• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of heavy ion irradiation on the interface traps of AlGaN/GaN high electron mobility transistors

    2022-03-12 07:48:46ZhengZhaoLin林正兆Ling呂玲XueFengZheng鄭雪峰YanRongCao曹艷榮PeiPeiHu胡培培XinFang房鑫andXiaoHuaMa馬曉華
    Chinese Physics B 2022年3期
    關(guān)鍵詞:雪峰

    Zheng-Zhao Lin(林正兆) Ling L¨u(呂玲) Xue-Feng Zheng(鄭雪峰) Yan-Rong Cao(曹艷榮)Pei-Pei Hu(胡培培) Xin Fang(房鑫) and Xiao-Hua Ma(馬曉華)

    1School of Microelectronics,Xidian University,Xi’an 710071,China

    2School of Mechano-Electronic Engineering,Xidian University,Xi’an 710071,China

    3Institute of Modern Physics,Chinese Academy of Sciences(CAS),Lanzhou 730000,China

    Keywords: gallium nitride,radiation effects,defects,pulse testing

    1. Introduction

    Gallium nitride (GaN) based devices are widely used in optoelectronics and power applications. In particular, Al-GaN/GaN high electron mobility transistors (HEMTs) are considered as excellent candidates for future power devices because high carrier concentration and electron mobility can be achieved with the two-dimensional electron gas (2DEG)produced by the polarization effect.[1-5]Because the displacement threshold energy of GaN is high, GaN has more effective anti-radiation properties than other semiconductor materials.[6,7]Therefore, AlGaN/GaN HEMTs have obvious advantages in environments with extremely high levels of radiation,in which radiation effects and long-term reliability are important concerns.

    Since 2000,numerous studies have been conducted to investigate the effects of radiation on AlGaN/GaN HEMTs.[8,9]The defects introduced by proton,electron,neutron,and heavy ion irradiation at the gate metal/barrier layer interface cause the interface state charge or discharge effect,which shifts the threshold voltage to positive values. Additionally, these irradiation defects increase the probability of electrons crossing the barrier, which increases in the gate-leakage current. Furthermore, irradiation defects in the 2DEG channel layer can capture electrons, thus decreasing the 2DEG density and the saturated drain current.[10-15]

    In space, the energy and fluence range of heavy ions are respectively<10 GeV and 105-107particles·cm-2/day.[16]Therefore, practical insights can be gained from studying the effects of heavy ion irradiation on devices. Heavy ions cause single event effects (SEEs), and permanent structural damage in device materials, thereby affecting the stability of the devices.[17-21]Since 2007, researchers have used heavy ions to simulate SEEs. Studies have demonstrated that GaN devices can tolerate high levels of radiation tolerance under total ionizing dose,and enhance low dose rate sensitivity and SEE irradiation.[22,23]Most studies are still focusing on the displacement damage. The degradation phenomenon was found to depend on the ion type,angle,circuit capacitance and manufacturing lot.[24]Microscopic damage can be observed in devices irradiated with heavy ions by using a transmission electron microscope. Sasakiet al.observed dislocation rings in devices that were irradiation with 18 MeV Ni ions, but observed no stripe tracks or defects in these devices.[25]Chenet al.demonstrated that prior total ionizing dose irradiation with gamma rays exacerbates the SEE of GaN devices induced by subsequent181Ta32+irradiation.[26]Huet al.were the first to report that209Bi ions create quasi-continuous tracks in Al-GaN/GaN HEMT devices.[27]To elucidate the mechanism of device damage caused by radiation, many studies have been conducted based on two-dimensional technology computeraided design(2D TCAD).[28]

    AlGaN/GaN HEMTs are widely known to be extremely sensitive to surface states,and current collapse is a major factor affecting the RF performance of these devices.[29-31]However,the effect of radiation on the metal/AlGaN layer,specifically the interface traps,has rarely been studied in detail.

    Suddenly varying voltages can trap and release surface states,and this forms a“virtual gate”that decreases the drain current, thus affecting device performance.[32,33]PulsedI-Vtesting is commonly used to measure the amount of current collapse by indirectly characterizing the surface state of the device. In this study,the radiation defects at the metal/AlGaN interface were characterized by pulsedI-Vtesting, and measurements were conducted before and after irradiation to determine the change in trap time constants.

    2. Experiments

    AlGaN/GaN HEMTs were processed at Xidian University in China. They were grown on sapphire substrates by metal organic chemical vapor deposition. Epitaxial growth was initiated with an AlN nuclear layer, which was followed by a 2 μm undoped GaN buffer and a 22-nmthick Al0.3Ga0.7N barrier. The ohmic contact comprising Ti/Al/Ni/Au (20/160/55/45 nm) was annealed at 850°C for 30 s under a nitrogen atmosphere. Schottky contact was realized with Ni/Au/Ni(45/100/20 nm). A 180-nm-thick Si3N4passivation layer was deposited. The gate length and width were 0.2 μm and 50 μm,respectively. A schematic cross section of the AlGaN/GaN HEMTs is shown in Fig.1.

    Fig.1. Schematic cross-section of AlGaN/GaN HEMTs.

    The irradiation experiments were performed at the Heavy Ion Research Facility in Lanzhou. To study the effect of heavy ion irradiation on the devices, AlGaN/GaN HEMTs were irradiated with181Ta32+at 2.1 GeV with a total fluence of 1×108ions/cm2, 1×109ions/cm2and 1×1010ions/cm2at room temperature. The devices were not biased during the irradiation process.

    A Keithley 4200 semiconductor parameter analyzer was used to conduct the DC and pulsedI-Vmeasurements at Xidian University. From the test results, we extracted the maximum saturation current, threshold voltage, maximum transconductance, gate-leakage and current collapse to analyze the degradation in electrical properties caused by irradiation. The change in the density of defect states can be determined by comparing the current collapse of the device under different static bias voltages. By comparing the results of tests conducted at different pulse widths, the time constants of the radiation defects can be calculated indirectly.

    3. Results and discussion

    Figure 2 shows the transfer characteristics of the Al-GaN/GaN HEMTs before and after the heavy ion irradiation.The threshold voltage (Vth) and maximum transconductance(Gmax)gradually degraded as the fluence increased.After irradiation by181Ta32+at a fluence of 1×1010ions/cm2,the electrical characteristics obviously degraded:Vthshifted positively by approximately 25%andGmaxdecreased by approximately 8%. Transconductance represents the gate control capability of the device and is an important parameter that affects the frequency characteristics. The degradedGmaxvalue can be used to evaluate the extent of damage in the gate area and the decrease in channel electron mobility. Therefore, after heavy ion irradiation, both the gate control capability of the device and the carrier mobility decreased slightly.

    Fig.2. Transfer characteristics of AlGaN/GaN HEMTs before and after heavy ions irradiation at Vds =10 V.The heavy ions radiation dose varies from 1×108 ions/cm2 to 1×1010 ions/cm2. The left y-axis is drain current,and the right y-axis is transconductance(Gm).

    The output characteristics obtained before and after irradiation are shown in Fig.3. The maximum saturation current(Idsat) before and after irradiation by heavy ions with a fluence of 1×1010ions/cm2atVgs=2 V were 782 mA/mm and 672 mA/mm, respectively. The maximum saturation current was likely degraded by a decrease in electron concentration and saturated carrier velocity.

    Fig. 3. The output characteristics of AlGaN/GaN HEMTs before and after heavy ions irradiation. The heavy ions radiation dose varies from 1×108 ions/cm2 to 1×1010 ions/cm2. The applied gate bias varies from-6 V to 2 V,and the step is 1 V.

    Fig. 4. Gate-leakage of AlGaN/GaN HEMTs before and after the heavy ions irradiation. The heavy ions radiation dose varies from 1×108 ions/cm2 to 1×1010 ions/cm2.

    Figure 4 displays the gate-leakage characteristics of the AlGaN/GaN HEMTs before and after irradiation. The results revealed that the gate-leakage currents were slightly improved at the fluences of 1×108ions/cm2and 1×109ions/cm2. This may be attributed to the interaction between181Ta32+and the lattice atoms, which releases a large amount of heat and produces an effect that is similar to thermal annealing, thereby improving the device performance at low fluences. However,other reports stated that it is due to the Kirkendall effect, an increase in the oxygen content at the AlGaN surface after irradiation, which creates a potential barrier for electrons, thus reducing the gate-leakage current.[34,35]At the high fluence of 1×1010ions/cm2, we observed a significant increase in the gate-leakage current, which maybe caused by the appearance of leakage paths at the interface between the gate metal and barrier layer. The gate forms a Schottky contact, and the Schottky barrier height and ideal factor can be calculated from the forwardIg-Vgcharacteristics. The barrier height is expressed as follows:

    From the results shown in Table 1, the Schottky barrier height remained almost unchanged after irradiation. However, the calculated ideality factor of the device irradiated at a fluence of 1×1010ions/cm2was much higher than that before irradiation. The mechanisms of current transport include thermionic emission, generation-recombination, trap-assisted tunneling, and surface leakage. Because the calculated ideality factor is much higher than the expected value,trap-assisted tunneling and surface leakage are the prominent mechanisms.The high-density donor traps introduced unintentionally at the GaN or AlGaN interface reduce the width of the Schottky barrier, which can cause electrons to tunnel easily through the barrier. Irradiation defects induced in the band gap and the interface between the gate and barrier may act as tunneling sites,which increase the gate current tunneling probability.

    Table 1. The extracted parameters from forward gate leakage characteristics.

    When heavy ions pass through AlGaN/GaN HEMTs,they transfer energy to the lattice atoms by the ionization and electron-phonon coupling effects, thus inducing radiation defects. According to the simulation results,most of the defects are interstitial atoms,vacancies,Frankel defects,and some defect clusters.[36]Defects cause lattice structure disorder and produce lattice stress. Moreover, defects and defect clusters accumulate along the latent track. According to our previous study,the degradation properties of devices are closely related to the defects introduced by irradiation.[27]As the amount of induced defects increases,the scattering in the carrier transport channel also increases and the effective carrier concentration decreases, which degrades the electrical performance of the device. However, latent tracks can only be found in the devices irradiated with relatively high fluences. Once the latent track is observed,the devices are damaged.

    Our experiments revealed that while performance degraded slightly at low fluences, the device still continued to work. As the radiation fluence gradually increased,damage to the device became more serious. At this point,we focused on the effects at the radiation interface.

    Figure 5 shows a schematic of the pulsedI-Vtest method.The three different quiescent bias conditions are (0,0) =[VGSQ=0 V,VDSQ=0 V], (-8,0)=[VGSQ=-8 V,VDSQ=0 V],and(-8,10)=[VGSQ=-8 V,VDSQ=10 V].If the pulse width is very small relative to the pulse period,the self-heating and trapping effects mainly depend on the choice of the static operating point. When the pulse width is small and the trap release or capture time constant is much smaller than the pulse width, the self-heating and trapping effects of the device can be considered constant and do not change with the pulse voltage. The amount of electrons that are trapped or released increase as the pulse width increases, thus gradually increasing the degree of current collapse. Therefore, it is important to choose an appropriate static operating point and pulse width to analyze the defect trapping effect of the irradiated device.

    Fig.5. Schematic of pulsed I-V testing.

    Figure 6 shows the results of pulsedID-VDtesting with a pulse width of 500 ns atVg=2 V before and after irradiation.At(-8,0)and(-8,10)states,the electrons in the channel were depleted and the device was in the off state. Current collapse at(-8,0)and(-8,10)states is likely due to the electrons trapped under the gate and the gate-drain access region, respectively. Because current collapse did not occur in the(0,0)state, the (0,0) state was taken as the reference state for current collapse. The greater the surface state density, the more electrons that are trapped and the greater the current collapse caused by the surface state.Therefore,the surface state density of the gate and gate-drain region can be indirectly measured by the pulsed test method. To quantitatively study the current collapse, the amount of current collapse is defined according to Eq.(3). The drain current is selected in the deep saturation region(VDS=10 V).[37]

    As shown in Fig. 6, the drain currents at (-8,0) and(-8,10)states were lower than that at the(0,0)state,because electrons were injected from the gate to the gate-drain region and were trapped by the surface states, causing current collapse. At the (-8,10) state, the electric field is larger on the drain side of the gate edge, more electrons are injected into the gate-drain region, and more electrons are trapped by the surface state, so the pulse output current is the smallest. The amount of current collapse after irradiation was greater than that before irradiation, especially at the fluence of 1×1010ions/cm2. This is likely due to the introduction of more surface state traps by irradiation. The higher the surface state density,the higher the quantity of electrons that are trapped and the more serious the current collapse. Augaudyet al.posited that these effects are mainly related to the time constants associated with the electron capture and emission process.[38]

    Figure 7 shows the output characteristics of the devices under DC conditions and at different quiescent bias conditions.The pulse width varied from 500 ns to 100 μs, and the pulse period was 1 ms. Before irradiation, the drain current under pulsed testing was higher than that under DC testing. As the pulse width increased, the drain current decreased. The decrease inId-pulseis generally considered due to the captured electrons in the traps, and electron capture by traps may occur when the voltage changes to the test voltage. When the pulse width is 500 ns,there is insufficient time for the surface traps to capture electrons; therefore,the pulse currentId-pulseis much larger than the DC currentId-dc. As the pulse width increases,the surface traps have sufficient time to capture electrons;therefore,the pulse current decreases.

    Fig.6. Comparison of different quiescent bias condition with the same pulse width (pulse width (PW) = 500 ns), (a) before irradiation (b)1×1010 ions/cm2.The current collapse amounts are shown in the insets.

    Fig.7. The output characteristics(Vgs=2 V)in different pulsed conditions before and after irradiation,(a)and(b)are for(0,0)state,(c)and(d)are for(-8,0)state,(e)and(f)are for(-8,10)state.

    Fig.8. The relationship between Id-pulse/Id-dc and pulse width at different quiescent bias conditions,(a)(0,0)state,(b)(-8,0)state,(c)(-8,10)state.

    As shown in Fig. 7, the difference in pulse current between the pulse widths of 10 μs and 100 μs was the smallest after heavy ion irradiation at the fluence of 1×1010ions/cm2.After heavy ion irradiation,there were few surface states with time constants in the range of 10 μs<τ <100 μs and many surface traps with time constants in the range of 500 ns<τ <10 μs.

    We used Eqs.(4)-(6)to fit the variation inId-pulse/Id-dcwith pulse width to obtain the corresponding trap time constant.In these equations,IDCis the DC drain current,whileτ1,τ2andτ3are the trap time constants. Moreover,I1,I2andI3are the fitting constants,[29]

    Figure 8 shows the relationship betweenId-pulse/Id-dcand the pulse width at different quiescent bias conditions. The aforementioned equations were used to fit the experimental data. The fitted trap time constants are shown in Fig.9. Equation(6)was used to fit the experimental data obtained before irradiation,while Eq.(4)was used for the data obtained after irradiation. The results revealed that traps with time constants in the range of 10 μs<t <100 μs disappeared after the irradiation.

    In summary,more surface state traps are introduced after heavy ion irradiation. Moreover,the time constants of the surface traps induced by heavy ion irradiation are concentrated between 500 ns and 10 μs.

    Fig.9. The fitting trap time constant of devices before and after irradiation.

    4. Conclusion

    In this paper, the evolution of interface traps at the gate/AlGaN layer in AlGaN/GaN HEMTs under 2.1 GeV181Ta32+heavy ion irradiation was investigated in detail.The characteristics of the interface traps were determined by pulsedI-Vtesting. A quantitative comparison of current collapse revealed that irradiation introduced more surface traps.However,by comparing the different pulse widths at the same quiescent operating point,we found that heavy ion irradiation reduced the amount of surface trap states with time constants between 10 μs and 100 μs.Therefore,heavy ion irradiation introduced more trap states with time constants less than 10 μs.The results presented herein facilitate our understanding of the effects of heavy ion irradiation on interface traps in Al-GaN/GaN HEMTs.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant Nos.12035019 and 11690042)and Science Challenge Projects(Grant No.TZ2018004).

    猜你喜歡
    雪峰
    珠穆朗瑪不只有雪峰
    奧秘(2023年3期)2023-05-30 04:58:26
    57Fe M¨ossbauer spectrometry: A powerful technique to analyze the magnetic and phase characteristics in RE–Fe–B permanent magnets*
    命途多舛的數(shù)學(xué)家:安德烈·韋依
    少兒科技(2021年10期)2021-01-20 23:19:26
    要退休了
    雜文月刊(2019年19期)2019-12-04 07:48:34
    白描作品《花卉寫生》
    西部論叢(2017年8期)2017-12-01 01:10:14
    看山是山?看山非山?
    雪峰下的草場
    中國三峽(2016年5期)2017-01-15 13:58:43
    解析幾何中一類定點(diǎn)問題及其證法
    王雪峰國畫
    歌海(2016年1期)2016-03-28 10:08:55
    韓雪峰的“臺賬”
    久久久久久伊人网av| 青春草视频在线免费观看| av免费在线看不卡| 国产伦精品一区二区三区四那| 日韩成人av中文字幕在线观看| 少妇裸体淫交视频免费看高清| .国产精品久久| 美女视频免费永久观看网站| av国产久精品久网站免费入址| 色视频在线一区二区三区| 亚洲精品国产成人久久av| 日韩熟女老妇一区二区性免费视频| 成人二区视频| 人妻系列 视频| 久久青草综合色| 啦啦啦在线观看免费高清www| 久久久国产精品麻豆| 亚洲国产精品999| kizo精华| 国产伦精品一区二区三区四那| 精品人妻一区二区三区麻豆| 纯流量卡能插随身wifi吗| 青青草视频在线视频观看| 男女国产视频网站| 国产伦精品一区二区三区视频9| 汤姆久久久久久久影院中文字幕| 91久久精品电影网| 久久久久国产网址| 国产伦理片在线播放av一区| 日韩成人伦理影院| 欧美老熟妇乱子伦牲交| 日本欧美视频一区| 丁香六月天网| 又爽又黄a免费视频| 中文字幕免费在线视频6| 另类精品久久| 五月天丁香电影| 大香蕉97超碰在线| 午夜福利影视在线免费观看| 18禁在线无遮挡免费观看视频| 国产成人a∨麻豆精品| 啦啦啦中文免费视频观看日本| 激情五月婷婷亚洲| 亚洲精品国产成人久久av| 噜噜噜噜噜久久久久久91| 亚洲内射少妇av| √禁漫天堂资源中文www| 亚洲av福利一区| 久久人人爽人人爽人人片va| 午夜激情久久久久久久| 大码成人一级视频| 午夜激情久久久久久久| 亚洲欧美日韩卡通动漫| 中文字幕av电影在线播放| 国产综合精华液| 一级毛片久久久久久久久女| 久久影院123| 成人漫画全彩无遮挡| 美女国产视频在线观看| 免费观看a级毛片全部| 亚洲美女黄色视频免费看| 只有这里有精品99| 国产精品成人在线| 国产一区二区三区av在线| 只有这里有精品99| 免费人妻精品一区二区三区视频| 国产黄频视频在线观看| av播播在线观看一区| 精品人妻偷拍中文字幕| 天天躁夜夜躁狠狠久久av| 久久久久久久久久久久大奶| 久久久亚洲精品成人影院| 亚洲av国产av综合av卡| 日日啪夜夜撸| av播播在线观看一区| 亚洲欧美成人综合另类久久久| 精品国产一区二区久久| 日日撸夜夜添| 亚洲av男天堂| 国产男人的电影天堂91| 97在线视频观看| 精品一区在线观看国产| 亚洲色图综合在线观看| 少妇猛男粗大的猛烈进出视频| 美女内射精品一级片tv| 日韩免费高清中文字幕av| 女性被躁到高潮视频| 狂野欧美白嫩少妇大欣赏| 麻豆乱淫一区二区| 亚洲精品中文字幕在线视频 | 能在线免费看毛片的网站| 一二三四中文在线观看免费高清| 99久国产av精品国产电影| 精品人妻熟女av久视频| 午夜精品国产一区二区电影| 国产日韩欧美亚洲二区| 一级爰片在线观看| 欧美精品高潮呻吟av久久| kizo精华| 老司机影院毛片| 日本-黄色视频高清免费观看| 日韩av不卡免费在线播放| 国产一区二区在线观看日韩| 黄片无遮挡物在线观看| 免费播放大片免费观看视频在线观看| 国产成人91sexporn| 桃花免费在线播放| 国产男人的电影天堂91| 一级二级三级毛片免费看| 亚洲成人手机| 老司机亚洲免费影院| 麻豆成人午夜福利视频| 国产精品久久久久久精品古装| 纯流量卡能插随身wifi吗| 亚洲国产毛片av蜜桃av| 欧美+日韩+精品| 99视频精品全部免费 在线| 一级,二级,三级黄色视频| 欧美日韩综合久久久久久| videossex国产| 国产在线免费精品| av免费在线看不卡| 精品久久久久久久久av| www.av在线官网国产| 免费少妇av软件| 中国美白少妇内射xxxbb| 黑丝袜美女国产一区| 这个男人来自地球电影免费观看 | 人人妻人人看人人澡| 免费大片黄手机在线观看| av网站免费在线观看视频| 日韩精品有码人妻一区| 国产男女内射视频| 国产高清有码在线观看视频| 亚洲av免费高清在线观看| 超碰97精品在线观看| 久久久久久久亚洲中文字幕| 日韩成人伦理影院| 人体艺术视频欧美日本| 日韩av在线免费看完整版不卡| 亚洲美女黄色视频免费看| 各种免费的搞黄视频| 国产综合精华液| 一本一本综合久久| 99热这里只有是精品在线观看| 乱人伦中国视频| 黄色欧美视频在线观看| 国产精品99久久久久久久久| 亚洲成人av在线免费| 蜜臀久久99精品久久宅男| 少妇人妻久久综合中文| 亚洲国产精品一区三区| 精品久久久精品久久久| 国产乱来视频区| 亚洲国产毛片av蜜桃av| 一个人看视频在线观看www免费| 人体艺术视频欧美日本| 一区二区三区精品91| 久久精品久久久久久久性| 高清在线视频一区二区三区| 亚洲人成网站在线观看播放| 久久女婷五月综合色啪小说| 寂寞人妻少妇视频99o| 国产一区二区在线观看日韩| 夫妻午夜视频| videossex国产| 亚洲精品中文字幕在线视频 | 久久99一区二区三区| 国产午夜精品久久久久久一区二区三区| 亚洲欧美精品专区久久| 国产精品无大码| 精品久久久久久久久av| 91精品国产国语对白视频| 久久久久精品性色| 熟妇人妻不卡中文字幕| 亚洲丝袜综合中文字幕| 久久久国产精品麻豆| 国产午夜精品久久久久久一区二区三区| 日韩三级伦理在线观看| 欧美日韩视频高清一区二区三区二| 亚洲国产最新在线播放| 一级黄片播放器| 中文字幕免费在线视频6| 午夜免费男女啪啪视频观看| 美女脱内裤让男人舔精品视频| freevideosex欧美| 桃花免费在线播放| 黄色怎么调成土黄色| av女优亚洲男人天堂| 伊人久久国产一区二区| 熟女av电影| 成人毛片60女人毛片免费| 成人国产麻豆网| 亚洲情色 制服丝袜| 男人和女人高潮做爰伦理| 国产精品蜜桃在线观看| 亚洲丝袜综合中文字幕| 国产黄片美女视频| 免费高清在线观看视频在线观看| 国产精品国产三级国产av玫瑰| 久久午夜综合久久蜜桃| 久久久久网色| 国产91av在线免费观看| 国产精品国产av在线观看| 国产精品久久久久久久电影| 日本色播在线视频| 日韩强制内射视频| 国内精品宾馆在线| 亚洲av在线观看美女高潮| 日韩,欧美,国产一区二区三区| 我的老师免费观看完整版| 亚洲欧美成人综合另类久久久| 91久久精品国产一区二区三区| 春色校园在线视频观看| 黑人巨大精品欧美一区二区蜜桃 | av一本久久久久| 国产老妇伦熟女老妇高清| 欧美成人午夜免费资源| 亚洲精品一二三| 纵有疾风起免费观看全集完整版| av免费观看日本| 国产精品欧美亚洲77777| 王馨瑶露胸无遮挡在线观看| 国产亚洲一区二区精品| 精品视频人人做人人爽| 99视频精品全部免费 在线| 久久精品国产自在天天线| 91久久精品国产一区二区三区| 国语对白做爰xxxⅹ性视频网站| 亚洲人成网站在线播| 国产av一区二区精品久久| 插逼视频在线观看| 黄片无遮挡物在线观看| 国产国拍精品亚洲av在线观看| 王馨瑶露胸无遮挡在线观看| 特大巨黑吊av在线直播| 中文字幕久久专区| 成人亚洲精品一区在线观看| freevideosex欧美| 少妇的逼好多水| 老司机影院成人| 新久久久久国产一级毛片| 免费看不卡的av| 国内少妇人妻偷人精品xxx网站| 一级毛片 在线播放| 国产黄片视频在线免费观看| 亚洲欧美日韩另类电影网站| 久久这里有精品视频免费| 亚洲欧美一区二区三区黑人 | 国产成人91sexporn| 中文字幕av电影在线播放| 99热这里只有是精品在线观看| 午夜免费男女啪啪视频观看| 日本黄大片高清| 亚洲av.av天堂| 色视频在线一区二区三区| 在线免费观看不下载黄p国产| 涩涩av久久男人的天堂| av天堂中文字幕网| 日韩不卡一区二区三区视频在线| av天堂久久9| 建设人人有责人人尽责人人享有的| 国产在线男女| 美女大奶头黄色视频| 国产亚洲91精品色在线| 婷婷色综合www| 亚洲av在线观看美女高潮| 国产精品一区二区三区四区免费观看| 69精品国产乱码久久久| 最近中文字幕高清免费大全6| a级毛色黄片| 中国美白少妇内射xxxbb| 蜜臀久久99精品久久宅男| 2018国产大陆天天弄谢| 黄色配什么色好看| 精品酒店卫生间| 国产真实伦视频高清在线观看| 免费观看性生交大片5| 啦啦啦啦在线视频资源| 在线精品无人区一区二区三| 国产精品偷伦视频观看了| 久久影院123| 国产视频内射| 久久av网站| 亚洲精品自拍成人| 有码 亚洲区| 亚洲欧美一区二区三区国产| 国产伦精品一区二区三区四那| 国产女主播在线喷水免费视频网站| 亚洲自偷自拍三级| 99久久精品国产国产毛片| 国产深夜福利视频在线观看| 人人妻人人澡人人爽人人夜夜| 亚洲av.av天堂| 美女内射精品一级片tv| 中文字幕免费在线视频6| 大香蕉久久网| 3wmmmm亚洲av在线观看| 日日摸夜夜添夜夜爱| 亚洲精品国产av蜜桃| 大陆偷拍与自拍| 国产精品国产三级国产av玫瑰| 婷婷色综合www| 免费少妇av软件| 国产成人精品无人区| 日本猛色少妇xxxxx猛交久久| 国产 精品1| 国产精品国产av在线观看| 亚洲欧美精品自产自拍| 有码 亚洲区| 97精品久久久久久久久久精品| 日韩在线高清观看一区二区三区| av在线观看视频网站免费| 国产精品女同一区二区软件| 美女视频免费永久观看网站| 久久鲁丝午夜福利片| 欧美日韩视频精品一区| 91久久精品国产一区二区成人| 中文字幕亚洲精品专区| 日韩熟女老妇一区二区性免费视频| 欧美日韩精品成人综合77777| 亚洲欧美日韩卡通动漫| 国产深夜福利视频在线观看| 免费av不卡在线播放| 一级毛片 在线播放| 在线 av 中文字幕| 日韩电影二区| 亚洲一区二区三区欧美精品| 天堂8中文在线网| 在线亚洲精品国产二区图片欧美 | 国产精品.久久久| 亚洲伊人久久精品综合| 欧美 亚洲 国产 日韩一| 中文字幕久久专区| 高清黄色对白视频在线免费看 | 91成人精品电影| 国产成人精品无人区| 一级二级三级毛片免费看| 亚洲av不卡在线观看| 色94色欧美一区二区| 美女国产视频在线观看| 国产精品久久久久久精品电影小说| 日韩一区二区视频免费看| 欧美日韩视频精品一区| 嫩草影院入口| 国产日韩欧美在线精品| 亚洲av中文av极速乱| 校园人妻丝袜中文字幕| 久久久久久久国产电影| 你懂的网址亚洲精品在线观看| 丰满乱子伦码专区| 香蕉精品网在线| 国产av精品麻豆| 伦理电影免费视频| 国产精品久久久久久久久免| 最近中文字幕2019免费版| 久久久精品94久久精品| 中文字幕制服av| 高清黄色对白视频在线免费看 | 免费看不卡的av| 3wmmmm亚洲av在线观看| 插阴视频在线观看视频| 在线亚洲精品国产二区图片欧美 | 亚洲欧美精品自产自拍| 噜噜噜噜噜久久久久久91| 午夜精品国产一区二区电影| 国产有黄有色有爽视频| 欧美国产精品一级二级三级 | 亚洲精品自拍成人| av在线播放精品| 国产精品麻豆人妻色哟哟久久| 亚洲精品视频女| 18禁在线无遮挡免费观看视频| 又黄又爽又刺激的免费视频.| a级毛片在线看网站| 91在线精品国自产拍蜜月| 久久精品国产a三级三级三级| 大话2 男鬼变身卡| av天堂久久9| 国产深夜福利视频在线观看| 制服丝袜香蕉在线| 国产日韩一区二区三区精品不卡 | 国语对白做爰xxxⅹ性视频网站| 精品视频人人做人人爽| 如日韩欧美国产精品一区二区三区 | 亚洲精品成人av观看孕妇| 伊人久久精品亚洲午夜| 国产欧美日韩综合在线一区二区 | 久久精品国产鲁丝片午夜精品| 成人毛片60女人毛片免费| 国产日韩一区二区三区精品不卡 | 在线观看免费高清a一片| 男女无遮挡免费网站观看| 亚洲精品,欧美精品| 国产免费视频播放在线视频| 精品一区二区三卡| 亚洲欧美精品专区久久| 毛片一级片免费看久久久久| 国产精品麻豆人妻色哟哟久久| 国产极品天堂在线| 狂野欧美激情性xxxx在线观看| 妹子高潮喷水视频| 国产免费福利视频在线观看| 国产综合精华液| 欧美一级a爱片免费观看看| www.色视频.com| 日韩 亚洲 欧美在线| 看免费成人av毛片| 亚洲国产欧美在线一区| 最近的中文字幕免费完整| 国产伦在线观看视频一区| 日日撸夜夜添| 精品人妻熟女av久视频| 亚洲久久久国产精品| 日韩大片免费观看网站| 国产日韩欧美视频二区| .国产精品久久| 久久午夜综合久久蜜桃| 国产日韩欧美亚洲二区| 国产极品天堂在线| av卡一久久| 午夜视频国产福利| av福利片在线| 国产精品99久久99久久久不卡 | 嫩草影院入口| 日韩欧美一区视频在线观看 | 丝袜在线中文字幕| 最近中文字幕2019免费版| 9色porny在线观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品自拍成人| 一级毛片我不卡| h视频一区二区三区| 日韩伦理黄色片| 久久久久精品性色| 国产一区二区三区综合在线观看 | 18+在线观看网站| 亚洲欧美成人综合另类久久久| 秋霞在线观看毛片| 亚洲成人av在线免费| 欧美少妇被猛烈插入视频| 精品亚洲乱码少妇综合久久| 欧美日韩在线观看h| 麻豆成人午夜福利视频| 大香蕉久久网| 在线观看国产h片| 黄色欧美视频在线观看| 久久精品国产自在天天线| 国产片特级美女逼逼视频| 国产成人精品福利久久| 久久久久人妻精品一区果冻| 在线观看人妻少妇| 哪个播放器可以免费观看大片| 黄色视频在线播放观看不卡| 内射极品少妇av片p| 免费久久久久久久精品成人欧美视频 | 亚洲精品乱码久久久v下载方式| 日产精品乱码卡一卡2卡三| 日韩亚洲欧美综合| 少妇人妻精品综合一区二区| 在线免费观看不下载黄p国产| 亚洲av二区三区四区| 偷拍熟女少妇极品色| 久久精品熟女亚洲av麻豆精品| 亚洲欧美成人综合另类久久久| 妹子高潮喷水视频| 在线观看av片永久免费下载| 亚洲四区av| 性高湖久久久久久久久免费观看| 一级毛片电影观看| 午夜影院在线不卡| 免费观看a级毛片全部| 国产精品99久久99久久久不卡 | 少妇熟女欧美另类| 国产熟女欧美一区二区| 最近中文字幕高清免费大全6| 亚洲精品一二三| 啦啦啦在线观看免费高清www| 黑人巨大精品欧美一区二区蜜桃 | 亚洲不卡免费看| 黄片无遮挡物在线观看| 国产成人aa在线观看| 成年美女黄网站色视频大全免费 | 午夜91福利影院| 亚洲久久久国产精品| 国产国拍精品亚洲av在线观看| 少妇精品久久久久久久| 少妇人妻一区二区三区视频| 久久久久精品性色| 国产精品久久久久久久电影| 久久 成人 亚洲| 少妇的逼水好多| 亚洲国产欧美在线一区| 涩涩av久久男人的天堂| 免费播放大片免费观看视频在线观看| 亚洲精品中文字幕在线视频 | 国产成人精品婷婷| 九九爱精品视频在线观看| 日韩一本色道免费dvd| av不卡在线播放| 99精国产麻豆久久婷婷| 国产精品久久久久久av不卡| 国产成人一区二区在线| 伦理电影免费视频| a级一级毛片免费在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲伊人久久精品综合| 亚洲人成网站在线播| 欧美日韩视频精品一区| 一级黄片播放器| 男女边摸边吃奶| av女优亚洲男人天堂| 成人毛片60女人毛片免费| 老司机亚洲免费影院| 亚洲电影在线观看av| 插阴视频在线观看视频| 三级经典国产精品| av在线播放精品| 一个人看视频在线观看www免费| 欧美性感艳星| 久久亚洲国产成人精品v| 男女国产视频网站| 在线观看免费视频网站a站| 一边亲一边摸免费视频| 中文字幕久久专区| 精品午夜福利在线看| 91成人精品电影| 各种免费的搞黄视频| tube8黄色片| 各种免费的搞黄视频| 少妇精品久久久久久久| 五月玫瑰六月丁香| 国产高清三级在线| xxx大片免费视频| 99热这里只有是精品50| 最近最新中文字幕免费大全7| 亚洲美女搞黄在线观看| 日韩强制内射视频| 国产欧美日韩精品一区二区| 国产亚洲午夜精品一区二区久久| 国产淫语在线视频| 九色成人免费人妻av| 一级毛片aaaaaa免费看小| 欧美精品国产亚洲| 精品一区二区三卡| 午夜激情久久久久久久| 精品亚洲乱码少妇综合久久| 欧美日韩视频精品一区| 欧美成人精品欧美一级黄| 成人黄色视频免费在线看| 婷婷色av中文字幕| 69精品国产乱码久久久| 中文字幕免费在线视频6| 久久久久精品久久久久真实原创| 中文字幕亚洲精品专区| 99热国产这里只有精品6| 黑人巨大精品欧美一区二区蜜桃 | 少妇精品久久久久久久| 国产欧美另类精品又又久久亚洲欧美| 精品亚洲乱码少妇综合久久| 日日撸夜夜添| 国产高清三级在线| xxx大片免费视频| 精品视频人人做人人爽| 日本猛色少妇xxxxx猛交久久| 国产欧美日韩精品一区二区| 亚洲精品国产色婷婷电影| 精品一区二区三卡| 亚洲一级一片aⅴ在线观看| 中文字幕免费在线视频6| 精品人妻偷拍中文字幕| 成人无遮挡网站| 两个人免费观看高清视频 | 大片免费播放器 马上看| 少妇被粗大的猛进出69影院 | 国产男人的电影天堂91| 熟妇人妻不卡中文字幕| 男人舔奶头视频| 天堂俺去俺来也www色官网| av播播在线观看一区| 香蕉精品网在线| 视频区图区小说| videos熟女内射| 国产国拍精品亚洲av在线观看| 两个人免费观看高清视频 | 两个人免费观看高清视频 | 中国美白少妇内射xxxbb| 人人澡人人妻人| 成年人免费黄色播放视频 | 国产在线一区二区三区精| 十分钟在线观看高清视频www | 日本黄大片高清| 97精品久久久久久久久久精品| 日本av免费视频播放| 亚洲av不卡在线观看| 精品一区二区免费观看| 又黄又爽又刺激的免费视频.| 国产男女内射视频| 久久亚洲国产成人精品v| 久久精品久久精品一区二区三区| 色94色欧美一区二区| 我要看黄色一级片免费的| 男的添女的下面高潮视频| 少妇熟女欧美另类| 国产一区二区在线观看日韩| 国产日韩欧美亚洲二区| av又黄又爽大尺度在线免费看| 国产欧美日韩精品一区二区| 99九九线精品视频在线观看视频| 国产在线视频一区二区| 精品卡一卡二卡四卡免费| 日本-黄色视频高清免费观看| 丝袜脚勾引网站| 亚洲天堂av无毛| 久久精品国产鲁丝片午夜精品|