iatoms at the different terminations.(b)Surface(010)of orthorhombic CsPbI3.(c)Surface(001)-CsI and(d)surface(100)-3Iof orthorhombic CsPbI3.(e)Surface(001)-Csand(f)surface(001)-4Iof orthorhombic CsPbI3.(g)Surface(001)-asym and(h)surface(110)-asym oforthorhombic CsPbBr3 with Pb,Bratomsand Cs,Bratomsat the different term inations.(i)Surface(110)of cubic CsPbI3.

    Given these surfaceenergies,we are ready to discuss the stability of CsPb X3nanocrystalswith different surface energies and surface/bulk ratios of the number atoms.In terms ofone-dimensionalnanostructures—i.e.,nanow ires—we considered f ive cross-section shapes for the cubic phase,asshown in Figs.4(a)–4(d).Figures4(a)and 4(b)show two considered triangular prisms.The one shown in Fig.4(a)(0°-triangular prism)contains two(001)surfaces for right-angle sides and one(110)surface for the hypotenuse,which was experimentally found in a recent report,[46]while the other one isa 90°-rotated onehaving two(110)surfaces and one(001)surface.

    Tab le2.Surfaceenergiesof CsPbI3.

    Tab le3.Surface energiesof CsPbBr3.

    Fig.4.Top views of 1D NWs.(a)–(e)Schematic models of CsPbI3 NWs:(a)triangular prism containing two Cubic(001)surfaces for rightangle sides and one Cubic(110)surface for the hypotenuse(0°-triangular prism);(b)triangular prism having two Cubic(110)surfaces and one Cubic(001)surface(90°-triangular prism);(c)quadrangular prism with four Cubic(001)side surfaces(0°-quadrangular prism);(d)quadrangular prism with four Cubic(110)side surfaces(0°-quadrangular prism);(e)rectangular prism with Orth(010)and Orth(001)-CsIas the side surfaces.The ratio of longer and shorter edges of the rectangular cross-section is 1.22 using a criterion ofmaxim izing the cross-section areaunderagiven circum ference.(f),(g)Schematicmodels of CsPbBr3 NWs:(f)quadrangular prism with Orth(001)-PbBr as all the side surfaces;(g)quadrangular prism with(110)and(001)as the side surfaces.

    The(110)surface of the cubic phase is depicted in Fig.3(i)and its surface energy of 16.2 meV(Pb rich,I def icient)to 53.8meV(I rich,Pb def icient)is rather high.A straightforward strategy thus lies in avoiding the presence of this surface.There are also two quadrangular prisms under consideration.The one shown in Fig.4(c)(0°-quadrangular prism)has four(001)surfaces while the 90°-rotated one shown in Fig.4(d)is cleaved along(110)surfaces. Given the total energy of the cubic phase and all surface energies,we f ind that the 0°-quadrangular prism is themost stable shape for cubic CsPbI3NWs,which is highly consistent with the shapes found in experiment.[47]We,therefore,use the 0°-quadrangular prism in comparison of stability with the orthorhombic phase.The shape of NWs in the orthorhombic phase ismore complicated than that in the cubic phase.For simplicity,according to the experimental input,[47]we only considered the rectangular ones shown in Fig.4(e)with optimally selected surfaces to ensure the lowestsurface energies.For 2D nano-plates,we used themost stable surfaces of both phases,respectively—i.e.,Cubic(001)-asym and Orth(001)-CsI—for thesurfaceareaofnano-plates.Thus,the relativestability dependson the conf ined thicknessof the nano-plates.In termsof 0D nanoparticles,we only considered cubic nanoparticleswith the Cubic(001)-asym surface for the cubic phase and the Orth(010),Orth(001)-CsIand Orth(100)-3I surfaces for the orthorhombic phase.Since the case of CsPbBr3has experimental inputs,the cross-section of CsPbBr3nanow ires is considered in a square pattern,as shown in Figs.4(f)and 4(g).

    Asmentioned earlier,theexactsurfaceenergy of the Cubic(001)surface is over estimated.Therefore,we consider two extremes of the(001)surface of the cubic phase,namely 9.6meV/?A2and 0meV/?A2.The exactsurface energy should be in between these two extremeswhile the former extreme corresponds to them inimum-size lim it(red curves in Fig.5)of a nanostructure and the zero surface energy stands for the maximum-size limit(blue curves).Figure 5 shows the phase diagrams for the cubic and orthorhombic phases as functions of temperature and size.The conf ined size is presented by a parameter R,which stands for the lengths of the right-angle side for triangles,the side for squares and the shorter sides of rectangles,as illustrated in Figs.4(a)and 4(c).Here,the ratio for the longer and shorteredgesof the rectangular crosssection(Fig.4(e))is estimated to be 1.22 using a criterion of maxim izing the cross-section area under a given circum ference.It explicitly shows in Fig.5 that if R is smaller than 3.0 nm(m inimum limit)to 10.0 nm(maximum limit),the cubic phase of CsPbI3becomes themost stable phase rather than the orthorhombic phase at room temperature.While the energetic difference between the two phases is smaller for CsPbBr3,the critical size for phase transitions is thus larger than thatof CsPbI3,namely,9.7 nm to 48.3 nm.For2D nanoplates,the critical thicknesses to stabilize the cubic phases are 1.3 nm to 4.8 nm for CsPbI3and 5.4 nm to 24.6 nm for CsPbBr3.While the critical thickness of CsPbI3is a bit too thin,that of CsPbBr3is highly feasible that could be practically adopted in potential applications.Nanoparticles are another form of nanostructures,which weremostly explored in experiments forboth solarcelland lightemissionapplications.It shows a relative high tolerance i.e.,7.8–18 nm for CsPbI3,which is consistentwith the quantum dot size observed with TEM(roughly 8–15 nm)and Rietveld ref inement(about 9–17 nm).[33]An even larger size of 14.0–71.9 nm is found in CsPbBr3.These valuesareaccessible in experiments,indicating the feasibility of this strategy of surface engineering for stabilizing the cubic phase of CsPb X3.

    Fig.5.Size and temperature dependent phase diagrams of CsPbI3 and CsPbBr3.Phase diagrams of(a)0-dimensional,(b)1-dimensional,and(c)2-dimensional CsPbI3,and of(d)0-dimensional,(e)1-dimensional,and(f)2-dimensional CsPbBr3.Two extremesof the(001)surfaceof thecubicphasewereconsidered in thecalculations.The formerextremecorresponds to theminimumsize lim it(surface energies of 9.6 meV/?A2 for CsPbI3 and 10.9 meV/?A2 for CsPbBr3,red curves)of a nanostructure while the maximum-size limit(blue curves)isderived by assuming a zero surfaceenergy.

    It is interesting that the critical sizes of structural phase transitions decrease with the increase of dimensions.This is straightforward to be understood that all these phase transitions are originated from energy competitions of bulk and surfaces of these two phases.The higher the dimension,the smaller the critical size.The numbers of exposed surfaces in 0D nanoparticles,1D nanow ires,and 2D nanoplates are 6,4 and 2,respectively,leading to the decreased surface/bulk ratio with respect to the increasing dimensions.As a result,CsPb X3nanoparticles in the cubic phase shall show the excellent stability at room temperature.Indeed,there are several very recent experiments reporting potential applications of CsPb X3quantum dots or nanow ires in solar cell and light emission.[48]Anothernoticeable phenomenon lies in the criticalsizesof phase transitions for CsPbBr3usually being larger than the corresponding CsPbI3counterpart,which could be,again,explained by the smallerenergy difference between the two phases of their bulk forms;i.e.,0.11 eV(CsPbBr3)versus0.29 eV(CsPbI3).The larger energy difference in CsPbI3means that itneedsmuchmore surface efforts to stabilize the cubic phase of CsPbI3than that of CsPbBr3.The phase diagramshere give the reference parameters for the stabilization of cubic CsPb X3in differentdimensions.

    4.Conclusion

    In summary,this work proposes a strategy that stabilizes themeta-stable cubic phase of CsPb X3at room temperature.Density functional theory calculationswere employed to illustrate the feasibility of the strategy by comparing surface and bulk energies of the cubic and orthorhombic phases with varied surface/bulk ratios.The predicted critical thickness of 2D CsPbI3nano-plates that could stabilize the cubic phase—i.e.,1.3–4.8 nm—is slightly too thin for lightabsorption while that of CsPbBr3—i.e.,5.4–24.6 nm—may be adopted in portable or f lexible display.However,themoderate sizesof the nanoparticle(7.8–71.9 nm)and nanow ire(3–48.3 nm)formsappearhighly prom ising in applicationsof solar cells,f lexible displays,among others.In lightof this,our results go one-step towards solving the long-standing stability issue of CsPb X3andmay promote practicalapplicationsof nanostructured CsPb X3.

    国精品久久久久久国模美| 12—13女人毛片做爰片一| 国产野战对白在线观看| 国产男女超爽视频在线观看| 国产成人一区二区三区免费视频网站| 少妇猛男粗大的猛烈进出视频| 变态另类成人亚洲欧美熟女 | 精品福利观看| 巨乳人妻的诱惑在线观看| 欧美日本中文国产一区发布| 最近最新免费中文字幕在线| 久久久国产一区二区| 韩国av一区二区三区四区| 一边摸一边做爽爽视频免费| 少妇被粗大的猛进出69影院| 久久亚洲真实| 国产精品永久免费网站| 在线观看免费视频日本深夜| 宅男免费午夜| 亚洲五月婷婷丁香| 91老司机精品| 美女视频免费永久观看网站| 99在线人妻在线中文字幕 | 韩国精品一区二区三区| 亚洲av电影在线进入| 午夜精品久久久久久毛片777| 久久热在线av| 麻豆成人av在线观看| 亚洲第一av免费看| 久久人妻福利社区极品人妻图片| 大码成人一级视频| 欧美精品啪啪一区二区三区| 人妻 亚洲 视频| 久久久久久久精品吃奶| 午夜久久久在线观看| 91九色精品人成在线观看| 久久人人97超碰香蕉20202| 亚洲av美国av| 久久午夜亚洲精品久久| 国产成人av激情在线播放| 中文亚洲av片在线观看爽 | 日日摸夜夜添夜夜添小说| 999久久久精品免费观看国产| 国产不卡av网站在线观看| 色精品久久人妻99蜜桃| xxx96com| 成人av一区二区三区在线看| 久久久国产精品麻豆| 欧美日韩视频精品一区| 在线观看免费高清a一片| 欧美 日韩 精品 国产| 人人妻人人爽人人添夜夜欢视频| 精品熟女少妇八av免费久了| 中文字幕av电影在线播放| 久久婷婷成人综合色麻豆| 亚洲男人天堂网一区| 欧美亚洲 丝袜 人妻 在线| 国产片内射在线| 精品少妇一区二区三区视频日本电影| 精品国产美女av久久久久小说| 久久久久久久久久久久大奶| 国产在线精品亚洲第一网站| 美女视频免费永久观看网站| 亚洲人成77777在线视频| 日本一区二区免费在线视频| 一级毛片高清免费大全| 精品人妻1区二区| 大陆偷拍与自拍| 操美女的视频在线观看| 又黄又爽又免费观看的视频| 一进一出好大好爽视频| 久9热在线精品视频| 久久青草综合色| 日韩中文字幕欧美一区二区| 国产欧美亚洲国产| e午夜精品久久久久久久| 搡老熟女国产l中国老女人| 精品人妻1区二区| 久久中文字幕一级| 国产精品免费大片| 麻豆乱淫一区二区| 亚洲av成人av| e午夜精品久久久久久久| 一本大道久久a久久精品| 欧美av亚洲av综合av国产av| 色精品久久人妻99蜜桃| 99精品在免费线老司机午夜| 午夜影院日韩av| 香蕉丝袜av| 可以免费在线观看a视频的电影网站| 不卡av一区二区三区| 在线观看一区二区三区激情| 最新的欧美精品一区二区| 国产精品一区二区在线不卡| 12—13女人毛片做爰片一| 国产亚洲欧美在线一区二区| 日韩一卡2卡3卡4卡2021年| 午夜91福利影院| videos熟女内射| 少妇裸体淫交视频免费看高清 | 久久午夜综合久久蜜桃| 亚洲 国产 在线| 日韩视频一区二区在线观看| 午夜久久久在线观看| 又紧又爽又黄一区二区| 视频区欧美日本亚洲| 两人在一起打扑克的视频| 中文字幕精品免费在线观看视频| 一区二区日韩欧美中文字幕| 男人操女人黄网站| 正在播放国产对白刺激| www日本在线高清视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品.久久久| 亚洲一卡2卡3卡4卡5卡精品中文| av电影中文网址| 巨乳人妻的诱惑在线观看| 母亲3免费完整高清在线观看| 男女高潮啪啪啪动态图| 久久久久久久国产电影| 国产成人精品无人区| 国产成人啪精品午夜网站| 女同久久另类99精品国产91| 国产欧美日韩精品亚洲av| bbb黄色大片| 久久精品国产综合久久久| 757午夜福利合集在线观看| 欧美av亚洲av综合av国产av| 国产精品偷伦视频观看了| 啦啦啦在线免费观看视频4| 老熟女久久久| 色精品久久人妻99蜜桃| 看黄色毛片网站| 免费黄频网站在线观看国产| 老鸭窝网址在线观看| 两个人看的免费小视频| 久久精品国产a三级三级三级| 中文字幕人妻丝袜制服| av天堂久久9| 女人被躁到高潮嗷嗷叫费观| 露出奶头的视频| 成年女人毛片免费观看观看9 | 51午夜福利影视在线观看| 国产精品欧美亚洲77777| 国产无遮挡羞羞视频在线观看| 国产精品九九99| 操美女的视频在线观看| 亚洲欧美精品综合一区二区三区| 亚洲av成人av| 欧美另类亚洲清纯唯美| 纯流量卡能插随身wifi吗| 成在线人永久免费视频| 亚洲国产中文字幕在线视频| 亚洲全国av大片| 精品免费久久久久久久清纯 | 大香蕉久久网| 法律面前人人平等表现在哪些方面| 国产一区二区三区视频了| 成人亚洲精品一区在线观看| 午夜久久久在线观看| 国产一区二区三区视频了| 国产av精品麻豆| 国产亚洲欧美精品永久| 亚洲中文字幕日韩| 91av网站免费观看| 亚洲精品国产色婷婷电影| 成人av一区二区三区在线看| 久久亚洲真实| 一级毛片精品| 日韩欧美一区视频在线观看| tocl精华| 成年版毛片免费区| 色94色欧美一区二区| 欧美日韩亚洲国产一区二区在线观看 | 婷婷精品国产亚洲av在线 | 不卡一级毛片| 少妇裸体淫交视频免费看高清 | 亚洲精品av麻豆狂野| 精品亚洲成国产av| 欧美日韩成人在线一区二区| 欧美国产精品va在线观看不卡| 国产91精品成人一区二区三区| 中文字幕人妻熟女乱码| 757午夜福利合集在线观看| 欧美黑人欧美精品刺激| 亚洲综合色网址| 动漫黄色视频在线观看| 日本a在线网址| 久久人妻av系列| 国产男靠女视频免费网站| 日韩人妻精品一区2区三区| 亚洲 欧美一区二区三区| 一级a爱片免费观看的视频| 大香蕉久久成人网| 在线观看舔阴道视频| 在线永久观看黄色视频| 在线av久久热| 老熟妇仑乱视频hdxx| 一夜夜www| 久久人人爽av亚洲精品天堂| 亚洲第一av免费看| 欧美成狂野欧美在线观看| 亚洲欧美一区二区三区久久| 亚洲成av片中文字幕在线观看| 国产精品亚洲av一区麻豆| 又紧又爽又黄一区二区| 亚洲欧美一区二区三区黑人| 色综合婷婷激情| 国产精品久久久人人做人人爽| 一进一出抽搐动态| 日本黄色视频三级网站网址 | 美女国产高潮福利片在线看| 午夜福利免费观看在线| 午夜免费鲁丝| 国产精品国产av在线观看| 国产国语露脸激情在线看| 九色亚洲精品在线播放| 久久久国产精品麻豆| 色尼玛亚洲综合影院| 成人国产一区最新在线观看| 91国产中文字幕| 亚洲一区二区三区不卡视频| av有码第一页| 久久热在线av| 日韩欧美一区视频在线观看| 国产单亲对白刺激| 韩国精品一区二区三区| 欧美色视频一区免费| 757午夜福利合集在线观看| 欧美激情极品国产一区二区三区| 91大片在线观看| 精品亚洲成国产av| 久久久国产成人免费| 欧美不卡视频在线免费观看 | bbb黄色大片| 一二三四在线观看免费中文在| 女性生殖器流出的白浆| 黄片播放在线免费| 久久精品国产亚洲av香蕉五月 | 久久久精品免费免费高清| 三级毛片av免费| 精品少妇一区二区三区视频日本电影| 国产成人精品久久二区二区91| 国产成人免费无遮挡视频| 国产不卡一卡二| 亚洲人成电影免费在线| 天堂俺去俺来也www色官网| 中文字幕另类日韩欧美亚洲嫩草| 真人做人爱边吃奶动态| 捣出白浆h1v1| 制服人妻中文乱码| 一区福利在线观看| 首页视频小说图片口味搜索| 自线自在国产av| 日韩大码丰满熟妇| 不卡av一区二区三区| 国产一区二区激情短视频| 在线播放国产精品三级| 成年动漫av网址| 老司机午夜十八禁免费视频| 国产精品综合久久久久久久免费 | 两个人免费观看高清视频| 99热网站在线观看| 自线自在国产av| 桃红色精品国产亚洲av| 欧美精品亚洲一区二区| 51午夜福利影视在线观看| 久久 成人 亚洲| 亚洲精品一二三| 很黄的视频免费| 建设人人有责人人尽责人人享有的| 亚洲欧美一区二区三区黑人| 在线观看免费高清a一片| a级片在线免费高清观看视频| 亚洲精品乱久久久久久| 精品亚洲成a人片在线观看| 巨乳人妻的诱惑在线观看| 热99re8久久精品国产| 国产精品亚洲一级av第二区| 国产精品久久视频播放| 老司机在亚洲福利影院| 亚洲欧美一区二区三区黑人| 又黄又粗又硬又大视频| 老司机影院毛片| 精品国产乱子伦一区二区三区| 精品视频人人做人人爽| 91麻豆av在线| 搡老岳熟女国产| 日本wwww免费看| 热re99久久精品国产66热6| 大型av网站在线播放| 99久久99久久久精品蜜桃| 天堂动漫精品| 久久国产精品人妻蜜桃| 少妇被粗大的猛进出69影院| 夫妻午夜视频| 久久狼人影院| 99久久综合精品五月天人人| 国产精品影院久久| 国产精品美女特级片免费视频播放器 | 多毛熟女@视频| 国产日韩欧美亚洲二区| 精品国产一区二区久久| 自线自在国产av| 男人操女人黄网站| 亚洲精品国产区一区二| 久久天躁狠狠躁夜夜2o2o| 高清欧美精品videossex| 国产亚洲欧美在线一区二区| 久久 成人 亚洲| 欧美黑人欧美精品刺激| 久久久久久久久免费视频了| 欧美黄色片欧美黄色片| 国内久久婷婷六月综合欲色啪| 欧美av亚洲av综合av国产av| 久久精品国产99精品国产亚洲性色 | 国产精品亚洲av一区麻豆| 亚洲全国av大片| 欧美日韩视频精品一区| 美女视频免费永久观看网站| 国产欧美日韩一区二区精品| 欧美亚洲日本最大视频资源| 亚洲色图 男人天堂 中文字幕| 亚洲精品成人av观看孕妇| 亚洲av日韩在线播放| 搡老熟女国产l中国老女人| 国产亚洲欧美在线一区二区| 看片在线看免费视频| 亚洲熟妇中文字幕五十中出 | 一区二区三区激情视频| 91国产中文字幕| 国产亚洲av高清不卡| 久久久久久久久久久久大奶| 黄色成人免费大全| a级毛片在线看网站| 色老头精品视频在线观看| 午夜亚洲福利在线播放| 又黄又粗又硬又大视频| 日本a在线网址| 成人永久免费在线观看视频| 国内毛片毛片毛片毛片毛片| netflix在线观看网站| 日韩熟女老妇一区二区性免费视频| 亚洲欧美日韩高清在线视频| 99国产精品免费福利视频| av天堂久久9| 国产精品久久久人人做人人爽| 亚洲avbb在线观看| 久久精品aⅴ一区二区三区四区| 成人三级做爰电影| 丁香欧美五月| 免费久久久久久久精品成人欧美视频| 日韩欧美一区视频在线观看| √禁漫天堂资源中文www| 精品国产一区二区三区四区第35| 久久久国产一区二区| 久久国产精品男人的天堂亚洲| 国产成人欧美在线观看 | 国产高清videossex| 两个人免费观看高清视频| 国产精品免费大片| 精品人妻在线不人妻| 熟女少妇亚洲综合色aaa.| 一级a爱片免费观看的视频| 中文字幕色久视频| 精品国产一区二区三区四区第35| 午夜成年电影在线免费观看| av视频免费观看在线观看| www.熟女人妻精品国产| 91麻豆精品激情在线观看国产 | 久久香蕉精品热| 日韩大码丰满熟妇| 久久久久久免费高清国产稀缺| 青草久久国产| 国产精品综合久久久久久久免费 | 成人免费观看视频高清| 久久 成人 亚洲| 亚洲中文av在线| 美女福利国产在线| 老司机影院毛片| 韩国av一区二区三区四区| 大陆偷拍与自拍| 天天躁日日躁夜夜躁夜夜| 亚洲人成77777在线视频| 亚洲午夜理论影院| 成在线人永久免费视频| 热99国产精品久久久久久7| 男女免费视频国产| 黄色成人免费大全| 成人手机av| 超碰97精品在线观看| 欧美色视频一区免费| 午夜视频精品福利| 日本vs欧美在线观看视频| 精品亚洲成a人片在线观看| 国产97色在线日韩免费| 天天影视国产精品| 黑人猛操日本美女一级片| 国产欧美日韩一区二区三| 中文字幕最新亚洲高清| 国产精品二区激情视频| 少妇猛男粗大的猛烈进出视频| 国产免费现黄频在线看| 好看av亚洲va欧美ⅴa在| 俄罗斯特黄特色一大片| 亚洲一区中文字幕在线| 久久久久国内视频| 美女视频免费永久观看网站| 精品无人区乱码1区二区| videos熟女内射| 久久久久国产一级毛片高清牌| 国产不卡一卡二| 国产精品永久免费网站| www.999成人在线观看| 亚洲精品av麻豆狂野| 午夜福利免费观看在线| 99国产精品一区二区三区| 欧美在线一区亚洲| 建设人人有责人人尽责人人享有的| 成年人黄色毛片网站| 久久婷婷成人综合色麻豆| 女警被强在线播放| 亚洲国产精品sss在线观看 | 免费一级毛片在线播放高清视频 | 99在线人妻在线中文字幕 | 亚洲av欧美aⅴ国产| 一级黄色大片毛片| 久久久国产成人免费| 日韩制服丝袜自拍偷拍| 久久草成人影院| 欧美黑人精品巨大| 我的亚洲天堂| 精品久久久久久久毛片微露脸| 亚洲专区字幕在线| 亚洲av欧美aⅴ国产| 国产视频一区二区在线看| 成人黄色视频免费在线看| 18禁观看日本| 18禁裸乳无遮挡动漫免费视频| 国产精品香港三级国产av潘金莲| 精品第一国产精品| 久久香蕉国产精品| 免费在线观看视频国产中文字幕亚洲| 日本撒尿小便嘘嘘汇集6| 波多野结衣av一区二区av| 免费久久久久久久精品成人欧美视频| 99热只有精品国产| 亚洲中文日韩欧美视频| 满18在线观看网站| 亚洲成人免费电影在线观看| 国产成人av教育| videos熟女内射| 欧美一级毛片孕妇| 午夜免费观看网址| 美女福利国产在线| 高清黄色对白视频在线免费看| 精品少妇一区二区三区视频日本电影| 午夜精品久久久久久毛片777| 婷婷精品国产亚洲av在线 | 中文字幕人妻丝袜一区二区| 一区二区三区国产精品乱码| 精品久久久久久电影网| 久久影院123| 不卡一级毛片| 成在线人永久免费视频| 国产精品 欧美亚洲| 亚洲成国产人片在线观看| 久久国产精品影院| 欧美激情 高清一区二区三区| 如日韩欧美国产精品一区二区三区| 在线观看舔阴道视频| 国产91精品成人一区二区三区| 成人国语在线视频| 欧美日韩亚洲高清精品| 老鸭窝网址在线观看| 日韩免费高清中文字幕av| 一区二区日韩欧美中文字幕| 两人在一起打扑克的视频| 在线观看免费视频日本深夜| 99国产综合亚洲精品| 久久热在线av| 久久亚洲精品不卡| 两人在一起打扑克的视频| 每晚都被弄得嗷嗷叫到高潮| 久久天躁狠狠躁夜夜2o2o| 一本综合久久免费| 一区福利在线观看| 最新在线观看一区二区三区| 欧美日韩亚洲高清精品| 高清毛片免费观看视频网站 | 一级片'在线观看视频| 午夜视频精品福利| 一区二区三区精品91| 亚洲午夜精品一区,二区,三区| 一个人免费在线观看的高清视频| 丰满迷人的少妇在线观看| 日韩 欧美 亚洲 中文字幕| 99久久国产精品久久久| 天堂俺去俺来也www色官网| 亚洲一码二码三码区别大吗| 欧美最黄视频在线播放免费 | 亚洲自偷自拍图片 自拍| 国产欧美日韩精品亚洲av| 国产人伦9x9x在线观看| 午夜福利视频在线观看免费| 久9热在线精品视频| 国产亚洲一区二区精品| 免费人成视频x8x8入口观看| 91在线观看av| 日本黄色日本黄色录像| 丰满人妻熟妇乱又伦精品不卡| 涩涩av久久男人的天堂| 久久午夜亚洲精品久久| 麻豆成人av在线观看| 亚洲精华国产精华精| 亚洲中文日韩欧美视频| 人妻一区二区av| 午夜成年电影在线免费观看| 波多野结衣av一区二区av| 国产成人av教育| 亚洲精品中文字幕在线视频| 超色免费av| 9热在线视频观看99| 日本a在线网址| 女人爽到高潮嗷嗷叫在线视频| 99在线人妻在线中文字幕 | 久久精品aⅴ一区二区三区四区| 中出人妻视频一区二区| 999久久久国产精品视频| 久久九九热精品免费| 久热爱精品视频在线9| 亚洲国产精品一区二区三区在线| 亚洲av片天天在线观看| 亚洲精品美女久久av网站| 制服人妻中文乱码| 在线观看一区二区三区激情| 首页视频小说图片口味搜索| 十八禁高潮呻吟视频| 精品国产一区二区久久| 日韩制服丝袜自拍偷拍| 操美女的视频在线观看| 熟女少妇亚洲综合色aaa.| av线在线观看网站| 老司机午夜福利在线观看视频| 搡老岳熟女国产| av网站在线播放免费| 日韩 欧美 亚洲 中文字幕| 中文字幕最新亚洲高清| 亚洲精品国产精品久久久不卡| 国产在视频线精品| 少妇裸体淫交视频免费看高清 | 亚洲少妇的诱惑av| 可以免费在线观看a视频的电影网站| 涩涩av久久男人的天堂| 亚洲精品乱久久久久久| avwww免费| 国产高清videossex| 80岁老熟妇乱子伦牲交| xxx96com| 在线天堂中文资源库| 男女高潮啪啪啪动态图| 波多野结衣av一区二区av| 成人国语在线视频| 一区二区三区激情视频| 中文字幕精品免费在线观看视频| 欧美日韩中文字幕国产精品一区二区三区 | 精品国产一区二区三区久久久樱花| 成人精品一区二区免费| 午夜福利免费观看在线| 精品国内亚洲2022精品成人 | 成人免费观看视频高清| 亚洲情色 制服丝袜| 一进一出好大好爽视频| 国产高清国产精品国产三级| 美女高潮喷水抽搐中文字幕| 人人妻人人添人人爽欧美一区卜| 在线免费观看的www视频| 久久影院123| 日韩欧美三级三区| 丰满迷人的少妇在线观看| 欧美老熟妇乱子伦牲交| 在线播放国产精品三级| 午夜福利一区二区在线看| 多毛熟女@视频| 午夜福利一区二区在线看| 中文字幕最新亚洲高清| 久久中文看片网| 两个人看的免费小视频| 久久久水蜜桃国产精品网| 国产激情欧美一区二区| 五月开心婷婷网| 王馨瑶露胸无遮挡在线观看| 日韩视频一区二区在线观看| 在线观看舔阴道视频| 满18在线观看网站| 老熟妇乱子伦视频在线观看| a级毛片在线看网站| 变态另类成人亚洲欧美熟女 | 丝瓜视频免费看黄片| 99久久精品国产亚洲精品| 一级a爱片免费观看的视频| 精品欧美一区二区三区在线| 午夜福利乱码中文字幕| 中文字幕最新亚洲高清| 国产一区二区三区综合在线观看| 99国产精品99久久久久| 丝袜美腿诱惑在线| 免费在线观看视频国产中文字幕亚洲| 性色av乱码一区二区三区2| 美女国产高潮福利片在线看| 欧美在线一区亚洲| 又紧又爽又黄一区二区| 波多野结衣一区麻豆| 大型黄色视频在线免费观看| 女人被狂操c到高潮|