• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mode characteristics of nested eccentric waveguides constructed by two cylindrical nanowires coated with graphene

    2022-03-12 07:49:02JiLiu劉吉LixiaYu于麗霞andWenruiXue薛文瑞
    Chinese Physics B 2022年3期

    Ji Liu(劉吉) Lixia Yu(于麗霞) and Wenrui Xue(薛文瑞)

    1Key Laboratory of Instrumentation Science and Dynamic Measurement of Ministry of Education,North University of China,Taiyuan 030051,China

    2School of Information and Communication Engineering,North University of China,Taiyuan 030051,China 3College of Physics and Electronic Engineering,Shanxi University,Taiyuan 030006,China

    Keywords: graphene,nanowire,waveguide,multipole method

    1. Introduction

    Surface plasmon waveguides (SPWs) are a new type of waveguide, which uses surface plasmon polaritons(SPPs)[1]to guide the transmission of electromagnetic waves.The main materials used in SPWs are noble metals,[2]semiconductors,[3]graphene,[4]etc. The size of these waveguides is in micron or nanometer scale, and they are expected to be widely used in highly integrated photonic chips[5]and in the field of sensing.[6]Graphene is a new type of two-dimensional material, which has been applied in many fields.[7-9]Compared to conventional metal materials (e.g., silver and gold), graphene has desirable properties, such as tunability, extreme confinement, crystallinity and low loss. Because of these unique properties, graphene has been recently proposed as a platform for plasmon waveguiding from THz to infrared frequencies.[10]By coating single[11,12]or multi-layer[13-15]graphene on the surface of dielectrics,strip,[16-18]circular,[11,12]elliptical[19]and hybrid[20-26]SPWs can be formed. On this basis, parallel SPWs can be constructed.[27-29]

    The nested surface plasmon waveguide coated with graphene is a research hotspot. In 2015, Yanget al.designed a circular dielectric nanowire waveguide coated with two layers of graphene,[13]which can be regarded as a coaxial waveguide formed by embedding one graphene-coated dielectric nanowire into the axis of the other. By solving the dispersion equation, it is found that the Fermi energy of graphene,the distance between the two layers of graphene and the radius of the waveguide can affect the behavior of the modes supported by the waveguide. The nested surface plasmon waveguide designed by Liuet al.in 2017 can be regarded as a coaxial waveguide formed by embedding a graphene-coated cylindrical silicon nanowire into the axis of another graphenecoated cylindrical silicon dioxide nanowire.[14]The results show that the fundamental mode supported by the waveguide has a longer propagation distance and a smaller mode area.In 2017, Xinget al.designed a circular dielectric nanowire waveguide coated with multilayer graphene,[15]which can be regarded as a coaxial waveguide formed by embedding multiple graphene-coated dielectric nanowires with a gradually decreasing radius into the axis of graphene-coated dielectric nanowires with a larger radius. The results show that the waveguide has a strong ability to confine the field, and the mode characteristics can be adjusted by the chemical potential of graphene. In 2019, Chenget al.designed a graphene coated confocal elliptical dielectric nanowire waveguide,[19]which can be regarded as a waveguide formed by embedding one elliptical dielectric nanowire into another and keeping the two elliptical dielectric nanowires confocal. The results show that, compared with the elliptical dielectric nanowire waveguide coated with single-layer graphene,this kind of waveguide has better mode performance and a wider adjustable range.Since a common feature of the above waveguides is that the embedded waveguide and parent waveguide have the same axis of symmetry,the components of the field can be expanded in the same coordinate system when studying the mode characteristics. Based on the boundary conditions, the dispersion equation is obtained, and then the effective refractive index and field distribution are obtained.If the embedded waveguide is eccentric, this method will not work and the mode characteristics of the waveguide will not be obtained.

    In this paper, the mode characteristics of a kind of graphene-coated cylindrical dielectric nanowire waveguide embedded with eccentric cylindrical dielectric nanowire are studied using the multipole method.[30]This method can effectively overcome the difficulties mentioned above. To verify the obtained results, the FEM method is used. This paper is structured as follows. Section 2 gives the theoretical model.Section 3 presents the result and discussion. The last section is the conclusion.

    2. Theoretical model

    The waveguide structure designed in this paper is shown in Fig. 1. It consists of a circular parent dielectric nanowire(wire 2)with a radius ofρ20and a circular embedded dielectric nanowire (wire 1) with a radius ofρ10. Wire 1 and wire 2 are eccentric. The minimum spacing between the outer surface of wire 1 and the inner surface of wire 2 iss. Suppose that the dielectric constant of wire 1 isε1(region I), wire 2 isε2(region II) and the background isε3(region III). The surface of wire 1 and wire 2 is coated with a single layer of graphene. The conductivity of graphene,σg, has been computed within the random-phase approximation.[31]This kind of waveguide structure may be successfully fabricated using the preform-drawing method[32]and chemical vapor deposition(CVD)method.[33]

    Fig. 1. Crosssection of the waveguide composed of one circular parent dielectric nanowire coated with graphene and one circular embedded dielectric nanowire coated with graphene.

    As shown in Fig.1,the rectangular coordinate systemo1-x1y1z1and the cylindrical coordinate systemo1-ρ1φ1z1are established with the symmetrical center of wire 1 as the coordinate origin. The rectangular coordinate systemo2-x2y2z2,o-xyzand the cylindrical coordinate systemo2-ρ2φ2z2are established with the symmetrical center of wire 2 as the coordinate origin. According to the multipole method,[30]assuming that wire 1 and wire 2 exist separately, theEzandHzfields inside and outside the wire are distributed as follows in their respective coordinate systems:

    Inside wire 1:

    Graphene is regarded as a material with zero thickness and conductivityσg.At the interface of regions I,II and III,the following relation of the boundary value of tangential fields can be applied:

    According to Eqs. (18)-(25), a set of linear algebraic equations can be obtained by using the point by point matching method[37]on the interface:

    The linear algebraic Eq. (26) is solved by our own Fortran 90 program. The distribution of field, the real part Re(neff)and the imaginary part Im(neff) of the effective refractive index of each mode can be obtained. The propagation length is given by the formulaLprop=λ/[4πIm(neff)].[38,39]The figure of merit is given by FoM=Re(neff)/Im(neff),[39]which can be used to characterize the transmission performance of the waveguide.

    3. Results and discussion

    3.1. Classification of modes

    Table 1 shows the combination of the three lowest-order modes supported by the waveguide, the distribution of the electric field component in thezdirection and the distribution of the electric field intensity under the conditions ofλ=7 μm,Ef=0.5 eV,ρ10=75 nm,ρ20=150 nm,s=20 nm,ε1=1.0,ε2=2.1025,andε3=1.0. The three modes are named mode 0, mode 1 and mode 2 in turn. Mode 0 is combined by zeroorder modes of the two single rods, and the electric field is mainly distributed in the gap region between the two layers of graphene on the right side of the waveguide. Mode 1 and mode 2 are combined by the first-order modes of two single

    rods. Thezcomponent of the electric field of mode 1 is antisymmetric about the horizontal axis, and thezcomponent of the electric field of mode 2 is symmetric about the horizontal axis.

    Table 1. The combination of the three lowest-order modes supported by the waveguide, the distribution of the electric field component in the z direction and the distribution of the electric field intensity under the conditions of λ =7 μm, Ef =0.5 eV,ρ10 =75 nm, ρ20 =150 nm, s=20 nm, ε1 =1.0,ε2=2.1025,and ε3=1.0.

    3.2. Influence of working wavelength on transmission characteristics

    SettingEf=0.5 eV,ρ10=75 nm,ρ20=150 nm,s=20 nm,ε1=1.0,ε2=2.1025, andε3=1.0, the relationship between Re(neff),Lprop, and FoM of the three lowest-order modes and the working wavelengthλis shown in Figs.2(a)-2(c). In these figures,the solid line is the result obtained using the FEM method,and the solid point line is the result obtained using the multipole method. If there is no special explanation,this marking method will be used in the following. With typical parameters,the conductivity of graphene varies greatly in the frequency range of 10 THz-100 THz, especially in the range of 40 THz-50 THz, and the corresponding wavelength range is about 6 μm-8 μm.[40]When the operating wavelength increases from 6.00 μm to 8.00 μm, the Re(neff)-curves of the three lowest-order modes decrease monotonously and the distance between these curves increases. TheLprop-curves increase monotonically. TheLprop-curve of mode 2 intersects with theLprop-curve of mode 0 at 7.00 μm,and intersects with theLprop-curve of mode 1 at 7.00 μm. The FoM-curve corresponding to mode 0 increases gradually,and the FoM value of mode 1 and mode 2 reaches a peak at 7.0 μm and then decreases gradually. In the selected parameter range, mode 0 has the highest figure of merit and the best performance. The two embedded graphs in Fig. 2(b) show the field distribution of mode 0 when the operating wavelengths are 6.0 μm and 8.0 μm.Comparing the two embedded graphs,we can see that when the wavelength is short, the field distribution is mainly concentrated near the inner and outer graphene layers,and the electric field intensity is the largest near the inner graphene layer, and the interaction between the field and graphene is the largest. In addition, the waveguide loss is larger and the propagation length is shorter. When the wavelength is longer,the electric field diffuses to the dielectric layer between the two layers of graphene, the confinement of the waveguide to the field is weakened,the loss is reduced and the propagation length is longer.

    Fig.2.The relationship between Re(neff),Lprop,and FoM of the three lowestorder modes and the working wavelength λ when Ef=0.5 eV,ρ10=75 nm,ρ20=150 nm,s=20 nm,ε1=1.0,ε2=2.1025,and ε3=1.0.

    3.3. Influence of the radius of wire 1 on transmission characteristics

    Fig.3.The relationship between Re(neff),Lprop,and FoM of the three lowestorder modes and the radius ρ10 of wire 1 when λ =7.0 μm, Ef =0.5 eV,ρ20=150 nm,s=20 nm,ε1=1.0,ε2=2.1025,and ε3=1.0.

    Settingλ=7 μm,Ef=0.5 eV,ρ20=150 nm,s=20 nm,ε1=1.0,ε2=2.1025,andε3=1.0,the relationship between Re(neff),Lpropand FoM of the three lowest-order modes and the radiusρ10of wire 1 is shown in Figs. 3(a)-3(c). As the radius of the inner wireρ10increases gradually, the real part trates to the region between the two layers of graphene. Whenρ10=65 nm, the field distribution decreases, the field intensity is not very strong and the interaction between the field and graphene is the smallest. Furthermore, the waveguide loss is the smallest and the propagation length is the longest. Whenρ10=100 nm, the field is mainly concentrated between the inner and outer graphene layers on the right side of the waveguide. The field intensity is higher and the interaction between the field and graphene becomes larger. In addition,the waveguide loss becomes larger and the propagation length becomes shorter.of the effective refractive index Re(neff) of mode 0, mode 1 and mode 2 increase monotonically. TheLpropof mode 0 and mode 1 increase slowly and monotonically, while theLpropof mode 2 increases gradually at first, reaches maximum at 65 nm,and then decreases gradually. In the selected parameter range, mode 0 has the highest figure of merit and the best performance. The three embedded graphs in Fig. 3(b) show the field distribution of mode 2 when the radius of the inner wireρ10is 50 nm, 65 nm, and 100 nm. Comparing the three embedded graphs, we can see that whenρ10=50 nm,the field is widely distributed on the inner and outer graphene layers, and the interaction between the field and graphene is large. In addition, the waveguide loss is large and the propagation length is short. Whenρ10increases gradually,the field shifts to the right side of the waveguide and gradually concen-

    Fig. 4. The dependence of Re(neff), Lprop, and FoM of the three lowestorder modes on the radius ρ20 of wire 2 when λ =7.0 μm, Ef =0.5 eV,ρ10=75 nm,s=20 nm,ε1=1.0,ε2=2.1025,and ε3=1.0.

    3.4. Influence of the radius of wire 2 on transmission characteristics

    Settingλ=7 μm,Ef=0.5 eV,ρ10=75 nm,s=20 nm,ε1= 1.0,ε2= 2.1025, andε3= 1.0, the dependence of Re(neff),Lprop, and FoM of the three lowest-order modes on the radiusρ20of wire 2 is shown in Figs. 4(a)-4(c). When the radiusρ20of the outer wire is increased, the real part of the effective index of mode 0,mode 1 and mode 2 monotonically decreases,and the distance between the curves increases.The propagation length of the three modes decreases slowly,but the change is not significant. In the selected parameter range,mode 0 has the highest figure of merit and the best performance. The two images embedded in Fig. 4(b) show the field distribution map corresponding to mode 0 whenρ20is 100 nm and 200 nm,respectively. Comparing the two embedded images, we can see that the field is concentrated in the area near the inner and outer graphene layers on the right side of the waveguide. Whenρ20=100 nm,the distribution range of the field is large,but the intensity of the field is weak.Whenρ20=200 nm,the distribution range of the field is small,but the intensity of the field is strong.In both cases,the interaction strength between the field and graphene is close, the waveguide loss is close and the propagation length is also close.

    3.5. Influence of the minimum spacing on transmission characteristics

    Settingλ= 7 μm,Ef= 0.5 eV,ρ10= 75 nm,ρ20=150 nm,ε1=1.0,ε2=2.1025,andε3=1.0,the dependence of Re(neff),Lprop,and FoM of the three lowest-order modes on the minimum spacing between the inner and outer cylinderssare shown in Figs.5(a)-5(c). Increasing the minimum spacing between the inner and outer cylinders,the real part of the effective index of the three modes monotonically decreases,and the spacing between the curves becomes smaller.The propagation lengths of the three modes increase monotonously, the curve corresponding to mode 0 increases faster than that corresponding to mode 1, and the curve corresponding to mode 2 intersects with the other two curves.The transmission performance of mode 0 and mode 1 decreases,while the transmission performance of mode 2 is almost unaffected. The two embedded images in Fig.5(b)show that the field distribution of mode 0 corresponding tosis 10 nm and 30 nm,respectively. Comparing the two embedded images,we can see that when the minimum spacing between the inner and outer cylinders is small,the area of field distribution is small,the field intensity is high,the confinement of the waveguide to the field is strong,the interaction between the field and graphene is strong,the waveguide loss is large and the propagation length is short. When the minimum spacing between the inner and outer cylinders is large,the area of field distribution is large,the field strength is weak, the confinement of the waveguide to the field is weak,the interaction between the field and graphene is weak, the waveguide loss is small and the propagation length is long.

    Fig.5. The dependence of Re(neff),Lprop,and FoM of the three lowest-order modes on the minimum spacing between the inner and outer cylinders s when λ =7.0, Ef =0.5 eV, ρ10 =75 nm, ρ20 =150 nm, ε1 =1.0, ε2 =2.1025 and ε3=1.0.

    3.6. Influence of the Fermi energy on transmission characteristics

    Settingλ= 7 μm,ρ10= 75 nm,ρ20= 150 nm,s= 20 nm,ε1= 1.0,ε2= 2.1025, andε3= 1.0, the dependence of Re(neff),Lprop, and FoM of the three lowestorder modes on the Fermi energyEfis shown in Figs. 6(a)-6(c). With the increase inEf, the real part of the effective refractive index of the three lowest-order modes decreases monotonously, the confinement of the waveguide to the field decreases, the interaction between the field and graphene weakens, the loss decreases and the propagation length increases. In this changing process, the propagation length of the three modes shows little difference.When the Fermi energy of graphene increases from 0.2 eV to the dielectric layer between the two layers of graphene,the field strength on the graphene is weak,the confinement of the waveguide to the field is weak, the interaction between the field and graphene is weak, the waveguide loss is small and the propagation length is long.to 0.8 eV,the propagation length of mode 2 will gradually exceed the other two modes. Mode 0 always leads the other two modes with a higher figure of merit. By adjusting the Fermi level of graphene,the mode transmission performance can be improved obviously. The two embedded images in Fig. 6(b)show the field distribution of mode 0 whenEfis 0.2 eV and 0.8 eV, respectively. Comparing the two embedded images,we can see that when the Fermi energy of graphene is small,the field distribution is mainly confined to the inner and outer graphene layers, the intensity of the field on the graphene is high, the confinement of the waveguide to the field is strong,the interaction between the field and graphene is strong, the waveguide loss is large and the propagation length is short.When the Fermi energy of graphene is large,the field diffuses

    Fig.6. The dependence of Re(neff),Lprop,and FoM of the three lowestorder modes on the Fermi energy Ef when λ=7.0 μm,ρ10=75 nm,ρ20=150 nm,s=20 nm,ε1=1.0,ε2=2.1025,and ε3=1.0.

    Fig.7. The dependence of Re(neff),Lprop and FoM of the three lowestorder modes on the dielectric constant of region I ε1 when λ=7.0 μm,Ef=0.5 eV,ρ10=75 nm,ρ20=150 nm,s=20 nm,ε2=2.1025,and ε3=1.0.

    3.7. Influence of the dielectric constant of region I on transmission characteristics

    Settingλ= 7 μm,Ef= 0.5 eV,ρ10= 75 nm,ρ20=150 nm,s=20 nm,ε2=2.1025, andε3=1.0, the dependence of Re(neff),Lprop, and FoM of the three lowest-order modes on the dielectric constant of region Iε1is shown in Figs. 7(a)-7(c). With the increase inε1, the real parts of the effective refractive index of the three lowest-order modes increase monotonically,the confinement of the waveguide to the field becomes stronger, the interaction between the field and graphene becomes stronger, the loss increases, the propagation length decreases monotonously and the quality factor of the mode decreases gradually. The two embedded images in Fig.7(b)show the field distribution of mode 0 whenε1is 1.0 and 3.0, respectively. Comparing the two embedded images,we can see that when the dielectric constant of region I is small,the field intensity,the confinement of the waveguide to the field and the interaction between the field and graphene are weak. In addition,the waveguide loss is small and the propagation length is long. In contrast,when the dielectric constant of region I is large, the field intensity, the confinement of the waveguide to the field and the interaction between the field and graphene are strong, the waveguide loss is large and the propagation length is short.

    Fig. 8. The dependence of Re(neff), Lprop, and FoM of the three lowestorder modes on the dielectric constant of region III ε3 when λ =7.0 μm,Ef = 0.5 eV, ρ10 = 75 nm, ρ20 = 150 nm, s = 20 nm, ε1 = 1.0, and ε2=2.1025.

    3.8. Influence of the dielectric constant of region III on transmission characteristics

    Settingλ= 7 μm,Ef= 0.5 eV,ρ10= 75 nm,ρ20=150 nm,s=20 nm,ε1=1.0, andε2=2.1025, the dependence of Re(neff),Lprop, and FoM of the three lowest-order modes on the dielectric constant of region IIIε3is shown in Figs. 8(a)-8(c). Increasingε3, the real parts of the effective refractive index of the three lowest-order modes increase monotonically, and the confinement of the waveguide to the field becomes stronger. The interaction between the field and graphene becomes stronger, the loss increases, the propagation length decreases monotonously,and the figure of merit of the mode decreases gradually. The two embedded images in Fig.8(b)show the field distribution of mode 0 whenε3is 1.0 and 3.0, respectively. Comparing the two embedded images,we can see that when the dielectric constant of region III is small, the intensity of the field is weak, the confinement of the waveguide to the field is weak,the interaction between the field and graphene is weak, the waveguide loss is small and the propagation length is long. When the permittivity of region III is large, the field intensity is strong, the confinement of the waveguide to the field is strong,the interaction between the field and graphene is strong, the waveguide loss is large and the propagation length is short.

    4. Conclusion

    The multipole method can effectively solve the mode problem of the graphene coated nested dielectric waveguide.Mode 0 is combined by the zero-order modes of two single nanowires.Mode 1 and mode 2 are combined by the first-order modes of two single nanowires. Within the selected parameter range, we find that mode 0 has the highest quality factor and the best performance. As the wavelength,the minimum spacing between the inner and the outer cylinders,the radius of the inner cylinder and the Fermi energy of graphene increase,the confinement of the waveguide to the three lowest-order modes decreases, the loss decreases and the propagation length increases. When the radius of the outer cylinder, the dielectric constant of region I or the dielectric constant of region III increases,the confinement of the waveguide to the three lowestorder modes increases,the loss increases and the propagation length decreases. These results have been verified by the FEM method. This work has provided a theoretical basis for the design,fabrication and application of nested dielectric nanowire waveguides coated with graphene.

    Acknowledgments

    Project supported by the Natural Science Foundation of Shanxi Province, China (Grant Nos. 201901D111159 and 2021D20021310) and the Shanxi Scholarship Council of China(Grant No.HGKY2019068).

    久久人妻av系列| 99久久无色码亚洲精品果冻| 99久国产av精品| 成人综合一区亚洲| 老熟妇乱子伦视频在线观看| 日本色播在线视频| 欧美性猛交黑人性爽| 春色校园在线视频观看| 别揉我奶头 嗯啊视频| 内射极品少妇av片p| 97碰自拍视频| 国产精品三级大全| 精品欧美国产一区二区三| 99热这里只有精品一区| 精品福利观看| 国产蜜桃级精品一区二区三区| 亚洲av第一区精品v没综合| 少妇人妻精品综合一区二区 | 非洲黑人性xxxx精品又粗又长| 99久久成人亚洲精品观看| 国产伦一二天堂av在线观看| 自拍偷自拍亚洲精品老妇| 久久久久久国产a免费观看| 久久久色成人| 99热精品在线国产| 久久热精品热| 国产精品一区二区三区四区久久| 99在线视频只有这里精品首页| 国产又黄又爽又无遮挡在线| 欧美日韩综合久久久久久| 最新中文字幕久久久久| 18禁在线无遮挡免费观看视频 | 日韩欧美一区二区三区在线观看| 97热精品久久久久久| 亚洲人成网站在线播| 搞女人的毛片| 国产一区二区三区av在线 | aaaaa片日本免费| 免费一级毛片在线播放高清视频| 日韩av不卡免费在线播放| 久久精品影院6| 给我免费播放毛片高清在线观看| 国产 一区 欧美 日韩| h日本视频在线播放| 久久精品国产自在天天线| 午夜亚洲福利在线播放| 欧美成人免费av一区二区三区| 欧美日韩国产亚洲二区| 免费看a级黄色片| 中文字幕熟女人妻在线| a级毛色黄片| 亚洲中文日韩欧美视频| 人人妻,人人澡人人爽秒播| 亚洲内射少妇av| 亚洲欧美中文字幕日韩二区| 成人精品一区二区免费| 国产精品福利在线免费观看| 午夜亚洲福利在线播放| 九九爱精品视频在线观看| 国产成人一区二区在线| 国产真实伦视频高清在线观看| 黄色视频,在线免费观看| 在线免费观看不下载黄p国产| 国产av麻豆久久久久久久| 国产女主播在线喷水免费视频网站 | 在线观看午夜福利视频| 亚洲在线自拍视频| 在线观看av片永久免费下载| 我要看日韩黄色一级片| 蜜桃亚洲精品一区二区三区| 国产精品1区2区在线观看.| 一区福利在线观看| 亚洲欧美清纯卡通| 国产激情偷乱视频一区二区| 久久久午夜欧美精品| or卡值多少钱| 中出人妻视频一区二区| 成人高潮视频无遮挡免费网站| 日本色播在线视频| 久久久久九九精品影院| 日韩一区二区视频免费看| 国内少妇人妻偷人精品xxx网站| 亚洲熟妇熟女久久| 国产精品一二三区在线看| 91狼人影院| 国产精品福利在线免费观看| 国模一区二区三区四区视频| 啦啦啦观看免费观看视频高清| 国产成人精品久久久久久| 国产av不卡久久| 成人av在线播放网站| 美女被艹到高潮喷水动态| 91久久精品电影网| 美女xxoo啪啪120秒动态图| 欧美丝袜亚洲另类| 亚洲国产精品合色在线| 我的女老师完整版在线观看| 在现免费观看毛片| 国产精品不卡视频一区二区| 3wmmmm亚洲av在线观看| 97热精品久久久久久| av在线老鸭窝| 我的老师免费观看完整版| 亚洲内射少妇av| 一级黄片播放器| 搡老熟女国产l中国老女人| 午夜福利高清视频| 精品免费久久久久久久清纯| 日韩欧美国产在线观看| av在线蜜桃| 国产黄a三级三级三级人| 在线免费观看不下载黄p国产| 国产伦一二天堂av在线观看| 国产精品一及| 国产亚洲精品久久久com| 人妻丰满熟妇av一区二区三区| 人妻夜夜爽99麻豆av| 成年女人永久免费观看视频| 国产日本99.免费观看| av在线亚洲专区| 日本色播在线视频| 男女视频在线观看网站免费| 内地一区二区视频在线| 悠悠久久av| 听说在线观看完整版免费高清| 极品教师在线视频| 亚洲第一区二区三区不卡| 长腿黑丝高跟| 韩国av在线不卡| 人妻制服诱惑在线中文字幕| 国产成年人精品一区二区| 成人性生交大片免费视频hd| 免费看光身美女| 亚洲欧美成人综合另类久久久 | 久久6这里有精品| 别揉我奶头 嗯啊视频| 午夜福利在线观看免费完整高清在 | 成人漫画全彩无遮挡| 在线免费观看不下载黄p国产| 国产av一区在线观看免费| 亚洲人成网站在线播放欧美日韩| 久久亚洲精品不卡| 亚洲aⅴ乱码一区二区在线播放| 国内久久婷婷六月综合欲色啪| av.在线天堂| 国产精品三级大全| 欧美高清性xxxxhd video| 插逼视频在线观看| 亚洲性夜色夜夜综合| 老司机福利观看| 在线观看免费视频日本深夜| 我要看日韩黄色一级片| 又黄又爽又刺激的免费视频.| 成人毛片a级毛片在线播放| 最近视频中文字幕2019在线8| 国产v大片淫在线免费观看| 亚洲精品一卡2卡三卡4卡5卡| 黑人高潮一二区| 51国产日韩欧美| 久久久久久久久久成人| 色综合亚洲欧美另类图片| 午夜爱爱视频在线播放| 免费看光身美女| 国产精品免费一区二区三区在线| 夜夜夜夜夜久久久久| 欧美不卡视频在线免费观看| 欧美精品国产亚洲| 久久久久性生活片| 日本-黄色视频高清免费观看| 国产精品爽爽va在线观看网站| 欧美另类亚洲清纯唯美| 91久久精品电影网| 国模一区二区三区四区视频| 国产精品亚洲美女久久久| 亚洲美女视频黄频| 麻豆av噜噜一区二区三区| 亚洲av二区三区四区| 国产高清视频在线观看网站| 国产亚洲精品久久久com| 91在线观看av| 亚洲av免费在线观看| 亚洲人与动物交配视频| 亚洲成人av在线免费| 精品久久久久久久久av| 人妻久久中文字幕网| 夜夜看夜夜爽夜夜摸| 欧美性猛交黑人性爽| 欧美高清性xxxxhd video| 国产高潮美女av| 免费观看人在逋| 国产aⅴ精品一区二区三区波| 国产乱人视频| 在线观看午夜福利视频| 日本熟妇午夜| 亚洲精品色激情综合| 亚洲成a人片在线一区二区| av天堂中文字幕网| 黄色视频,在线免费观看| 国产乱人偷精品视频| 久久热精品热| 99久久精品国产国产毛片| 亚洲性久久影院| 久久久久久久久大av| 最近2019中文字幕mv第一页| 中文亚洲av片在线观看爽| 亚洲精品粉嫩美女一区| 午夜福利成人在线免费观看| 两个人的视频大全免费| 国产高清有码在线观看视频| 真人做人爱边吃奶动态| 男人舔女人下体高潮全视频| 麻豆国产av国片精品| 亚洲,欧美,日韩| 亚洲av免费在线观看| 国产单亲对白刺激| 老熟妇仑乱视频hdxx| 岛国在线免费视频观看| 日韩欧美在线乱码| 亚洲av.av天堂| 精品无人区乱码1区二区| 一个人看的www免费观看视频| 97在线视频观看| 亚洲第一电影网av| 亚洲欧美日韩无卡精品| 成人av在线播放网站| 老熟妇乱子伦视频在线观看| 亚洲av一区综合| av在线老鸭窝| 九九久久精品国产亚洲av麻豆| 国产精品美女特级片免费视频播放器| 欧美人与善性xxx| 看非洲黑人一级黄片| 校园人妻丝袜中文字幕| 欧美成人免费av一区二区三区| 人妻丰满熟妇av一区二区三区| 国产女主播在线喷水免费视频网站 | 亚洲最大成人中文| 午夜福利在线在线| 久久久久久久午夜电影| 午夜激情福利司机影院| 成人精品一区二区免费| 日韩一本色道免费dvd| 国产精品精品国产色婷婷| 韩国av在线不卡| 在线播放无遮挡| 国产精品福利在线免费观看| 免费看美女性在线毛片视频| 国产视频内射| 人人妻人人看人人澡| 午夜福利高清视频| 久久久精品欧美日韩精品| 亚洲国产精品久久男人天堂| 美女免费视频网站| 少妇熟女欧美另类| 成年女人看的毛片在线观看| 天天躁日日操中文字幕| 久久久久国产网址| 欧美性猛交╳xxx乱大交人| 久久久精品大字幕| 久久99热这里只有精品18| 麻豆av噜噜一区二区三区| 国产女主播在线喷水免费视频网站 | 看黄色毛片网站| 丰满的人妻完整版| 老司机福利观看| 亚洲av中文av极速乱| 俺也久久电影网| 国产成人freesex在线 | 亚洲av二区三区四区| 欧美性感艳星| 亚洲精华国产精华液的使用体验 | 国内精品宾馆在线| av天堂中文字幕网| 国产精品久久久久久av不卡| 日韩精品中文字幕看吧| 日本爱情动作片www.在线观看 | 观看美女的网站| 亚洲三级黄色毛片| 我的女老师完整版在线观看| 在线播放国产精品三级| 最新中文字幕久久久久| 国产精品一二三区在线看| 国产女主播在线喷水免费视频网站 | 亚洲,欧美,日韩| 麻豆国产97在线/欧美| 亚洲国产精品国产精品| 日韩精品有码人妻一区| 国产亚洲欧美98| 22中文网久久字幕| 人妻少妇偷人精品九色| 日本黄大片高清| 国产成人a∨麻豆精品| 尾随美女入室| 国产精品爽爽va在线观看网站| 亚洲av成人精品一区久久| 在线观看一区二区三区| 欧美极品一区二区三区四区| 村上凉子中文字幕在线| 免费在线观看成人毛片| 日韩人妻高清精品专区| 国产精品美女特级片免费视频播放器| 成人毛片a级毛片在线播放| 18禁裸乳无遮挡免费网站照片| 天天一区二区日本电影三级| 超碰av人人做人人爽久久| 麻豆一二三区av精品| 国产精品国产三级国产av玫瑰| 如何舔出高潮| eeuss影院久久| 麻豆精品久久久久久蜜桃| 我的老师免费观看完整版| 俺也久久电影网| 一个人看的www免费观看视频| 一夜夜www| 久久久久久久久中文| 精品久久久久久久久av| 亚洲在线观看片| 久久99热这里只有精品18| 色av中文字幕| 亚洲精品成人久久久久久| 精品无人区乱码1区二区| 成人毛片a级毛片在线播放| 国内精品宾馆在线| 人妻夜夜爽99麻豆av| 春色校园在线视频观看| 精品熟女少妇av免费看| 午夜免费激情av| 成年版毛片免费区| 六月丁香七月| 成人亚洲欧美一区二区av| 99久久无色码亚洲精品果冻| 色噜噜av男人的天堂激情| 午夜激情欧美在线| 成人毛片a级毛片在线播放| 久久久色成人| 国产极品精品免费视频能看的| 亚洲五月天丁香| 看免费成人av毛片| 日日干狠狠操夜夜爽| 搞女人的毛片| 亚洲av熟女| 久久久久久久久久成人| 美女xxoo啪啪120秒动态图| 亚洲精华国产精华液的使用体验 | 三级毛片av免费| 国产精品一区二区性色av| 给我免费播放毛片高清在线观看| 精品一区二区三区人妻视频| 日韩亚洲欧美综合| 亚洲中文字幕一区二区三区有码在线看| videossex国产| 免费av不卡在线播放| 欧美激情在线99| 内射极品少妇av片p| 超碰av人人做人人爽久久| 日日摸夜夜添夜夜添av毛片| 99九九线精品视频在线观看视频| 日日摸夜夜添夜夜添av毛片| 男女之事视频高清在线观看| 婷婷亚洲欧美| 欧美xxxx黑人xx丫x性爽| 成年版毛片免费区| 69av精品久久久久久| 黄色配什么色好看| 卡戴珊不雅视频在线播放| 天天一区二区日本电影三级| 久久韩国三级中文字幕| 黄色日韩在线| 亚洲精品久久国产高清桃花| 国产亚洲精品久久久久久毛片| 天天躁日日操中文字幕| 在线天堂最新版资源| videossex国产| 成人亚洲欧美一区二区av| 在线观看午夜福利视频| 亚洲欧美精品自产自拍| 精品一区二区三区视频在线| 亚洲精品亚洲一区二区| 国产日本99.免费观看| 人人妻人人澡欧美一区二区| 成人鲁丝片一二三区免费| 亚洲欧美日韩无卡精品| 亚洲人成网站在线播| 搡女人真爽免费视频火全软件 | 久久欧美精品欧美久久欧美| 少妇人妻精品综合一区二区 | 国产蜜桃级精品一区二区三区| 亚洲第一电影网av| 国产一区亚洲一区在线观看| 联通29元200g的流量卡| 97在线视频观看| 日韩在线高清观看一区二区三区| 搡老妇女老女人老熟妇| 看免费成人av毛片| 一边摸一边抽搐一进一小说| 高清午夜精品一区二区三区 | 欧美一级a爱片免费观看看| 欧美精品国产亚洲| 18+在线观看网站| 噜噜噜噜噜久久久久久91| 久久久欧美国产精品| 国产一区二区三区在线臀色熟女| 成人永久免费在线观看视频| av视频在线观看入口| 国产白丝娇喘喷水9色精品| 少妇猛男粗大的猛烈进出视频 | 99热只有精品国产| 精品国内亚洲2022精品成人| 一级毛片电影观看 | 99热这里只有是精品在线观看| 久久人人精品亚洲av| 性欧美人与动物交配| 97人妻精品一区二区三区麻豆| 中出人妻视频一区二区| 久久99热这里只有精品18| 真实男女啪啪啪动态图| 十八禁网站免费在线| 精品国内亚洲2022精品成人| 亚洲性夜色夜夜综合| 一个人看视频在线观看www免费| 欧美在线一区亚洲| 欧美日韩综合久久久久久| 亚洲最大成人手机在线| ponron亚洲| 在线看三级毛片| 亚洲成人中文字幕在线播放| 中文字幕人妻熟人妻熟丝袜美| 亚洲av免费在线观看| 国产精品电影一区二区三区| 噜噜噜噜噜久久久久久91| 精品少妇黑人巨大在线播放 | 18禁在线播放成人免费| 成人高潮视频无遮挡免费网站| 亚洲精品影视一区二区三区av| 全区人妻精品视频| 三级毛片av免费| 国产一区二区三区av在线 | .国产精品久久| 国产成人影院久久av| 亚洲成人久久性| 亚洲人与动物交配视频| 精品人妻偷拍中文字幕| 简卡轻食公司| 天堂av国产一区二区熟女人妻| 欧美成人免费av一区二区三区| 蜜桃亚洲精品一区二区三区| 国产极品精品免费视频能看的| 国产黄色小视频在线观看| 久久久久久久亚洲中文字幕| 色噜噜av男人的天堂激情| 1024手机看黄色片| 夜夜看夜夜爽夜夜摸| 日韩欧美精品免费久久| 丝袜喷水一区| 久久久久久久久久黄片| 免费av观看视频| 男女之事视频高清在线观看| 在线观看免费视频日本深夜| 别揉我奶头~嗯~啊~动态视频| 久久欧美精品欧美久久欧美| 99热这里只有精品一区| 欧美精品国产亚洲| 亚洲国产日韩欧美精品在线观看| 亚洲欧美日韩卡通动漫| 精品熟女少妇av免费看| 国产日本99.免费观看| 一a级毛片在线观看| 精品人妻一区二区三区麻豆 | 别揉我奶头~嗯~啊~动态视频| 免费看a级黄色片| 亚洲久久久久久中文字幕| 国产一区亚洲一区在线观看| 国产精品人妻久久久久久| 99国产精品一区二区蜜桃av| 国内精品美女久久久久久| 欧美色欧美亚洲另类二区| 成人国产麻豆网| 久久久久精品国产欧美久久久| 国产精品国产三级国产av玫瑰| 赤兔流量卡办理| 色综合站精品国产| 亚洲人成网站在线观看播放| 草草在线视频免费看| 一级毛片电影观看 | 在线观看66精品国产| 18禁在线播放成人免费| 国产在线男女| 国内少妇人妻偷人精品xxx网站| 欧美日韩乱码在线| 午夜视频国产福利| 男女下面进入的视频免费午夜| 国产精品久久久久久久久免| 午夜影院日韩av| 久久人人爽人人片av| 婷婷精品国产亚洲av在线| a级毛色黄片| 国产真实伦视频高清在线观看| 久久精品国产99精品国产亚洲性色| 国产三级在线视频| 韩国av在线不卡| 久久人妻av系列| 一a级毛片在线观看| 国产一区二区激情短视频| 亚洲av中文字字幕乱码综合| 99久久中文字幕三级久久日本| 国产又黄又爽又无遮挡在线| 亚洲精品成人久久久久久| 亚洲人成网站在线播| avwww免费| 成人亚洲精品av一区二区| 五月伊人婷婷丁香| 欧美成人免费av一区二区三区| 黄片wwwwww| 精品人妻一区二区三区麻豆 | 免费大片18禁| 国产精品99久久久久久久久| 欧美性猛交黑人性爽| 久久精品国产鲁丝片午夜精品| 久久精品久久久久久噜噜老黄 | 亚洲无线在线观看| 午夜视频国产福利| 免费不卡的大黄色大毛片视频在线观看 | 99在线视频只有这里精品首页| 国产成人精品久久久久久| 日日摸夜夜添夜夜爱| 欧美日本视频| 激情 狠狠 欧美| 午夜免费男女啪啪视频观看 | 久久久久免费精品人妻一区二区| 午夜老司机福利剧场| 国产av在哪里看| 乱码一卡2卡4卡精品| 中国国产av一级| 九九在线视频观看精品| 国产欧美日韩一区二区精品| 国产高清视频在线播放一区| 午夜爱爱视频在线播放| 亚洲精品日韩在线中文字幕 | 日本黄色片子视频| 精品人妻偷拍中文字幕| 99热网站在线观看| 成人鲁丝片一二三区免费| 国产熟女欧美一区二区| 国产精品一区www在线观看| 亚洲电影在线观看av| 最后的刺客免费高清国语| 悠悠久久av| 精品人妻熟女av久视频| 免费在线观看影片大全网站| 99riav亚洲国产免费| 国产女主播在线喷水免费视频网站 | 免费黄网站久久成人精品| 搡老岳熟女国产| 久久草成人影院| 美女免费视频网站| 欧美成人免费av一区二区三区| avwww免费| 直男gayav资源| 久久这里只有精品中国| 在线播放国产精品三级| 日韩制服骚丝袜av| 精品久久久久久久久久免费视频| АⅤ资源中文在线天堂| 小蜜桃在线观看免费完整版高清| 免费看美女性在线毛片视频| 国产毛片a区久久久久| 日韩高清综合在线| 成人av一区二区三区在线看| 在线观看午夜福利视频| 日本熟妇午夜| 乱人视频在线观看| 成人亚洲欧美一区二区av| 99在线视频只有这里精品首页| 久久久午夜欧美精品| 中文字幕免费在线视频6| 九九热线精品视视频播放| 在线观看66精品国产| 国产黄色视频一区二区在线观看 | 自拍偷自拍亚洲精品老妇| 精品久久久久久久久久免费视频| 免费大片18禁| 亚洲精品一卡2卡三卡4卡5卡| 国产精品久久视频播放| 高清午夜精品一区二区三区 | 在线看三级毛片| 久久热精品热| 久久草成人影院| 久久久久久久久大av| 可以在线观看毛片的网站| 男女之事视频高清在线观看| 在线观看免费视频日本深夜| 一区二区三区免费毛片| 老熟妇仑乱视频hdxx| 亚洲一区高清亚洲精品| 亚洲精品日韩在线中文字幕 | 国产淫片久久久久久久久| 色5月婷婷丁香| 观看美女的网站| 国产探花在线观看一区二区| 欧美一区二区国产精品久久精品| 亚洲性久久影院| 97热精品久久久久久| 午夜福利高清视频| 麻豆av噜噜一区二区三区| 久久久成人免费电影| 啦啦啦观看免费观看视频高清| 听说在线观看完整版免费高清| 欧美不卡视频在线免费观看| 久久国内精品自在自线图片| 国产男靠女视频免费网站| 久久久久久久亚洲中文字幕| 久久久国产成人免费| 一级黄色大片毛片| 高清毛片免费观看视频网站| 身体一侧抽搐|